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ABSTRACT. We prove that given a regular groupoid G
whose isotropy subgroupoid S has a Haar system, along with
a dynamical system (A,G, α), there is an action of G on
the spectrum of A � S such that the spectrum of A � G is
homeomorphic to the orbit space of this action via induction.
In addition, we give a strengthening of these results in the
case where the crossed product is a groupoid algebra.

Introduction. This paper continues the development of the Mackey
machine for groupoid crossed products which was started in [6]. In
the first paper of this series we constructed an induction process for
groupoid crossed products and proved that for crossed products by
regular groupoids every irreducible representation of A�G is induced
from a representation of a “stabilizer” crossed product A(u)� Su.

In this work we realize our ultimate goal of identifying the space of
irreducible representations of certain crossed products by exhibiting a
natural action of G on the spectrum (A� S)∧, showing that induction
defines a map from the spectrum of A�S onto the spectrum of A�G,
and then proving that this map factors to a homeomorphism between
the orbit space (A�S)∧/G and (A�G)∧. This identification theorem
is a partial generalization of work done by Williams for transformation
group C∗-algebras [16] and results of Echterhoff for transformation
groupoids [3, Theorem 1]. Furthermore, it is also related to work done
by Orloff Clark on groupoid C∗-algebras [10, 11]. An outline of the
paper is roughly as follows. Section 1 covers some basic crossed product
theory, as well as a few facts concerning crossed products by groupoid
group bundles. Section 2 contains the main result of the paper. The
proof is quite technical and has been broken up into four subsections.
We finish with Section 3 which strengthens the results of Section 2 in
the context of groupoid algebras.
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Before we begin in earnest we should first make some remarks about
our hypotheses. In order to work with the crossed product A � S we
must assume that S has a Haar system. It is worth pointing out that
this is equivalent to assuming that the stabilizer subgroups Su vary
continuously with respect to the Fell topology in S [13]. It should also
be noted that, to a large extent, the results of this paper are contained,
with more detail and a great deal of backgroundmaterial in the author’s
thesis [5]. Lastly, the author would like to thank the referee for their
comments and for bringing [3] to our attention.

1. Preliminaries. We will be using the same notation and
terminology as in [6]. In particular, we will let G denote a second
countable, locally compact Hausdorff groupoid with a Haar system
λ. Given an element u ∈ G(0) of the unit space of G, we will use
Su = {γ ∈ G : s(γ) = r(γ) = u} to denote the stabilizer, or isotropy,
subgroup of G over u. We use S = {γ ∈ G : s(γ) = r(γ)} to denote the
stabilizer, or isotropy, subgroupoid ofG formed by bundling together all
of the stabilizer subgroups. We will let A denote a separable C0(G

(0))-
algebra, and we will let A be its associated usc-bundle. Given A and G
as above, we let α denote an action ofG on A as defined in [9, Definition
4.1] and call (A,G, α) a groupoid dynamical system. We construct
the groupoid crossed product A �α G as a universal completion of
the algebra of compactly supported sections Γc(G, r

∗A) in the usual
fashion.

One important aspect of groupoid dynamical systems is that, given
(A,G, α), there is a natural action of G on the spectrum of A induced
by α.

Proposition 1.1. If (A,G, α) is a groupoid dynamical system then

there is a continuous action of G on Â given by γ · π = π ◦ α−1
γ .

Proof. Since A is a C0(G
(0))-algebra, it follows from [17, Proposition

C.5] that there is a continuous map r : Â → G(0). Furthermore, we

view Â as being fibered over G(0) so that if π ∈ Â with r(π) = u then
we can factor π to a representation π′ of A(u). Given γ ∈ G, we know

αγ : A(s(γ)) → A(r(γ)) so that if r(π) = s(γ) we can define γ ·π ∈ Â by
γ ·π(a) = π′(α−1

γ (a(r(γ)))). Of course, when we factor γ ·π to A(r(γ)),
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we get (γ · π)′ = π′ ◦ α−1
γ as desired. The difficult part in proving that

this defines a groupoid action is showing that it is continuous.

Suppose γi → γ and πi → π such that s(γi) = r(πi) for all i

and s(γ) = r(π). Let OJ = {ρ ∈ Â : J �⊂ kerρ} be an open set

in Â containing γ · π. Suppose, to the contrary, that γi · πi is not
eventually in OJ . By passing to a subnet and relabeling, we can assume
γi · πi /∈ OJ for all i. Fix a ∈ J and choose b ∈ A such that b(s(γ)) =
α−1
γ (a(r(γ))). Since the action is continuous, α−1

γi
(a(r(γi))) → b(s(γ)).

Since the norm is upper-semicontinuous, the set {a ∈ A : ‖a‖ < ε}
is open for all ε > 0. Because α−1

γi
(a(r(γi))) − b(s(γi)) → 0, we

eventually have ‖α−1
γi

(a(r(γi))) − b(s(γi))‖ < ε for all ε > 0. Hence,
‖α−1

γi
(a(r(γi))) − b(s(γi))‖ → 0. Next, γi · πi /∈ OJ for all i so that

γi · πi(a) = π′(α−1
γi

(a(r(γi)))) = 0 for all i. Thus,

(1)
‖πi(b)‖ = ‖π′

i(b(s(γi))− α−1
γi

(a(r(γi))))‖
≤ ‖b(s(γi))− α−1

γi
(a(r(γi)))‖ → 0.

It is shown in [12, Lemma A.30] that the map π 	→ ‖π(b)‖ is lower-

semicontinuous on Â. In other words, given ε ≥ 0, the set {ρ ∈ Â :

‖ρ(b)‖ ≤ ε} is closed. Thus (1) implies that eventually πi ∈ {ρ ∈ Â :
‖ρ(b)‖ ≤ ε}. Therefore, the fact that πi → π implies ‖π(b)‖ ≤ ε. This
is true for all ε > 0 so that

0 = π(b) = π′(b(s(γ))) = π′(α−1
γ (a(r(γ)))) = γ · π(a).

This is a contradiction since a ∈ J was arbitrary and we assumed that
γ · π ∈ OJ .

1.1. Bundle crossed products. An important class of groupoids
are those for which the range and source map are identical. Such a
space is called a (groupoid) group bundle, and we will use p to denote
both the range and the source. The premier example of a groupoid
group bundle is the stabilizer subgroupoid S of a groupoid G. The
reason this class of groupoids is important for what follows is that
crossed products by group bundles have extra structure.

Proposition 1.2. Suppose (A,S, α) is a groupoid dynamical system,
and S is a group bundle. Then A �α S is a C0(S

(0))-algebra with the
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action defined for φ ∈ C0(S
(0)) and f ∈ Γc(S, p

∗A) by φ · f(s) :=
φ(p(s))f(s). Furthermore, the restriction map from Γc(S, p

∗A) to
Cc(Su, A(u)) factors to an isomorphism of A�α S(u) onto A(u)�α|Su

Su.

Proof. Given φ ∈ C0(S
(0)) and f ∈ Γc(S, p

∗A), define Φ(φ)f = φ · f
as in the statement of the proposition. It is easy to see that Φ(φ)f ∈
Γc(S, p

∗A) and that Φ(φ) is linear as a function on Γc(S, p
∗A). We

need to extend Φ(φ) to an element of the multiplier algebra. First,
simple calculations show that, on Γc(S, p

∗A), Φ(φ) is A� S-linear and
is adjointable with adjoint Φ(φ).

Now extend Φ to the unitization C0(S
(0))1 by setting Φ(φ+ λ1)f =

Φ(φ)f + λf . An elementary computation shows that Φ preserves the
operations on C0(S

(0))1. Suppose φ ∈ C0(G
(0)) and f ∈ Γc(S, p

∗A). In
order to show Φ(φ) is bounded it will suffice to show that 〈φ ·f, φ ·f〉 ≤
‖φ‖2∞〈f, f〉 where 〈·, ·〉 is the usual inner product when A�S is viewed
as an A� S-module. However, this is equivalent to proving

0 ≤ ‖φ‖2∞〈f, f〉 − 〈Φ(φ)f,Φ(φ)f〉 = 〈Φ(‖φ‖2∞1− φφ)f, f〉.

Since general C∗-algebraic nonsense assures us that ‖φ‖2∞1 − φφ is
positive in C0(S

(0))1, it follows that there is some ξ ∈ C0(S
(0))1 such

that ξ∗ξ = ‖φ‖2∞1− φφ. We now compute

〈Φ(‖φ‖2∞1− φφ)f, f〉 = 〈Φ(ξ∗)Φ(ξ)f, f〉 = 〈Φ(ξ)f,Φ(ξ)f〉 ≥ 0.

Hence, Φ(φ) is bounded and extends to a multiplier on A�S. Further-
more, simple calculations show that Φ is a nondegenerate homomor-
phism from C0(S

(0)) into the center of the multiplier algebra of A�S.
Thus A� S is a C0(S

(0))-algebra.

Let us now address the second part of the proposition. Fix u ∈ S(0),
and recall that A� S(u) = A� S/Iu where

Iu = span {φ · a : φ ∈ C0(S
(0)), a ∈ A� S, φ(u) = 0}.

Next, observe that S acts trivially on its unit space so that {u} is
a closed S-invariant subset in S(0) and O = S(0) \ {u} is an open
S-invariant subset. It follows from [6, Theorem 3.3] that restriction
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factors to an isomorphism from A � S/Ex (O) onto A(u) � Su. Thus
we will be done if we can show that Iu = Ex (O) = {f ∈ Γc(S, p

∗A) :
supp f ⊂ S \ Su}. Given f ∈ Ex (O) let φ ∈ Cc(S

(0)) be zero on u and
one on p(supp f). Then φ · f = f ∈ Iu and Iu ⊂ Ex (O). Now suppose
f ∈ Iu. Given ε > 0, the set K = {s : ‖f(s)‖ ≥ ε} is a compact subset
of supp f and as such we can find φ ∈ Cc(S

(0)) such that φ is one on
p(K), zero on a neighborhood of u and 0 ≤ φ ≤ 1. It follows quickly
that φ · f ∈ Ex (O) and that ‖φ · f − f‖ < ε. Since ε was arbitrary, this
is enough to show that Ex (O) ⊂ Iu.

Remark 1.3. One important consequence of Proposition 1.2 is that
the irreducible representations of A�S are well behaved. To elaborate,
[17, Proposition C.6] states that, as a set, the spectrum (A� S)∧ can
be identified with the disjoint union

∐
u∈Su

(A(u) � Su)
∧. In other

words, every irreducible representation of the crossed product A� S is
lifted from an irreducible covariant representation of the group crossed
product A(u)�Su for some u ∈ S(0) via restriction on Γc(S, p

∗A). This
fact is at the heart of the analysis in Section 2.

We finish this section with a technical lemma. Recall that, given a
C0(X)-algebra A with associated usc-bundle A and a locally compact
Hausdorff subset Y ⊂ X , we define A(Y ) := Γ0(Y,A).

Lemma 1.4. Suppose (A,S, α) is a groupoid dynamical system, S is
a group bundle and C is a closed subset of S(0). Then A�α S(C) and
A(C) �α S|C are isomorphic as C0(C)-algebras.

Proof. Since the action of S on its unit space is trivial, both C and
U = S(0) \ C are S-invariant subsets. It follows from [6, Theorem 3.3]
that restriction factors to an isomorphism ρ1 of A � S/Ex(U) onto
A(C) � S|C . Now let

IC = span {φ · f : φ ∈ C0(S
(0)), f ∈ Γc(S, p

∗A), φ(C) = 0}.

It follows from some basic C0(X)-algebra theory that the restriction
map ρ2 : A � S → A � S(C), where we view both spaces as section
algebras of the usc-bundle associated to A � S, factors to an isomor-
phism ρ2 : A� S/IC → A�S(C). Similar to the previous proposition,
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an approximation argument shows that IC = Ex (U), and therefore we
may form the isomorphism ρ = ρ2 ◦ ρ−1

1 of A(C)�S|C onto A�S(C).
The fact that ρ is C0(C)-linear then follows from a straightforward
calculation.

2. Groupoid crossed products. As mentioned in the introduc-
tion, we aim to identify the spectrum of groupoid crossed products via
induction and the stabilizer subgroupoid. The key to this construction
is the following map, which we will eventually factor to a homeomor-
phism.

Remark 2.1. We say that a groupoid G is regular if it satisfies one
of the equivalent conditions of the Mackey-Glimm dichotomy [13]. In
particular, G is regular whenever G(0)/G is T0 or almost Hausdorff.

Proposition 2.2. Suppose (A,G, α) is a groupoid dynamical system,
that G is regular, and that the isotropy groupoid S has a Haar system.
Then Φ : (A�S)∧ → (A�G)∧ given by Φ(R) = IndGSR is a continuous
surjection.

Recall that A � S is a C0(G
(0))-algebra and that restriction factors

to an isomorphism of A� S(u) with A(u)� Su. The main difficulty is
showing that induction respects this fibering.

Lemma 2.3. Suppose (A,G, α) is a groupoid dynamical system and
that the stabilizer subgroupoid S has a Haar system. Given u ∈ G(0)

and a representation R of A(u)�Su, let ρ : A�S → A(u)�Su be given
on Γc(S, p

∗A) by restriction. Then IndGSu
R is naturally equivalent to

IndGS (R ◦ ρ).

Proof. The proof of this lemma is relatively straightforward so we
shall limit ourselves to sketching an outline. Fix u ∈ G(0) and suppose
R is a representation of A(u) � Su on H. Recall from [6, Theorem
2.1] that IndG

Su
R acts on the Hilbert tensor product ZG

Su
⊗A(u)�Su

H
where ZG

Su
is a Hilbert A(u) � Su-module. Furthermore, recall that

ZG
Su

is a completion of Cc(Gu, A(u)). Similarly IndG
S (R ◦ ρ) acts on
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ZG
S ⊗A�S H where the Hilbert A � S-module ZG

S is a completion of
Γc(G, s

∗A). Let π : Γc(G, s
∗A) → Cc(Gu, A(u)) be given by restriction.

We now define U : Γc(G, s
∗A)�H → Cc(Gu, A(u))�H on elementary

tensors by U(f ⊗ h) = π(f) ⊗ h. It then follows from some relatively
painless calculations that U is isometric and extends to a unitary map
from ZG

S ⊗A�S H onto ZG
Su

⊗A(u)�Su
H which intertwines IndGSu

R and

IndGS (R ◦ ρ).

Remark 2.4. In light of how natural the unitary intertwining IndGSu
R

and IndGS (R ◦ ρ) is, we shall often confuse the two. Furthermore,
since every irreducible representation of A � S is lifted from a fiber
via restriction, we will feel free to use the notation IndGSR even when R
is an irreducible representation of A(u)� Su and will interpret IndGSR
as either IndGSu

R or IndGS (R ◦ ρ) as we see fit. We trust the reader will
forgive the author for these abuses.

The advantage of viewing the induction as occurring on S is that
induction from a fixed algebra is a continuous process.

Proof of Proposition 2.2. As noted above, every irreducible represen-
tation of A�S is of the form R◦ρ where R is an irreducible representa-
tion of A(u)�Su for some u ∈ G(0) and ρ is the canonical extension of
the restriction map. Since G is regular, we know from [8, Proposition
4.13] that IndG

SR is irreducible. Thus Φ is well defined. The surjec-
tivity follows immediately from [6, Theorem 4.1], and the continuity
follows from the fact that Rieffel induction is a continuous process [12,
Corollary 3.35].

2.1. Groupoid actions. The goal of this section is to lay ground-
work for establishing the equivalence relation on (A � S)∧ induced by
Φ.

Proposition 2.5. Suppose G is a locally compact groupoid and
that the isotropy subgroupoid S has a Haar system. Then there is a
continuous homomorphism ω from G to R+ such that for all f ∈ Cc(S)

(2)

∫
S

f(s)dβr(γ)(s) = ω(γ)

∫
S

f(γsγ−1) dβs(γ)(s).
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Furthermore, given s ∈ S, we have ω(s) = Δu(s)−1 where Δu is the
modular function for the group Su.

Proof. By and large this is proved in the same way as [15, Lemma
4.1]. The only difference is that the stabilizer subgroupoid S may not
be abelian and that, rather than being S-invariant, ω(s) = Δu(s)−1 for
all s ∈ Su. This is shown by the following calculation for s ∈ Su and
f ∈ Cc(S)

ω(s)−1

∫
S

f(t)dβu(t) =

∫
S

f(sts−1) dβu(t)

=

∫
S

f(ts−1) dβu(t)

= Δu(s)

∫
f(t) dβu(t).

Since the remainder of the proof is identical to that of [15, Lemma 4.1],
we will not reproduce it here.

Next we demonstrate the following construction which, although we
only make use of it indirectly, is interesting in its own right.

Proposition 2.6. Suppose (A,G, α) is a groupoid dynamical system
and that the isotropy subgroupoid S has a Haar system. Then there is
an action δ of G on A �α S defined by the collection {δγ}γ∈G where,
for f ∈ Cc(Ss(γ), A(s(γ))),

(3) δγ(f)(s) = ω(γ)−1αγ(f(γ
−1sγ)).

Proof. It is easy enough to show that δγ : A(s(γ)) � Ss(γ) →
A(r(γ)) � Sr(γ) is a well-defined isomorphism and that δ respects the
groupoid operations on G. The difficult part is in proving that the
action is continuous. Suppose E is the usc-bundle associated to the
C0(G

(0))-algebra A�S. Given γn → γ0 in G and an → a in E such that
s(γn) = p(an) = un for all n ≥ 0, we must show that δγn(an) → δγ0(a0).
Fix ε > 0, and let vn = r(γn) for all n ≥ 0. First, choose b ∈ A � S
such that b(u0) = a0. Next, using the fact that Γc(S, p

∗A) is dense in
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A�S, we can choose f ∈ Γc(S, p
∗A) such that ‖f(u)− b(u)‖ < ε/2 for

all u ∈ G(0). Recall that f(u), the image of f in A(u)� Su, is exactly
the restriction of f to Su. We now make the following

Claim. If f ∈ Γc(S, p
∗A) and γn → γ0 as above, then δγn(f(un)) →

δγ0(f(u0)).

Proof of Claim. First, suppose vn = v0 infinitely often. Then we can
pass to a subsequence, relabel and assume vn = v0 for all n ≥ 0. Now
suppose we can pass to another subsequence such that for each n > 0
there exists sn with

(4) ‖δγn(f(un))(sn)− δγ0(f(u0))(sn)‖ ≥ ε > 0.

If this is to hold, we must either have γ−1
n snγn ∈ supp f infinitely

often or γ−1
0 snγ0 ∈ supp f infinitely often. In either case we may pass

to a subsequence, multiply by the appropriate groupoid elements, and
find s0 such that sn → s0. However, we then have f(γ−1

n snγn) →
f(γ−1

0 s0γ0) and f(γ−1
0 snγ0) → f(γ−1

0 s0γ0). Since both ω and α are
continuous, it follows that δγn(f(un))(sn) and δγ0(f(u0))(sn) both
converge to δγ0(f(u0))(s0) and this contradicts (4). It follows quickly
that δγn(f(un)) → δγ0(f(u0)) with respect to the inductive limit
topology, and thus in A(v0)� Sv0 ⊂ E .
Next, suppose that we may remove an initial segment, and assume

that vn �= v0 for all n > 0. We may also pass to a subsequence,
relabel and assume that vn �= vm for all n �= m. Let K = {vn}∞n=0.
Then C = S|K = p−1(K) is closed in S, and we can define ι on C by
ι(s) = n if and only if p(s) = vn. Some simple computations then show
that the function F (s) = δγι(s)

(f(ι(s)))(s) is continuous and compactly
supported on C. Thus F ∈ Γc(C, p

∗A) ⊂ A(K)� S|K . It follows from
Lemma 1.4 that A(K)�S|K is isomorphic to the restriction A�S(K).
In particular, we may view F as a continuous section of E on K, where
we recall that F (vn) denotes the restriction of F to Svn . Since F
is continuous, we must have F (vn) → F (v0). However, we clearly
constructed F so that F (vn) = δγn(f(un)) for all n ≥ 0 and this proves
our claim.

Thus, δγn(f(un)) → δγ0(f(u0)). Since both an → a0 and b(un) → a0,
it follows that ‖an − b(un)‖ → 0 so that eventually

‖δγn(f(un))− δγn(an)‖ ≤ ‖f(un)− b(un)‖+ ‖b(un)− an‖ < ε.
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Since ‖δγ0(f(u0))− δγ0(a0)‖ = ‖f(u0)− b(u0)‖ < ε by construction, it
now follows from [17, Proposition C.20] that δγn(an) → δγ0(a0), and
we are done.

The following corollary will eventually form our foundation for the
equivalence classes determined by Φ.

Corollary 2.7. Suppose (A,G, α) is a groupoid dynamical system
and that the stabilizer subgroupoid has a Haar system. Then the action
δ induces an action of G on (A � S)∧ given by δ · R = R ◦ δ−1

γ .
Furthermore, if R = π � U then γ ·R = ρ� V where

(5) ρ(a) = π(α−1
γ (a)), and Vs = Uγ−1sγ .

Proof. The fact that the action exists follows immediately from
Proposition 1.1. Calculating that ρ and V are given as above is
accomplished by composing the canonical injections of A(r(γ)) and
Sr(γ) into M(A(r(γ)) � Sr(γ)) with γ · R.

Remark 2.8. We have omitted many of the calculations in these proofs
for brevity. However, enterprising readers wishing to verify the above
computations should make note of the fact that, if Δu is the modular
function for Su, then

(6) Δs(γ)(s) = Δr(γ)(γsγ−1) for γ ∈ G.

2.2. Equivalent representations. The primary obstacle in
working with induced representations is that they are not very concrete.
The purpose of this section is to describe a selection of concrete
representations which are equivalent to IndGSR for a given R. This
material is at least inspired by [15], when it doesn’t copy it directly.
We begin by citing the following

Lemma 2.9 [10, Lemma 3.2]. Let G be a locally compact Hausdorff
groupoid. Suppose u ∈ G(0), that A is a subgroup of Su and that β is a
Haar measure on A. Then the following hold.
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(a) The formula

Q(f)([γ]) =

∫
A

f(γs) dβ(s)

defines a surjection from Cc(G) onto Cc(Gu/A).

(b) There is a non-negative continuous function b on Gu such that,
for any compact set K ⊂ Gu, the support of b and KA have compact
intersection and for all γ ∈ Gu

(7)

∫
A

b(γs) dβ(s) = 1.

The function b in Lemma 2.9 is the normalization of a function b′

which satisfies all of the conditions of (b) except for (7). This function is
guaranteed to exist by [2, Lemma 1]. Furthermore, [4] also proves that
b′ is positive, continuous, and b′ is not zero on any entire equivalence
class. We now define

(8) ρ(γ) =

∫
A

b′(γs)Δ(s)−1dβ(s)

for γ ∈ Gu where Δ is the modular function for A. Notice that ρ(γ) > 0
for all γ because the modular function is strictly greater than zero and
b′ is positive and not zero on any entire equivalence class. An important
property of ρ is that for γ ∈ Gu and s ∈ A

(9)
ρ(γs) =

∫
A

b′(γst)Δ(t)−1dβ(t) =

∫
A

b′(γt)Δ(s)Δ(t)−1dβ(t)

= Δ(s)ρ(γ).

We can now cite the following

Lemma 2.10 [10, Lemma 3.3]. There is a Radon measure σ on
Gu/A such that

(10)

∫
G

f(γ)ρ(γ) dλu(γ) =

∫
Gu/A

∫
A

f(γs) dβ(s) dσ([γ])

for all f ∈ Cc(Gu).
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Remark 2.11. It is not particularly difficult to show that σ has full
support on Gu/A.

Suppose (A,G, α) is a groupoid dynamical system with stabilizer
subgroupoid S. For all u ∈ S(0), let βu be a Haar measure on Su.
Using Lemma 2.10, for each u ∈ G(0), there exists a Radon measure
σu with full support on Gu/Su and an associated continuous strictly
positive function ρu on Gu such that∫

G

f(γ)ρu(γ) dλu(γ) =

∫
Gu/Su

∫
S

f(γs) dβu(s) dσu([γ]).

For the rest of this section whenever we have (A,G, α) and S as above
we will let σ = {σu} and ρ = {ρu} be defined in this way. Next, we
construct a Hilbert space which we will use for one of our equivalent
representations.

Lemma 2.12. Fix u ∈ G(0), and suppose R = π � U is a covariant
representation of A(u)� Su on a separable Hilbert space H. Let Vu be
the set of Borel functions φ : Gu → H such that φ(γs) = U∗

s φ(γ) for
all γ ∈ Gu and s ∈ Su. Define

L2
U (Gu,H, σu) =

{
φ ∈ Vu :

∫
Gu/Su

‖φ(γ)‖2dσu([γ]) <∞
}
,

and let L2
U (Gu,H, σu) be the quotient of L2

U (Gu,H, σu) where we
identify functions which agree almost everywhere. Then L2

U (Gu,H, σu)
is a Hilbert space with the inner product

(φ, ψ) :=

∫
Gu/Su

(φ(γ), ψ(γ)) dσu([γ]).

Since the proof of this lemma is, by and large, straightforward, we
will omit it here for brevity. Similar arguments can be found in [17,
page 290] or in [5, Lemma 6.36]. Using this Hilbert space we have the
following

Proposition 2.13. Suppose (A,G, α) is a groupoid dynamical sys-
tem and that the stabilizer subgroupoid S has a Haar system. Fix
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u ∈ G(0), and let R = π�U be a covariant representation of A(u)�Su

acting on the separable Hilbert space H. Then IndGSu
R is equivalent to

the representation TR on L2
U (Gu,H, σu) defined for f ∈ Γc(G, r

∗A)
and φ ∈ L2

U (Gu,H, σu) by

(11) TR(f)φ(γ) =

∫
G

π(α−1
γ (f(γη−1)))φ(η)ρu(η)1/2ρu(γ)−1/2dλu(η).

Proof. First recall that IndGSu
R acts on the Hilbert space ZG

Su
⊗A(u)�Su

H where ZG
Su

is the completion of the pre-Hilbert A(u) � Su-module
Cc(Gu, A(u)). Define V : Cc(Gu, A(u)) � H → L2

U (Gu,H, σu) on ele-
mentary tensors by

(12) V (z ⊗ h)(γ) =

∫
S

Usπ(z(γs))hρ
u(γs)−1/2 dβu(s).

It is not difficult to prove that V (z⊗h) is an element of L2
U (Gu,H, σu).

Furthermore, simple computations show that V is isometric and ex-
tends to an isometry from ZG

Su
⊗A(u)�Su

H into L2
U (Gu,H, σu). In

order to show that V is a unitary, it will suffice to show that, given
φ ∈ L2

U (Gu,H, σu) such that (V (z⊗h), φ) = 0 for all z ∈ Cc(Gu, A(u))
and h ∈ H, then φ is zero λu-almost everywhere. We have

(13)

0 = (V (z ⊗ h), φ) =

∫
Gu/Su

(V (z ⊗ h)(γ), φ(γ))dσu([γ])

=

∫
Gu/Su

∫
S

(Usπ(z(γs))h, φ(γ))ρ
u(γs)−1/2dβu(s) dσu([γ])

=

∫
Gu/Su

∫
S

(π(z(γs))h, φ(γs))ρu(γs)−1/2dβu(s) dσu([γ])

=

∫
G

(((π ◦ z)⊗ h)(γ), φ(γ))ρu(γ)1/2dλu(γ)

where (π ◦ z) ⊗ h denotes the function γ 	→ π(z(γ))h. Now suppose
K ⊂ Gu is compact, and let φ|K be the function obtained by letting φ
be zero off K. If g ∈ Cc(Gu) is one on K, then by Lemma 2.9,

F ([γ]) =

∫
S

g(γs)ρu(γs)−1dβu(s)
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defines an element of Cc(Gu/Su). We observe that∫
G

‖φ|K(γ)‖2dλu(γ)

≤
∫
G

g(γ)‖φ(γ)‖2dλu(γ)

=

∫
Gu/Hu

‖φ(γ)‖2
∫
Su

g(γs)ρu(γs)−1dβu(s) dσu([γ])

≤ ‖φ‖2‖F‖∞.
Thus φ|K ∈ L2(Gu,H). Next, given z ∈ Cc(Gu, A(u)) such that
supp z ⊂ K, we conclude from (13) that

(14)
0 =

∫
G

(((π ◦ z)⊗ h)(γ), φ(γ))ρu(γ)1/2dλu(γ)

= ((π ◦ z)⊗ h, φ(ρu)1/2)L2(K,H,λu).

Because ρu is strictly positive, it follows that φ|K will be zero λu-almost
everywhere if we can show that elements of the form (π ◦ z)⊗ h span
a dense set in L2(K,H, λu). However, we can restrict ourselves even
further and work with elementary tensors of the form

f ⊗ (π(a)h) = ((f ⊗ a) ◦ π)⊗ h

where f ∈ Cc(K), a ∈ A(u) and h ∈ H. However, using nondegeneracy,
it is fairly clear that these elements span a dense set in L2(K,H, λu).
Thus φ|K is zero λu-almost everywhere. Since K was arbitrary and Gu

is σ-compact, the result follows. Hence V is a unitary and as such we
can define the representation TR := V IndGSu

RV ∗. The fact that TR is
given by (11) is the result of a slightly messy computation.

Next, because Gu is second countable, we can find a Borel cross
section c : Gu/Su → Gu, and this allows us to define a Borel map
δ : Gu → Su such that γ = c([γ])δ(γ). We will need these maps
in order to find a representation equivalent to TR which acts on
L2(Gu/Su,H, σu).

Proposition 2.14. Suppose (A,G, α) is a groupoid dynamical sys-
tem with stabilizer subgroupoid S. Fix u ∈ G(0), let R = π � U be a
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representation of A(u)� Su on the separable Hilbert space H and let δ
be as above. Then TR and IndGSu

R are equivalent to the representation

NR on L2(Gu/Su,H, σu) given by

(15) NR(f)(φ)([γ]) =

∫
G

Uδ(γ)π(α
−1
γ (f(η)))U∗

δ(η−1γ)φ([η
−1γ]) · · ·

· · · ρu(η−1γ)1/2ρu(γ)−1/2dλr(γ)(η).

Proof. DefineW : L2
U (Gu,H, σu) → L2(Gu/Su,H, σu) byW (φ)([γ]) =

φ(c([γ])) where c is the Borel cross section described previously. It fol-
lows from a brief computation that W is a unitary and as such we can
use it to define the representation NR = WTRW ∗. The fact that NR

is given by (15) follows from another computation.

Remark 2.15. Before we move forward, we need some more measure
theoretic trickery. Observe that, because Gu is second countable, the
range map factors to a Borel isomorphism between Gu/Su and G · u.
We use this isomorphism to push the measure σu forward to a measure
σu
∗ on G · u. It is clear that, by identifying L2(Gu/Su,H, σu) and
L2(G · u,H, σu∗ ), we can view NR as a representation on the latter
space. It is easy to see that, in this case, the action of NR is given by

NR(f)(φ)(γ · u) =
∫
G

Uδ(γ)π(α
−1
γ (f(η)))U∗

δ(η−1γ)φ(η
−1γ · u) · · ·

· · · ρu(η−1γ)1/2ρu(γ)−1/2dλr(γ)(η).

Since this identification is fairly natural, we won’t make much of a fuss
about it.

The reason we went through the effort to build NR is that, as the
next lemma demonstrates, it interfaces nicely with the multiplication
representation of Cb(G · u) on L2(G · u,H). We will be able to take
advantage of this later on.

Lemma 2.16. Suppose (A,G, α) is a groupoid dynamical system
with stabilizer subgroupoid S. Let u ∈ G(0) and R = π � U be a
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representation of A(u) � Su. Consider the representation of C0(G
(0))

on L2(G · u,H, σu∗ ) defined via

Nu(f)φ(v) = f(v)φ(v).

Furthermore, given f ∈ C0(G
(0)) and g ∈ Γc(G, r

∗A), define f ·g(γ) :=
f(r(γ))g(γ). Then Nu(f)NR(g) = NR(f · g) for all f ∈ C0(G

(0)) and
g ∈ Γc(G, r

∗A).

Proof. The representation Nu is nothing more than the restriction
map sending C0(G

(0)) to Cb(G · u) composed with the usual multipli-
cation representation of Cb(G ·u) on L2(G ·u,H). It is easy to see that,
if f and g are as above, then f · g ∈ Γc(G, r

∗A). The last statement
follows from a computation.

We can now prove the following proposition, which tells us that the
equivalence classes on A�S induced by Φ are exactly the orbits of the
G action described in Corollary 2.7.

Proposition 2.17. Suppose (A,G, α) is a groupoid dynamical sys-
tem and that the stabilizer subgroupoid S has a Haar system. Fix
u ∈ G(0), and let R be an irreducible representation of A(u) � Su on
a separable Hilbert space H. Then Φ(R) is equivalent to Φ(γ · R) for
all γ ∈ Gu. Furthermore, if G is regular and L and R are irreducible
representations of A(u)� Su and A(v)� Sv, respectively, then Φ(L) is
equivalent to Φ(R) if and only if there exists a γ ∈ Gu such that γ · L
is equivalent to R.

Proof. Let R = π � U be as above, and recall that γ · R = ρ � V is
given by Corollary 2.7. It follows from Proposition 2.13 that it suffices
to show that TR and T γ·R are equivalent. Suppose u = s(γ), v = r(γ),
and define W : L2

U (Gu,H, σu) → L2
V (Gv,H, σv) by

W (φ)(η) = ω(γ)1/2ρu(ηγ)1/2ρv(η)−1/2f(ηγ) for η ∈ Gv.

The fact thatW is a unitary which intertwines TR and T γ·R now follows
from a relatively straightforward series of computations.
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Remark 2.18. Those readers wishing to verify these calculations
should make note of the fact that, for γ ∈ G as above,
(16)∫

Gv/Sv

φ([ηγ])ω(γ)ρu(ηγ)ρv(η)−1dσv([η]) =

∫
Gu/Su

φ([η]) dσu([η]).

Moving on, suppose G is regular and that we are given L and R as in
the second half of the proposition. If Φ(L) is equivalent to Φ(R), then
it follows from Proposition 2.14 that NR is equivalent to NL. Let W
be the intertwining unitary, and let Nu and Nv be as in Lemma 2.16.
We compute

WNv(f)NR(g)h =WNR(f · g)h = NL(f · g)Wh

= Nu(f)NL(g)Wh = Nu(f)WNR(g)h.

Since NR is nondegenerate, this implies that Nv is unitarily equivalent
to Nu. However, if G · u ∩ G · v = ∅, then [16, Lemma 4.15] implies
that Nu and Nv can have no equivalent subrepresentations. Hence
G ·u = G · v, and there exists a γ such that v = γ ·u. Then R and γ ·L
are both irreducible representations of A(v)�Sv, and we assumed that
Φ(R) is equivalent to Φ(L), which is in turn equivalent to Φ(γ ·L) by the
above. It then follows from [6, Proposition 4.13] that R is equivalent
to γ · L, and we are done.

2.3. Restriction to the stabilizers. Now that we know which
representations have the same image under Φ, it is time to show that
Φ is open. The key construction is a restriction process from A�G to
A� S. This is defined using the following map.

Proposition 2.19. Suppose that (A,G, α) is a groupoid dynamical
system and the stabilizer subgroupoid S has a Haar system. Then there
is a nondegenerate homomorphism M : A� S →M(A�G) such that

(17) M(f)g(γ) =

∫
S

f(s)αs(g(s
−1γ)) dβr(γ)(s)

for f ∈ Γc(S, p
∗A) and g ∈ Γc(G, r

∗A).
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Proof. Since M is basically defined via convolution, it is easy to show
thatM(f)g is a continuous compactly supported section. Some lengthy
computations, which we omit for brevity, show that, for f ∈ Γc(G, r

∗A)
and g, h ∈ Γc(S, p

∗A),

(18) M(f)(g ∗h) =M(f)g ∗h, and (M(f)g)∗ ∗h = g∗ ∗ (M(f∗)h).

The challenging part is proving the following lemma. However, since
the proof is long and unenlightening, it has be relegated to the end of
the section.

Lemma 2.20. The set of functions of the form M(f)g with f ∈
Γc(S, p

∗A) and g ∈ Γc(G, r
∗A) is dense in Γc(G, r

∗A) with respect to
the inductive limit topology.

Now, we want to show that M(f) is bounded so that it extends to
a multiplier on A � G. Let ρ be a state on A � G, and define an
inner product on A�G via (f, g)ρ = ρ(〈f, g〉) where we give A�G its
usual inner-product as an A�G-module. Let Hρ be the Hilbert space
completion of A�G with respect to this pre-inner product. We would
like to apply the disintegration theorem [9, Theorem 7.8] when H0 is
the image of Γc(G, r

∗A) in Hρ. Define π on H0 by

π(f)g =M(f)g

for f ∈ Γc(S, p
∗A) and g ∈ Γc(G, r

∗A). It is easy to show that π(f)
is well defined and that π is a homomorphism from Γc(S, p

∗A) to the
algebra of linear operators on H0. It follows from Lemma 2.20 that
elements of the form π(f)g are dense in Hρ. Fix g, h ∈ Γc(G, r

∗A). We
would like to see that f 	→ (π(f)g, h)ρ is continuous with respect to the
inductive limit topology. It suffices to see that the map f 	→M(f)g is
continuous with respect to the inductive limit topology, and this is not
hard to prove. Finally, the fact that (π(f)g, h)ρ = (g, π(f∗)h)ρ follows
immediately from the fact that (M(f)g)∗ ∗ h = g∗ ∗ (M(f∗)h). Thus
the disintegration theorem implies that π extends to a representation
of A�G. In particular, we have

ρ(〈M(f)g,M(f)g〉) = (π(f)g, π(f)g)ρ ≤ ‖f‖2(g, g)ρ ≤ ‖f‖2‖g‖2.
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By choosing ρ such that ρ(〈M(f)g,M(f)g〉) = ‖M(f)g‖2, we conclude
that ‖M(f)g‖ ≤ ‖f‖‖g‖. Thus, M(f) is bounded, and it follows
from (18) that M(f) is A � G-linear and adjointable with adjoint
M(f∗). Hence, M(f) extends to a multiplier on A�G. What’s more,
‖M(f)‖ ≤ ‖f‖ so thatM extends to all of A�S. It is then easy to show
that M is a homomorphism on a dense subspace so that it must be a
homomorphism everywhere. Finally, the fact that M is nondegenerate
follows from Lemma 2.20.

The point is that nondegenerate maps into multiplier algebras yield
continuous restriction processes through the usual general nonsense
[12], as stated in the following

Corollary 2.21. Suppose (A,G, α) is a groupoid dynamical system
and that the stabilizer subgroupoid S has a Haar system. Then, there
exists a restriction map ResM : I(A�G) → I(A� S) such that ResM
is continuous and is characterized by ResM (kerR) = kerR ◦M for all
representations R of A�G.

This next lemma demonstrates the relationship between induction
and this restriction process.

Lemma 2.22. Suppose (A,G, α) is a groupoid dynamical system
and that the stabilizer subgroupoid S has a Haar system. Then, given
u ∈ G(0) and an irreducible representation R of A(u)� Su, we have

(19) ResMker IndG
Su
R =

⋂
γ∈Gu

ker (γ · R).

Proof. Suppose R = π � U is as above. Recall from Proposition
2.14 that IndGSu

R is equivalent to NR, and let Q = NR ◦M so that

ResMker IndGSu
R = kerQ. Now, given f ∈ A� S, it is straightforward

to show that the collection {c([γ])·R(f)} is a Borel field of operators on
the trivial bundle Gu/Su ×H and that we can form the direct integral

representation
∫ ⊕
Gu/Su

c([γ]) · Rdσu([γ]). It then follows from a fairly

hideous computation that Q =
∫ ⊕
Gu/Su

c([γ]) · Rdσu([γ]). Hence, for
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f ∈ A� S and φ ∈ L2(Gu/Su,H, σu), we have

(20) Q(f)φ([γ]) = (c([γ]) · R)(f)φ([γ]).

Now suppose f ∈ A � S and Q(f) = 0. Let {gi} ∈ Cc(Gu/Su) be
a countable set of functions which separates points, and let hj be a
countable basis for H. For each gi and hj , (20) implies

(21) (c([γ]) · R)(f)(gi ⊗ hj)([γ]) = gi([γ])(c([γ]) ·R)(f)hj = 0

for all [γ] /∈ Nij where Nij is a σu-null set. Let N = ∪ijNij and
observe that, given [γ] /∈ N (21) holds for all i and j. In particular, we
can pick gi so that gi([γ]) �= 0 and conclude that (c([γ]) · R)(f) = 0.
Thus, (c([γ]) ·R)(f) = 0 for all [γ] /∈ N . It then follows from (10) that
(c([γ]) ·R)(f) = 0 for λu-almost every γ ∈ Gu.

Next, suppose s ∈ Su. An elementary computation shows that R and
s ·R are unitarily equivalent. In particular, γ ·R = c([γ]) · (δ(γ) ·R) ∼=
c([γ])·R, and therefore the previous paragraph implies that γ ·R(f) = 0
for λu-almost all γ. Since G acts continuously on (A � S)∧, the map
γ 	→ γ ·R(f) is continuous. Furthermore, suppλu = Gu and γ ·R(f) = 0
for λu-almost every γ ∈ Gu so that we must have γ · R(f) = 0 for all
γ ∈ Gu. Hence, kerQ ⊂ ∩γ∈Guker (γ · R). The other inclusion is
straightforward.

We conclude the section with the afore promised proof of Lemma 2.20.

Proof of Lemma 2.20. Fix ε > 0 and g ∈ Γc(G, r
∗A). Let K =

r(supp g), and choose some fixed open neighborhood U of K in S. We
make the following claim.

Claim. There is a relatively compact open neighborhood O of K in
S such that O ⊂ U and for all γ ∈ G and s ∈ O

(22) ‖αs(g(s
−1γ))− g(γ)‖ < ε/2.

Proof of Claim. Suppose not. Then, for every relatively compact
neighborhoodW ⊂ U of K, there exist γW ∈ G and sW ∈ W such that

(23) ‖αsW (g(s−1
W γW ))− g(γW )‖ ≥ ε/2.
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When we order W by reverse inclusion, the sets {γW } and {sW } form
nets in G and S, respectively. In order for (23) to hold, we must
either have s−1

W γW ∈ supp g or γW ∈ supp g for each W . In either
case we have r(γW ) ∈ K and, since W is a neighborhood of K,
γW ∈ W supp g ⊂ Usupp g. Furthermore, sW ∈ W ⊂ U for all W .
Since U and Usupp g are compact, we can pass to a subnet twice,
relabel and find s ∈ S and γ ∈ G such that sW → s and γW → γ.
However, sW is eventually in every neighborhood of K, so that we
must have s ∈ K ⊂ G(0). This implies that s−1

W γW → γW . Using the
continuity of the action, this contradicts (23).

Let O be the open set from above, and choose f ∈ Cc(S)
+ such that

supp f ⊂ O and that
∫
S
f(s)βu(s) = 1 for all u ∈ K. Next, let {al} be

an approximate identity for A. We make the following claim.

Claim. There exists an l0 such that

(24) ‖al0(r(γ))αs(g(s
−1γ))− αs(g(s

−1γ))‖ < ε/2

for all s ∈ supp f and γ ∈ G.

Proof of Claim. Suppose not. Then, for each l, there exist γl ∈ G
and sl ∈ supp f such that

(25) ‖al(r(γl))αsl (g(s
−1
l γl))− αsl(g(s

−1
l γl))‖ ≥ ε/2.

In order for (25) to hold, we must have s−1
l γl ∈ supp g for all l. But then

γl ∈ (supp f)−1supp g. Since both this set and supp f are compact, we
can pass through two subnets, relabel and find γ ∈ G and s ∈ S such
that γl → γ and sl → s. However, we now have αsl(g(s

−1
l γl)) →

αs(g(s
−1γ)). Choose b ∈ A such that b(r(γ)) = αs(g(s

−1γ)). Then
alb → b. Since αsl(g(s

−1
l γl)) → b(r(γ)) and b(r(γl)) → b(r(γ)), we

must have ‖αsl(g(s
−1
l γl))−b(r(γl))‖ → 0. Putting everything together,

it follows that, eventually,

‖al(r(γl))αsl(g(s
−1
l γl))− αsl(g(s

−1
l γl))‖ ≤ 2‖αsl(g(s

−1
l γl))− b(r(γl))‖

+ ‖alb− b‖ < ε/2

and this contradicts (25).
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Consider f⊗al0 ∈ Γc(S, p
∗A). First observe that supp f⊗al0 ⊂ U and

that U was chosen independently of ε. Next, given γ ∈ G if r(γ) /∈ K
then g(sγ) = 0 for all s ∈ Sr(γ) so that, in particular,

M(f ⊗ al0)g(γ)− g(γ) =

∫
S

f(s)al0(r(γ))αs(g(s
−1γ)) dβr(γ)(s) = 0.

If r(γ) ∈ K, then

‖M(f ⊗ al0)g(γ)− g(γ)‖
=

∥∥∥∥
∫
S

f(s)al0(r(γ))αs(g(s
−1γ))dβr(γ)(s)−

∫
S

f(s) dβr(γ)(s)g(γ)

∥∥∥∥
≤

∫
S

f(s)‖al0(r(γ))αs(g(s
−1γ))− g(γ)‖ dβr(γ)(s)

≤
∫
S

f(s)‖al0(r(γ))αs(g(s
−1γ))− αs(g(s

−1γ))‖ dβr(γ)(s)

+

∫
S

f(s)‖αs(g(s
−1γ))− g(γ)‖ dβr(γ)(s)

< ε/2 + ε/2 = ε.

Hence, ‖M(f ⊗ al0)g− g‖∞ < ε. This suffices to show that elements of
the form M(f)g are dense in Γc(G, r

∗A) with respect to the inductive
limit topology.

2.4. Identifying the spectrum. We have now acquired everything
we need to identify the spectrum of A � G and prove the main result
of the paper.

Theorem 2.23. Suppose that (A,G, α) is a groupoid dynamical
system and that the isotropy subgroupoid S has a Haar system. If G is
regular, then Φ : (A � S)∧ → (A � G)∧ defined by Φ(R) = IndGSR is
open and factors to a homeomorphism from (A�S)∧/G onto (A�G)∧.

Proof. It follows from Proposition 2.2 that Φ is a continuous sur-
jection and from Proposition 2.17 that Φ factors to a bijection on
(A � S)∧/G. All that remains is to show that Φ is open. Suppose
Φ(Ri) → Φ(R) so that, almost by definition, kerΦ(Ri) → kerΦ(R).
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Using Corollary 2.21, we know that ResM is continuous, and therefore

ResMkerΦ(Ri) = ResMker IndG
SRi → ResMkerΦ(R)

= ResMker IndG
SR.

Let u = σ(R) and ui = σ(Ri) for all i where σ : (A � S)∧ → G(0) is
the usual map arising from the C0(G

(0))-action on A � S. Using the
identifications made in Remark 2.4, as well as Lemma 2.22, we have

ResMker IndGSR =
⋂

γ∈Gu

ker (γ ·R), and

ResMker IndGSRi =
⋂

γ∈Gui

ker (γ · Ri) for all i.

It follows from the definition of the Jacobson topology that the closed
sets associated to ResMker IndGSR and ResMker IndGSRi are

F = {ker γ ·R : γ ∈ Gu}, and Fi = {kerγ · Ri : γ ∈ Gui},

respectively. Since kerR ∈ F , it follows from [17, Lemma 8.38] that,
after passing to a subnet and relabeling, there exists a Pi ∈ Fi such
that Pi → kerR.

Let U be a neighborhood basis of kerR. For each U ∈ U there exists
an i0 such that i ≥ i0 implies Pi ∈ U . We let M := {(U, i) : U ∈
U , Pi ∈ U} and direct M by decreasing U and increasing i. Then M is
a subnet of i such that P(U,i) ∈ U for all (U, i) ∈ M . Use this fact to
find for each (U, i) ∈M some γ(U,i) ∈ Gui such that ker γ(U,i) ·Ri ∈ U .
Next, given any U0 ∈ U , choose i0 so that Pi0 ∈ U and (U0, i0) ∈ M .
If (U, i) ∈ M such that (U0, i0) ≤ (U, i) then ker γ(U,i) · Ri ∈ U ⊂ U0.
Thus, ker γ(U,i) ·Ri → kerR, and therefore γ(U,i) ·Ri → R. This suffices
to show that Φ is open.

Remark 2.24. If there is a problem with Theorem 2.23, it is that
(A � S)∧ can be just as mysterious as (A � G)∧. For instance, if A
has Hausdorff spectrum (and is separable) then each fiber A(u) can
be identified with the compacts. In this case, A(u) � Su is relatively
well understood [17, Section 7.3] and in particular is isomorphic to
C∗(Su, ωu) where [ωu] is the Mackey obstruction for α|Su . However,
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even if the stabilizers vary continuously, the collection {ωu} may be
poorly behaved, and identifying the total space topology of (A � S)∧

may be difficult.

The following corollary is immediate and interesting enough to be
worth writing down.

Corollary 2.25. Suppose (A,G, α) is a groupoid dynamical system
and that G is a regular principal groupoid. Then (A � G)∧ is homeo-

morphic to Â/G.

3. Groupoid algebras. We can use the machinery developed
in Section 2 to prove Theorem 2.23 for certain non-regular groupoid
algebras. First, we state the following corollary, which immediately
follows from Corollary 2.7.

Corollary 3.1. Suppose G is a locally compact Hausdorff groupoid
and that the stabilizer subgroupoid S has a Haar system. Then there is
a continuous action of G on C∗(S)∧ given for γ ∈ G and U ∈ C∗(S)∧

by

(26) γ · U(s) = U(γ−1sγ).

This action factors to an action of G on PrimC∗(S).

Next, we note that the main result of [10] states that every represen-
tation of C∗(G) induced from a stability group is irreducible. There-
fore, even when G is not regular, we may induce representations from
C∗(S)∧ to elements of the spectrum of C∗(G). Furthermore, we obtain
the following

Proposition 3.2. Let G be a locally compact Hausdorff groupoid,
and suppose that the isotropy subgroupoid S has a Haar system. Then
Φ : C∗(S)∧ → C∗(G)∧ defined by Φ(U) = IndGSU is continuous and
open as a map onto its range.

Proof. It follows from the above discussion that Φ maps into C∗(G)∧,
and the continuity of Φ follows from the general theory of Rieffel
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induction. All that remains is to show Φ is open. Suppose IndUi →
IndU in C∗(G)∧. Since ResM is continuous, it follows that

Ii = ResMker IndGSUi → I = ResMker IndGSU.

Lemma 2.22 then tells us that

I =
⋂

γ∈Gp̂(U)

ker γ · U,

and

Ii =
⋂

γ∈Gp̂(Ui)

kerγ · Ui for all i.

Hence, the closed sets associated to I and Ii are

F = {kerγ · U : γ ∈ Gp̂(U)},

and

Fi = {kerγ · Ui : γ ∈ Gp̂(Ui)},
respectively. Since kerU ∈ F it follows from [17, Lemma 8.38] that,
after passing to a subnet and relabeling, there exists a Pi ∈ Fi such
that Pi → kerU . It then follows from an argument similar to that at
the end of the proof of Theorem 2.23 that we can pass to a subnet and
find γi such that γi ·Ui → U . This suffices to show that Φ is open onto
its image.

Now, if the stability groups of G are GCR, it follows from [10,
Theorem 1.1] that C∗(G) is Type I or GCR if and only if G is regular.
Since we are extending Theorem 2.23 to non-regular groupoids, this
means potentially working with non-Type I C∗-algebras. Thus, we
must use the primitive ideal space instead of the spectrum. The
following is an immediate consequence of Proposition 3.2, once we
extend induction to the primitive ideals in the usual fashion.

Corollary 3.3. Let G be a locally compact Hausdorff groupoid,
and suppose the isotropy subgroupoid S has a Haar system. Then
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Ψ : PrimC∗(S) → PrimC∗(G) defined by Ψ(P ) = IndGSP is continuous
and open as a map onto its range.

We would like to factor Ψ to a homeomorphism and, to do that, we
will need to get a handle on the equivalence relation determined by Ψ.

Lemma 3.4. Let G be a locally compact Hausdorff groupoid, and
suppose the isotropy subgroupoid S has a Haar system. Then Ψ(P ) =
Ψ(Q) if and only if G · P = G ·Q.

Proof. Suppose U, V ∈ C∗(S)∧ such that P = kerU and Q = kerV .
If ker IndGS V = ker IndGSU , then ResMker IndGS V = ResMker IndGSU .
However, it now follows from Lemma 2.22 that⋂

γ∈Gp̂(U)

γ · P =
⋂

γ∈Gp̂(V )

γ ·Q

where p̂ is the canonical map from C∗(S)∧ onto S(0). This implies that
the closed sets in PrimC∗(S) associated to these ideals must be the
same. Hence, G · P = G ·Q. The reverse direction follows immediately
from the fact that Φ is continuous and G-equivariant.

At this point we recall from [9] that a groupoid is said to be EH-
regular if every primitive ideal is induced from an isotropy subgroup.
That is, given P ∈ PrimC∗(G), there exist u ∈ G(0) and Q ∈
PrimC∗(Su) such that P = IndGSu

Q. Of course, it follows from [8,
Theorem 4.1] that regular groupoids are EH-regular. In the non-regular
case the main result in [9, Theorem 2.1] states that, if a groupoid G is
amenable in the sense of Renault [1], then G is EH-regular. This allows
us to give the promised strengthening of Theorem 2.23. First, however,
recall that the T0-ization of a topological space X is the quotient space
XT0 := X/ ∼ where x ∼ y if and only if {x} = {y}.

Theorem 3.5. Suppose G is a locally compact Hausdorff groupoid
and that the stabilizer subgroupoid S has a Haar system. If G is EH-
regular, and in particular, if G is either amenable or regular, then the
map Ψ : PrimC∗(S) → PrimC∗(G) defined by Ψ(P ) = IndGSP factors
to a homeomorphism of PrimC∗(G) with (PrimC∗(S)/G)T0 .
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Proof. It follows from Corollary 3.3 that Ψ is continuous and open.
Surjectivity clearly follows from the fact that G is EH-regular. Finally,
it is straightforward to show that G · P = G ·Q in PrimC∗(S) if and
only if {G · P} = {G ·Q} in PrimC∗(S)/G. Thus, it follows from
Lemma 3.4 that the factorization of Ψ to (PrimC∗(S)/G)T0 is injective
and is therefore a homeomorphism.

Remark 3.6. In the case where S is abelian, Theorem 3.5 is particu-
larly concrete because PrimC∗(S) = Ŝ is the dual bundle [4] associated
to S.

As in Section 2, we get the following corollary, which in this case is a
very slight extension of [11, Proposition 3.8].

Corollary 3.7. If G is an EH-regular, principal groupoid, then
PrimC∗(G) is homeomorphic to (G(0)/G)T0 .
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