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THE NUMBER OF SPANNING TREES
IN SOME CLASSES OF GRAPHS

M.H. SHIRDAREH HAGHIGHI AND KH. BIBAK

ABSTRACT. In this paper, using properties of Chebyshev
polynomials, we give explicit formulas for the number of span-
ning trees in some classes of graphs, including join of graphs,
Cartesian product of graphs and nearly regular graphs.

1. Introduction. We use the terminology of Bondy and Murty [4].
All graphs in this paper are finite, undirected, and simple (i.e., without
loops or multiple edges). We denote by τ(G) the number of spanning
trees of a graph G.

A famous and classical result on the study of τ(G) is the following
theorem, known as the Matrix Tree theorem [9]. But this theorem
is not feasible for large graphs. The Laplacian matrix (also called
Kirchhoff matrix) of a graph G is defined as L(G) = D(G) − A(G),
where D(G) and A(G) are the degree matrix and the adjacency matrix
of G, respectively.

Theorem 1.1. For every connected graph G, τ(G) is equal to any
cofactor of L(G).

The characteristic polynomial of a graph G is PG(λ) = det (λI −
A(G)). Also we define CG(λ) = det (λI − L(G)).

The number of spanning trees of a connected graph G can be ex-
pressed in terms of the eigenvalues of L(G). Since, by the definition,
L(G) is a real symmetric matrix, it therefore has n non-negative real
eigenvalues, of which n is the number of vertices of G. In [1, Theorem
1], Anderson and Morley proved that the multiplicity of 0 as an eigen-
value of L(G) equals the number of components of G. Therefore, the
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Laplacian matrix of a connected graph G has 0 as an eigenvalue with
multiplicity one.

Theorem 1.2 [6]. Suppose G is a connected graph with n vertices.
Let λ1, . . . , λn be the eigenvalues of L(G), with λn = 0. Then

τ(G) =
(−1)n−1

n
C′
G(λ)|λ=0 =

1

n
λ1 · · ·λn−1.

Example 1.3. Consider the path Pn and the cycle Cn. It is
known that the eigenvalues of L(Pn) and L(Cn) are 2 − 2 cos (kπ)/n
(0 ≤ k ≤ n− 1) and 2 − 2 cos (2kπ)/n (0 ≤ k ≤ n− 1), respectively
(see, e.g., [2, 5]). On the other hand, we know that τ(Pn) = 1 and
τ(Cn) = n; therefore, by using Theorem 1.2, we obtain the well-known
identities:

n−1∏
k=1

(
2− 2 cos

kπ

n

)
= n =⇒

n−1∏
k=1

sin
kπ

2n
=

√
n

2n−1
, n ≥ 2,(1)

and

n−1∏
k=1

(
2− 2 cos

2kπ

n

)
= n2 =⇒

n−1∏
k=1

sin
kπ

n
=

n

2n−1
, n ≥ 2.

(2)

There are many ways of combining graphs to produce new graphs. We
now describe some binary operations defined on graphs.

The union of graphs G and H is the graph G ∪ H with vertex set
V (G) ∪ V (H) and edge set H(G) ∪E(H). If G and H are disjoint, we
refer to their union as a disjoint union, denoted by G+H . The join of
two graphs G and H , G ∨H , is obtained from the disjoint union of G
and H by additionally joining every vertex of G to every vertex of H .

The join Wn = Cn ∨K1 of a cycle Cn and a single vertex is referred
to as a wheel with n spokes. Similarly, the join Fn = Pn ∨K1 of a path
Pn and a single vertex is called a fan.
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The Cartesian product of graphs G and H is the graph G H whose
vertex set is V (G) × V (H) and whose edge set is the set of all
pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G) and v1 = v2, or
v1v2 ∈ E(H) and u1 = u2. The notation used for the Cartesian product
reflects this fact. The Cartesian product Pm Pn of two paths is the
(m × n)-grid. Also the Cartesian product P2 Pn (n ≥ 2) is called a
ladder, and P2 Cn (n ≥ 3) is referred to as an n-prism.

In the next section, we review some properties of the well-known
Chebyshev polynomials and then state some theorems that allow us
to evaluate the number of spanning trees in join of graphs, Cartesian
product of graphs and nearly regular graphs. Recall that a graph G is
called nearly k-regular if all its vertices except one (referred to as an
exceptional vertex) have degree k.

2. Joins and Cartesian products. The starting point of our
calculations is the following theorem.

Theorem 2.1 [6]. Suppose G1, . . ., Gk, are graphs of order n1, . . ., nk,
respectively, and let n1 + · · · + nk = n. For the disjoint union
G1 + · · ·+Gk and the join G1 ∨ · · · ∨Gk, we have:

CG1+···+Gk
(λ) =

k∏
i=1

CGi(λ),

CG1∨···∨Gk
(λ) = λ(λ − n)k−1

k∏
i=1

CGi(λ− n+ ni)

λ− n+ ni
.

Now, by applying Theorems 1.2 and 2.1 we evaluate the number
of spanning trees of the complete multipartite (or complete k-partite)
graph Kn1,... ,nk

, which is the main result of [11] and also studied in
[12].

Theorem 2.2. The number of spanning trees in the complete
multipartite graph Kn1,... ,nk

of order n is equal to:

τ(Kn1,... ,nk
) = nk−2

k∏
i=1

(n− ni)
ni−1.
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Proof. Let Nm denote the empty graph of order m. Since Nm is
the disjoint union of m copies of a single vertex, therefore CNm(λ) =
λm. The complete multipartite graph Kn1,... ,nk

is the join of graphs
Nn1 , . . . ,Nnk

. Now, Theorem 2.1 implies that

CKn1,... ,nk
(λ) = λ(λ − n)k−1

k∏
i=1

(λ− n+ ni)
ni−1.

Therefore, by Theorem 1.2,

τ(Kn1,... ,nk
) =

(−1)n−1

n
C′
Kn1,... ,nk

(λ)|λ=0

=
(−1)n−1

n
(λ− n)k−1

k∏
i=1

(λ− n+ ni)
ni−1|λ=0

= nk−2
k∏

i=1

(n− ni)
ni−1.

Now, we review the properties of the Chebyshev polynomials (taken
from [8]) that help us to derive explicit formulas for the number of
spanning trees in some other classes of graphs.

The function cosnθ is a Chebyshev polynomial function of cos θ.
Specifically, for n ≥ 0, cosnθ = Tn(cos θ), where Tn is the Chebyshev
polynomial of the first kind, defined by T0(x) = 1, T1(x) = x, and for
n ≥ 2,

Tn(x) = 2xTn−1(x) − Tn−2(x).

If we change the initial conditions to be U0(x) = 1 and U1(x) = 2x,
but keep the same recurrence

Un(x) = 2xUn−1(x) − Un−2(x),

we get the Chebyshev polynomials of the second kind.

It is easy to show that, for all n ≥ 0, Tn(1) = 1 and Un(1) = n + 1,
Tn(−1) = (−1)n, Un(−1) = (−1)n(n+ 1).
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Here we list a few intriguing identities satisfied by the Chebyshev
polynomials:

Tn(x) =
1

2
((x+

√
x2 − 1)n + (x−

√
x2 − 1)n),

(3)

Tn(−x) = (−1)nTn(x),
(4)

Un(x) =
1

2
√
x2−1

((x+
√
x2−1)n+1− (x−

√
x2−1)n+1), |x| 	=1,

(5)

Un(−x) = (−1)nUn(x),
(6)

Un(x) =
n∏

k=1

(
2x± 2 cos

kπ

n+ 1

)
,

(7)

Tn(x) = Un(x)− xUn−1(x).
(8)

The lemma below gives us the characteristic polynomial of the path
Pn and the cycle Cn in terms of Chebyshev polynomials.

Lemma 2.3 [6]. For the path Pn, the cycle Cn, and the complete
graph Kn, we have:

PPn(λ) = Un

(
λ

2

)
,(9)

PCn(λ) = 2

(
Tn

(
λ

2

)
− 1

)
,(10)

PKn(λ) = (λ− n+ 1)(λ+ 1)n−1.(11)

Suppose G is a k-regular graph of order n. It is easy to see that

CG(λ) = (−1)nPG(k − λ).

Thus, by using the lemma above we can evaluate CCn(λ) and CKn(λ).
The eigenvalues of L(Pn), as we have mentioned, are 2 − 2 cos(kπ)/n
(0 ≤ k ≤ n− 1); then, by applying (7), CPn(λ) also follows.
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Lemma 2.4. For the path Pn, the cycle Cn, and the complete graph
Kn, we have:

CPn(λ) = λUn−1

(
λ− 2

2

)
,(12)

CCn(λ) = 2

(
Tn

(
λ− 2

2

)
− (−1)n

)
,(13)

CKn(λ) = λ(λ − n)n−1.(14)

Now, we calculate the number of spanning trees in some special
graphs.

Theorem 2.5.

τ(Km ∨ Pn) = (m+ n)m−1Un−1

(
m+ 2

2

)
.

Proof. By Theorem 2.1 and Lemma 2.4:

CKm∨Pn(λ) = λ(λ −m− n)mUn−1

(
λ−m− 2

2

)
.

Now applying Theorem 1.2 gives:

τ(Km ∨ Pn) =
(−1)m+n−1

m+ n
C′
Km∨Pn

(λ)|λ=0

=
(−1)m+n−1

m+ n
(λ−m− n)mUn−1

(
λ−m− 2

2

)∣∣∣∣
λ=0

= (m+ n)m−1Un−1

(
m+ 2

2

)
.

By similar calculations, we can enumerate the number of spanning
trees in some more cases:
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Theorem 2.6.

τ(Km ∨ Cn) =
2

m
(m+ n)m−1

(
Tn

(
m+ 2

2

)
− 1

)
,

τ(Pm ∨ Cn) =
2

m
Um−1

(
n+ 2

2

)(
Tn

(
m+ 2

2

)
− 1

)
,

τ(Pm ∨ Pn) = Um−1

(
n+ 2

2

)
Un−1

(
m+ 2

2

)
,

τ(Cm ∨ Cn) =
4

mn

(
Tm

(
n+ 2

2

)
− 1

)(
Tn

(
m+ 2

2

)
− 1

)
.

Proof. To prove the first formula, by Theorem 2.1 and Lemma 2.4,
we have:

CKm∨Cn(λ) =
2λ

λ−m
(λ−m− n)m

(
Tn

(
λ−m− 2

2

)
− (−1)n

)

Now applying Theorem 1.2 gives:

τ(Km ∨ Cn) =
(−1)m+n−1

m+ n
C′

Km∨Cn(λ)|λ=0

=
2(−1)m+n−1

(m+ n)(λ−m)
(λ−m− n)m

×
(
Tn

(
λ−m− 2

2

)
− (−1)n

)∣∣∣∣
λ=0

=
2

m
(m+ n)m−1

(
Tn

(
m+ 2

2

)
− 1

)
.

In order to prove the second formula, by Theorem 2.1 and Lemma 2.4,
again, we have:

CPm∨Cn(λ) =
2λ(λ−m− n)

λ−m
Um−1

(
λ− n− 2

2

)

×
(
Tn

(
λ−m− 2

2

)
− (−1)n

)
.
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Now applying Theorem 1.2 gives:

τ(Pm ∨ Cn) =
(−1)m+n−1

m+ n
C′
Pm∨Cn

(λ)|λ=0

=
2(−1)m+n−1(λ−m− n)

(m+ n)(λ−m)
Um−1

(
λ− n− 2

2

)

×
(
Tn

(
λ−m− 2

2

)
− (−1)n

)∣∣∣∣
λ=0

=
2

m
Um−1

(
n+ 2

2

)(
Tn

(
m+ 2

2

)
− 1

)
.

The proofs of the other formulas are similar.

By the same method, we get τ(Km ∨Kn) = (m+ n)m+n−2, which is
nothing but Cayley’s formula.

Our machinery gives the formulas in the corollary below which have
also appeared in [3].

Corollary 2.7. The number of spanning trees of fan Fn and wheel
Wn are:

τ(Fn) = Un−1

(
3

2

)

= F2n =
1√
5

((
3 +

√
5

2

)n

−
(
3−√

5

2

)n)
,

τ(Wn) = 2

(
Tn

(
3

2

)
− 1

)

= L2n − 2 =

(
3 +

√
5

2

)n

+

(
3−√

5

2

)n

− 2,

where Fn and Ln denote the Fibonacci and Lucas numbers, respectively.
That is, Fn+2 = Fn+1 + Fn, for n ≥ 1 with F1 = F2 = 1, and
Ln+2 = Ln+1 + Ln, for n ≥ 1 with L1 = 1 and L2 = 3.
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Proof. By Theorem 2.6, we have:

τ(Fn) = τ(Pn ∨ P1)

= U0

(
n+ 2

2

)
Un−1

(
3

2

)
= Un−1

(
3

2

)
= F2n,

τ(Wn) = τ(Cn ∨ P1)

= 2U0

(
n+ 2

2

)(
Tn

(
3

2

)
− 1

)

= 2

(
Tn

(
3

2

)
− 1

)
= L2n − 2.

Now, we study the number of spanning trees in Cartesian products
of graphs. The key theorem here is the following.

Theorem 2.8 [2]. The Laplacian eigenvalues of the Cartesian
product G H, are precisely the numbers

λi(G) + λj(H),

for i = 1, 2, . . . , |V (G)| and j = 1, 2, . . . , |V (H)|.

Now we get the number of spanning trees of the complete prism
Kn Pm.

Theorem 2.9. For any m,n ≥ 2,

τ(Kn Pm) = nn−2

(
Um−1

(
n+ 2

2

))n−1

.

Proof. Since the eigenvalues of L(Kn) by Lemma 2.4 are 0, n, n, . . . , n,
and the eigenvalues of L(Pm) are 2 − 2 cos(kπ)/m (0 ≤ k ≤ m− 1),
therefore by Theorems 1.2 and 2.8,

τ(Kn Pm) =
1

mn

m−1∏
k=1

(
2− 2 cos

kπ

m

)(m−1∏
k=0

(
n+ 2− 2 cos

kπ

m

))n−1

.
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By identity (1),
m−1∏
k=1

(
2− 2 cos

kπ

m

)
= m.

Now, applying (7) implies the theorem.

Similarly, we obtain the number of spanning trees of the (m×n)-grid
Pm Pn, and complete cyclic prism Kn Cm.

Theorem 2.10.

τ(Pm Pn) = 4(m−1)(n−1)
m−1∏
i=1

n−1∏
j=1

(
sin2

iπ

2m
+ sin2

jπ

2n

)
,

τ(Cm Cn) = mn4(m−1)(n−1)
m−1∏
i=1

n−1∏
j=1

(
sin2

iπ

m
+ sin2

jπ

n

)
,

τ(Pm Cn) = n4(m−1)(n−1)
m−1∏
i=1

n−1∏
j=1

(
sin2

iπ

2m
+ sin2

jπ

n

)
,

τ(Km Kn) = mm−2nn−2(m+ n)(m−1)(n−1),

τ(Kn Cm) =
m2n−1

n

(
Tm

(
n+ 2

2

)
− 1

)n−1

.

Proof. The eigenvalues of L(Kn), by Lemma 2.4, are 0, n, n, . . . , n,
and the eigenvalues of L(Pm) and L(Cm) are 2− 2 cos(kπ/m) (0 ≤ k ≤
m− 1) and 2−2 cos(2kπ/m) (0 ≤ k ≤ m− 1), respectively. Therefore,
by direct application of Theorems 1.2 and 2.8 and identities (1) and
(2), the proofs of these formulas follow easily.

The first and latter formulas also appeared in [10, 3], respectively.

We now derive the number of spanning trees of the ladder P2 Pn,
and the n-prism P2 Cn, which was also proved in [3].

Corollary 2.11. The number of spanning trees of the ladder P2 Pn

and the n-prism P2 Cn are:

τ(P2 Pn) = Un−1(2) =

√
3

6
((2 +

√
3)n − (2−

√
3)n),

τ(P2 Cn) = n(Tn(2)− 1) =
n

2
((2 +

√
3)n + (2−

√
3)n − 2).
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Proof. Using Theorem 2.10 we have:

τ(P2 Pn) = 4n−1
n−1∏
j=1

(
1

2
+ sin2

jπ

2n

)
= Un−1(2)

=

√
3

6
((2 +

√
3)n − (2−

√
3)n),

τ(P2 Cn) = τ(K2 Cn) = n(Tn(2)− 1)

=
n

2
((2 +

√
3)n + (2 −

√
3)n − 2).

3. Nearly regular graphs. In this section, we prove a theorem
for enumerating the number of spanning trees in nearly regular graphs.
First, we present a theorem for k-regular graphs.

Theorem 3.1 [6]. Suppose G is a connected k-regular graph with n
vertices. Let λ1, . . . , λn be the eigenvalues of G, with λn = k. Then

τ(G) =
1

n

n−1∏
i=1

(k − λi) =
1

n
P ′
G(k).

Theorem 3.2. Suppose G is a connected nearly k-regular graph.
Then

τ(G) = PH(k),

where H is the subgraph of G obtained by removing the exceptional
vertex.

Proof. By the matrix tree theorem, τ(G) is equal to any cofactor of
L(G). Now we take the cofactor of the diagonal element corresponding
to the exceptional vertex of G. Hence, the theorem follows.

Example 3.3. A wheel Wn is a nearly 3-regular graph. If we remove
the exceptional vertex (called the hub), we obtain the cycle Cn. The
characteristic polynomial of the cycle Cn, by Lemma 2.3, is

PCn(λ) = 2

(
Tn

(
λ

2

)
− 1

)
.
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Therefore, by Theorem 3.2,

τ(Wn) = 2

(
Tn

(
3

2

)
− 1

)
,

as we already obtained.

Let G be a plane graph. Denote its dual by G∗.

Lemma 3.4 [7, Lemma 14.3.3]. Let G be a connected plane graph.
Then the graphs G and G∗ have the same number of spanning trees.

Example 3.5. Consider the fan Fn. Replace any edge on the rim
by the path Pk+1 (k ≥ 1), and denote the graph obtained by Fn,k. The
dual F∗

n,k is nearly (k+2)-regular. If we remove the exceptional vertex
of F∗

n,k, then we obtain the path Pn−1. The characteristic polynomial
of the path Pn by Lemma 2.3 is

PPn(λ) = Un

(
λ

2

)
.

Consequently, by Theorem 3.2 and Lemma 3.4,

τ(Fn,k) = τ(F∗
n,k) = Un−1

(
k + 2

2

)
.

Example 3.6. Consider the wheel Wn. Replace any edge on the
rim by the path Pk+1 (k ≥ 1), and denote the graph obtained by Wn,k.
The dual W ∗

n,k is nearly (k + 2)-regular. If we remove the exceptional
vertex of W ∗

n,k, then we obtain the cycle Cn. Similar to the example
above,

τ(Wn,k) = τ(W ∗
n,k) = 2

(
Tn

(
k + 2

2

)
− 1

)
.

Example 3.7. Place n k-gons in a row, such that each two
consecutive k-gons have a side in common. Denote this graph by Gn,k.
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The dual G∗
n,k is nearly k-regular. If we remove the exceptional vertex

of G∗
n,k, then we obtain the path Pn. As above,

τ(Gn,k) = τ(G∗
n,k) = Un

(
k

2

)
.
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