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HARMONIC MAPS AND KALUZA-KLEIN METRICS
ON SPHERES

M. BENYOUNES, E. LOUBEAU AND L. TODJIHOUNDE

ABSTRACT. This article studies the harmonicity of vector
fields on Riemannian manifolds, viewed as maps in the tan-
gent bundle equipped with a family of Riemannian metrics.
Geometric and topological rigidity conditions are obtained,
especially for surfaces and vector fields of constant norm, and
existence is proved on two-tori. Classifications are given for
conformal, quadratic and Killing vector fields on spheres. Fi-
nally, the class of metric considered on the tangent bundle is
enlarged, permitting new vector fields to become harmonic.

1. Introduction. Though very interesting in many settings, the
theory of harmonic maps fails to produce any worthwhile result when
applied to vector fields, seen as maps from a Riemannian manifold
(M, g) into its tangent bundle TM equipped with its simplest metric,
the Sasaki metric. This situation has led researchers to consider
constrained problems on the same functional, e.g., harmonic sections
and harmonic unit sections. However, recently, new classes of metrics
on T'M have been shown to allow a richer existence theory and, with
respect to adequate metrics, standard vector fields can produce new
harmonic maps, for example, a two-parameter family including the
Sasaki metric [4], g-natural metrics [1] or an ad-hoc Riemannian metric
based on a deformation of the horizontal distribution [17].

The main difficulty here is to strike a balance between the harmonicity
of vector fields and the geometric relevance of the metric on TM. In
this paper, given a Riemannian manifold (M, g), we consider on T'M
Riemannian metrics in the intersection of the largest known class of
metrics on tangent bundles, i.e., g-natural metrics and Kaluza-Klein
metrics, as commonly defined on principal bundles (cf. [19]).

Recall that, at a point (p,e) € T'M, the tangent space T{,, .)T'M splits
into its horizontal and vertical spaces [8]:
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(1) Tip,e)TM = Hp,e)y © Vip,e)»

where V, ) is the kernel of the differential of the canonical projection
m:TM — M and H, ) is the kernel of the connecting map

Kpey =K :TipeyTM — T, M, K(V)= d(epr oR_.oT)(V),

where 7 : U C TM — T,M sends a vector v € T,M, with (q,v) € U,
U being an open neighborhood of (p,e) in TM, by parallel transport
along the unique geodesic from ¢ to p, to a vector in T, M and the
map R_. is simply the translation by —e in T, M. One can check that
H(p’e) N V(p,e) = {0} and H(ne) @ V(ne) = T(p’e)TM. Any vector in

(p,e)T’M can be decomposed into its horizontal and vertical parts and
any vector X € T, M admits a horizontal lift X" € H(, ) and a vertical
lift XV e V(p’e) defined by

K o(XY) =X, Aoy (X™) = X.

Metrics on T'M can therefore be characterized by their values on
horizontal and vertical lifts.

Definition 1.1 [3]. Let (M, g) be a Riemannian manifold. A metric
G on TM will be called g-natural if, at the point (p,e) € TM, it has
the form

G(X",Y") = A(le[)g(X,Y) + D(le[*)g(X, e)g(e, Y);
G(X",Y*") = E(le)g(X, Y) + F(le[2)g(X, e)gle, Y);
G(X",Y") = B(le[)g(X,Y) + C(le]*)g(X, e)g(e, V),

where A, B,C, D, E and F are real C?-functions of |e|?. Conditions are
needed on A, B,C and D to ensure that G is positive definite.

e

(&

Remark 1.1. To have w : TM — M conformal submersion, we
need D = 0, and to have the horizontal and the vertical distributions
orthogonal one to the other, we need £ = F = 0.

The class of metrics we study in this article sits inside g-natural
metrics but retains the geometric properties of the tangent bundle.
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Definition 1.2. Let (M, g) be a Riemannian manifold, a metric G
on T M will be called Kaluza-Klein if, at the point (p,e) € T M, it takes
the form

G(X",Y") = A(le[)g(X,Y);
G(X", YY) =0;
G(X", YY) = B(le)g(X,Y) + C(le[*)g(X, e)g(e, Y),

where A, B and C are real functions of |e|>. The functions A will be
assumed strictly positive and B and C' such that G is positive definite,
ie., B(t) > 0and B(t) +tC(t) > 0 for all t > 0.

Standard computations with the Koszul formula or general results
for g-natural metrics from [3] give the expression of the Levi-Civita
connection.

Proposition 1.1. Let G be a Kaluza-Klein metric on TM. Then
the corresponding Levi-Civita connection V is characterized, at (p,e) €
TM, by

!/

VY= (VxV)h — ———
VX (VX ) B+|€|QC

9O Y )er = S(R(XY)e)'s

_ B
VoY = g(g(X, e)Y' 4+ g(Y,e)X")

2B'C 1
I X Y v
+(c . )B+M%ﬂ(&M(&ﬁ
C-bB
——g(X,Y)e"
+B—|—|e|20g( Y)e’,

all functions being evaluated at |e|?, prime denotes derivation and

R(X,Y) =VxVy —VyVx —V[x y)] is the curvature tensor of (M, g).

Remark 1.2. Note that, since Vx»Y? is vertical, the fibers of TM
are totally geodesic.
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The geometry of a sub-class of Kaluza-Klein metrics, called general-
ized Cheeger-Gromoll metrics, is studied in [6].

2. Harmonic maps. The energy of a smooth map ¢ : (M, g) —
(N, h) between Riemannian manifolds is

1
B6) =5 [ 4o v,

where |d¢| is the Hilbert-Schmidt norm of d¢. If M is not compact,
E(¢) is defined over compact subsets. Critical points of this functional
are called harmonic maps and are characterized by the vanishing of the
tension field [12]:

T(¢) = trace Vdg = 0.

Harmonic maps generalize not only harmonic functions but also geodesics
and holomorphic maps between Kéhler manifolds. The starting point
of the theory is the Eells-Sampson existence result.

Theorem 2.1 [12]. Let (M, g) and (N, h) be compact manifolds with
Riem” negative. Then in each homotopy class there exists a harmonic
map from (M,g) to (N,h).

Although it has developed into a rich subject (cf. [9-11]), this theory
does not lend itself to the study of vector fields. Since the tangent
bundle of an n-dimensional manifold M is itself a 2n-dimensional
manifold, one can see vector fields as maps from M to T'M, and
once a Riemannian metric has been chosen on M, equip TM with a
Riemannian metric of its own. Given the canonical decomposition (1)
of the bitangent space and the isomorphisms between the horizontal
and vertical spaces, and the tangent space of M, the simplest possible
construction of a Riemannian metric on T'M is the Sasaki metric:

JSasaki (Xha Yh) = g(Xa Y)7
JSasaki (Xha YU) = O;
JSasaki (Xva YU) = g(Xa Y)v

for all vectors X,Y € T,M, (p,e) € TM and p € M. Unfortunately,
elementary computations based on Proposition 1.1 show that, for a
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vector field o : M — T'M, the vertical part of 7(o) is
V*Vo =0,

and a mere integration by parts implies that ¢ must be parallel, with
all the topological obstructions that this implies (cf. [13, 16]).

An alternative metric on T'M was proposed by Cheeger and Gromoll
[7] and explicated by Tricerri and Musso [15]

gca (Xh’ Yh) = g(X, Y)?
goe (X", YY) =0;
goa (X", Y") =w(e)(9(X,Y) + g(X,e)g(Y,e)),

where w(e) = 1/(1 + |e|?).

While this metric proved useful for other problems, it carries the same
rigidity as the Sasaki metric and, when M is compact, no non-parallel
harmonic section or map can exist for this metric [4, 17].

In a first attempt to relax existence conditions, this metric was
generalized in [4] by introducing a two-parameter family of metrics,
which includes gsasaki and gca

ng’(thyh) = g(Xa Y)a
gm,r(Xha Yv) = O;
Im (X0 YY) =w™(e)(g(X,Y) +rg(X,e)g(Y,e)).

Depending on the choice of (m,r), r positive to ensure positive defi-
niteness, one can obtain new harmonic maps from vector fields, e.g.,
the Hopf vector field from (S?, gean) into (T'S?, g2,0). However, in some
cases, for example S?, rigidity persists and wider classes of metrics on
TM are now investigated [1].

Vector fields allow a richer situation than the general case of maps,
since the energy functional can define several variational problems.
First, harmonic maps, that is, critical points of E with respect to all
possible variations of the map; second, harmonic sections, i.e., critical
points of E only with respect to variations through vector fields; and,
finally, topology permitting, unit harmonic sections, when variations
are restricted to unit vector fields. These problems clearly sit one
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inside the other, and when the canonical projection w : TM — M is a
Riemannian submersion, their associated Euler-Lagrange equations can
be deduced from the tension field. Indeed, the characterizing equation
of harmonic sections is precisely the vertical part of the tension field
(hence the same rigidity for harmonic maps and sections for the Sasaki
and Cheeger-Gromoll metrics), and, for unit harmonic sections, it is the
proportionality of the vertical part of the tension field and the section
itself.

Note that C.M. Wood extended in [19] Eells-Sampson’s flow tech-
nique to deduce a similar existence result for sections into a fiber bun-
dle equipped with a Kaluza-Klein type metric (which will be our case),
but the homotopy of the space of vector fields is trivial.

Proposition 2.1. Let (M,g) be an m-dimensional Riemannian
manifold and G a Kaluza-Klein metric on TM. The tension field of a
vector field o : (M, g) — (TM,G) is given by 7(o) = [7" (o))" +[1%(0)]?,
where

-B 24’
Th(a) = TR(veia-v U)ei + Tg(ve,;aa U)ei;
v N 2B’ 1
(o) = =-V*Vo + ?Vx(o)dﬂ- m

/
y <_ mA + (0/ - ﬂj;) X (o) 4+ (C — B’)|VU|2)U,

where {e;}i=1,...m 1s a local orthonormal frame of (M,g), R is its
Riemann curvature tensor and X (o) = grad |o]?/2.

Proof. Let 0 : M — TM be a vector field. Then do : TM — TTM
and, from the definition of the horizontal and vertical lifts,

do(X) = X"+ (Vxo)".

Combined with Proposition 1.1, this yields that, in a local orthonormal
frame {e;}i=1,... m,
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7(0) =Y Vie(e,) dole;) — do(Ve,e:)
m A
_ N\h v
= §: (VP7€1) B+ |0.|20 (Veivfiio.)

/

A h
2

R(Ve,0,0)e; +

A’ B h
(Z (Ve,0,0)e; + ﬂR(a, Veia)m)
2 /

2B'C\ ¢*(V,0,0)
!/ _ 4 7 v
+3 9(Ve,0,0)(Ve,0)" + (C 5 ) B+ o0 o
C-B v h v
+ B+ |U|ch(v€iov Veia)a - (veiei) - (Vveie'ia-) 5
hence, the expression for 7(o). O

Remark 2.1. 1) Parallel vector fields are harmonic maps if and only if
A’ = 0. Therefore, with the exception of the last section, we will assume
A to be a constant function and harmonicity will then be independent
of the value of A, so we can choose it to be equal to 1.

ii) With this choice, A = 1, the horizontal part satisfies 7"(fo) =
fr" (o), for any function f. Moreover, harmonic sections are charac-
terized by 7¢(0) = 0 and 7" (o) is independent of B and C.

iii) The canonical projection = : (T'M,G) — (M,g) becomes a
harmonic morphism, i.e., pulls back harmonic maps onto harmonic
maps.

3. Rigidity conditions. As, when A = 1, the horizontal part of
7(0) depends only upon the geometry of (M, g) and not upon the choice
of the functions B and C, we can find obstructions to the existence of
non-trivial harmonic maps (i.e., 7(c) = 0).

Proposition 3.1. If A=1 and (M, g) is a Riemannian manifold of
constant sectional curvature k, then

(o) = —kB(V,0 — (divo)o).
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If M is compact with k # 0 and o is a harmonic map of constant length
k, then dive = V,0 = 0. Moreover,

(1) if [Vo|? < kk?, then o is a Killing vector field;
(2) if —2kk? > |Log|?, then o is parallel.

Proof. When (M, g) has constant sectional curvature, the expression
of 7"(o) is a direct consequence of Proposition 2.1. If o is a harmonic
map of constant norm k, taking the inner product of the equality
(divo)o = V,o, gives o0(k?/2) = (divo)k?, so that dive = 0, hence
Vso=0.

If M is compact, we can use the Yano formula
. o 1 2 N2
(V*Vo,o) — Ricci(0,0) — §|Log| + (divo)“ vy =0,
M
to deduce that
2 2 1 2
|Vol|* — kk* — §|ng| vg =0,
M

and obtain the second part of the proposition. ]
On surfaces, a topological obstruction appears.

Proposition 3.2. Let (M?,g) be a Riemannian surface with Gaus-
sian curvature K,. If a vector field is a harmonic map from M? to
TM? equipped with o Kaluza-Klein metric with A = 1, then it must
vanish on the set Q@ = {x € M? : K (z) # 0}.

In particular, no non-zero vector field of S can be a harmonic map,
whatever the metric chosen on S2.

Proof. Let g be a Riemannian metric on M2, and let K, be its
Gaussian curvature. First recall that, if {X,Y} is a local orthonormal
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frame on M2, then

div [div (X)X — Vx X]
= (Vx((Vy X, )X —VxX), X)
+ (Vy ((Vy X, V)X — VxX),Y)
= (VxVy X, V) + (Vy X, VyY) — (VyVy X, X)
+(Vy X, Y)? — (VyVxX,Y)
= —[<VYVXX, Y> - <VvaX, Y> - <VvyxX, Y>]

- <VXVXXaX>7
but
—(VxVxX,X)=|VxX|?
= <VXX7Y>2
= —(VxY, X}(VxX,)Y)
= —(VuyvX,Y).
Therefore,
div[div(X)X - VxX]=—-[(VyVxX,Y) — (VxVyX,Y)
(2) - <VVYXX’ Y> - <VVXYX’ Y>]

- K,

Thus, if a vector field o : (M?,g) — (T'M?,G) is a harmonic map, then
necessarily the horizontal part of its tension field must vanish:

K,(div (0)o — V,0) = 0.

Assume o is non-zero, and let U be an open subset of Q C M? where
o does not vanish. First, observe that, on U, we have

div 7 i—V[,/|[,|i= 1 dive + o 1))
lo]/ lo| o] o] o]/ ) lo|
1 1 1
-V ()
1 .
:W div (0)o — Vso |.

Thus, formula (2) applied to o/|o| contradicts the hypothesis. O
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When M is compact, the Divergence theorem and the Kato inequality

put constraints on the vanishing of the vertical portion of the tension
field.

Proposition 3.3. Let (M,g) be a compact Riemannian manifold
and o : (M,g9) —» (TM,G), where G is a Kaluza-Klein metric with
A =1, a harmonic section, i.c., 7V(c) = 0. If 2B’ + |o|*C’ > 0 and
—B+|o]?B'+|o|*C" <0, then the norm of o is constant. If, moreover,
B+ |0|?B’ does not vanish, then o must be parallel.

Proof. If o : (M, g) — (T'M,G) is a harmonic section, then

!
V*VJ - 25 VX(U)U
1 2B'C
—— = [ _—mA o X 2 _ B 2
T A+ € = X + (€ - B)¥at ),

and taking the inner-product with ¢ implies

|O’|2 1 2 2 ’ 2 v 2
A— =———(—(B BV 2B CHIX .
L s CBHPBIVAR + 2B + PC)X()P)
If 2B’ + |o|?C" is positive, then we can use the inequality | X (o)|? <
|[Val|?|o|? to obtain

|of? 1

A - -
2> = Bi|opC

(=B + |o|*B’ + |o]*C’) |Vo|?,

and the second condition of the proposition implies that
Alo]?* < 0;

therefore, |o| is constant and the left-hand side of equation (3) van-
ishes. O

Proposition 3.4. Let (M,g) be a complete Riemannian manifold
with positive Ricci curvature. If o : (M, g) — (T'M,G), where G is a
Kaluza-Klein metric with A = 1, is a harmonic map and B + |o|? B’ =
2B’ + |o|?C’ = 0, then o has constant norm.
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Proof. Clearly, from the previous proof, A|o|? = 0 and, by [21], we
conclude that |o]| is constant. O

Example 3.1. (1) The functions B(t) = C(t) = K > 0 or
B(t) = (2t+1)/(t+1) and C(t) = K > 0 are examples of functions
satisfying the conditions of Proposition 3.3.

(2) If the norm of the section o is bounded away from zero, the
functions B(t) = K/t and C(t) = —(K/t?)+ L, with K > 0 and L > 0,
satisfy the conditions of Proposition 3.4 and can be extended over the
whole of R.

4. Constant norm. Vector fields of constant norm usually do not
exist, but, when they do, they provide particularly interesting examples
and are often linked to other geometric structures. Building on the
formulas of Proposition 2.1, we can rule out their harmonicity for some
combinations of the functions B and C.

Proposition 4.1. If a vector field o : (M, g) — (TM,G) of constant
norm k is harmonic (either as a section or a map), from a Riemannian
manifold into its tangent bundle equipped with a Kaluza-Klein metric
(with A = 1) then either o is parallel or

B(k*) + k*B'(k*) = 0.

Proof. If o has constant norm k, then the vertical part of its tension
field becomes

e C-B _ ,
(4) V*Vo = W|VU| g,

and taking the inner-product with o yields

C-B
|V0'|2 = mk2|va'|2.

If o is not parallel, then

B(k*) +k*B'(k*)=0. ©O
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This proposition, which can also be derived from [1, formula (4.23)],
leads to a rewriting of the condition of harmonic section.

Proposition 4.2. If o : M — TM is a vector field of constant
norm k, then o : (M,g9) — (T'M,G) is a harmonic section (i.e.,
TV(0) = 0), where G is a Kaluza-Klein metric for the functions A =1
and B(t) = Ket/¥ (K > 0) and any choice for C, if and only if the
unit section o/k is a unit harmonic section for the Sasaki metric on
TM.

Proof. If ¢ is harmonic but not parallel, by the previous proposition,
function B must satisfy

B(k*) + k*B'(k*) = 0,

which is satisfied for B(t) = Ke™/ K* (though this is far from the only
possibility), and equation (4) becomes

V*Vo = k%|Va|20,

that is, « = ¢/k is a unit harmonic section with respect to the Sasaki
metric. ]

Proposition 4.3. The characteristic vector field of a Sasakian
manifold (M,g) is a harmonic section into (TM,G), where G is a
Kaluza-Klein metric with A =1 and B(t) = Ke™".

Remark 4.1. (1) As we have already remarked, when A = 1, the
vanishing of the horizontal part of the tension field is independent of
the choice of the Kaluza-Klein metric on TM. For example, the Hopf
vector fields on S?"*1 or some unit Killing vector fields on SLy(R) or
the Heisenberg three-space, turn out to also be harmonic maps (cf. [5]).

(2) The last two propositions can also be obtained as consequences
of [1, Theorem 10 and Theorem 13].

5. The two-torus. Having established in Proposition 4.2 a link
between unit harmonic sections for the Sasaki metric and harmonic
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sections for some Kaluza-Klein metrics, we can exploit results from
Wiegmink [18] to obtain a first existence result.

Theorem 5.1. For any metric g on the two-torus T2, there exist
a unitary vector field o and a Kaluza-Klein metric G, with A = 1,
such that o : (T2,g) — (T'T?,G) is a harmonic section. Moreover,
o is a harmonic map if and only if the Gaussian curvature of (T?,g)
vanishes.

Proof. Let o be a unit vector field on T? and u a function on T2, put
g=c¢ “gand 0 = e “o. Then |5|§ = 1 and the energies of these two
vector fields are (up to a constant)

1 - 1 ~ _
B0) =5 [ BloR)Volv,.  B@ =3 [ Blap)IVau,

since g(Ve,0,0) = §(Ve,5,5) = 0, where {e;} and {&;} are orthonormal

frames with respect to g and g. Note that vz = 2“0, and

|§U|§ = (|VO'|£27 + |gradgu|£27 +2((divo)o — Veo)(u)) .
Therefore,
(5) E(0) - E(0)

- % /M B(1) (|gradgulg + 2((div o) — Vo0)(u)) vy,
but

div (u((dive)o — Vo))
= udiv ((dive)o — V,0) + ((dive)o — V,0)(u)
= —uK,+ ((dive)o — V,0)(u),
since
div ((dive)o — Vo) = —K,,

as we saw in the proof of Proposition 3.2. Besides, by the Divergence
theorem, the second integral of (5) vanishes and we conclude that the
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quantity F (o) — E(o) depends only upon the function u, not upon the
section o.

Now, given a Riemannian metric g on T2, choose a flat metric §
conformal to g. This is always possible by [14], and, for this flat metric,
take a parallel vector field . Then ¢ is not only a harmonic section
but also an absolute minimizer of the energy functional. From our
relation on the energies of o and o, we deduce that ¢ must be a unit
harmonic section (since equation (5) holds only for unit sections), and
we know that this implies that o is a harmonic section from (T?, g) into
(TT?,G), with the function B(t) = Ke™! and any function C. O

Proposition 5.1. Let & be a Killing vector field on (T2, g). Then
o = &/|€] is a harmonic section from (T2, g) into (TT2,G) (or from
an open subset of T2 if & vanishes at some points), where G is Kaluza-
Klein metric with the functions A = 1 and B(t) = Ke™' and any
function C.

Proof. Recall that the condition on o is V*Vo = |Vo|?0. Since

TS 4 PN - VIS N 5

[ HRGEE 3 7
vV =ty 8 g ) -2
N |V|£||2) >
K - 2 \Y% ;
ofg T ( U AMEAALCS
and veR  vigP 2
|Va|2: |£|2 + |£|2 _W<57VV|£|£>7
we have
. € A, |Vl
— 25 = K, > _Zhle
ViVo = Voo = Korg = Tep ¢~ 2 pgp T |£|2V‘7‘f‘6
e VEPE . 2 €
e i e TR & Vel
V(& 2
2 g+ e
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W& 2 S
| |£||2|| Gl + W@,va@m
2
G (Veqez/2€ — IVIENPE),
since )
Kole? = (v've.&) = v + akE
and

2 2 2
Finally, since ¢ is Killing, (V¢&, &) = 0 and V(|€]?/2) = —V¢&, so
Vv, is collinear with &, that is, —Vy.¢§ = f§, but
IEI2

2

(~Vvee€, €) = Vel = = [€1°VIlI;

hence, if ¢ is Killing, then ¢ is harmonic. ]
Remark 5.1. This proposition remains true on any surface.

6. Spherical vector fields. The easiest scheme to construct
vector fields on a Riemannian manifold is to take the gradient of a
non-constant function. In the case of spheres, the simplest choice
is a linear map given by the ambient inner-product. Unfortunately,
these conformal vector fields cannot be harmonic sections (or a fortiori
harmonic maps) for a Kaluza-Klein metric on 7'S™.

Proposition 6.1. Let a € R"™\ {0}, n > 2, and define the function
A:S" — R, x— Nx) = (a, z).

Then the vector field o = gradS"\ is never a harmonic section (or
harmonic map) for any Kaluza-Klein metric on TS™ with A= 1.

Proof. If 0 = gradS” X with A(x) = (a,x), then standard computa-
tions show that ([20])

V*Vo = o; X(o) = —Ao; Vx(o = Ao
o> = la]* =A% [X(0)]> = X%(|af® = A?); Val? = nA%.
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From these terms, one can easily check that 7¥(¢) = 0 if and only if
B — X (2—n)B" = (|a|* = \*)C" + [nA? — (|a]® — N?)]C.

But since there always exists a point p € S™ such that A\(p) = 0, at this
point the equation becomes

B(jaf*) = —la|*C(|af®),

which is impossible since this would contradict the positive definiteness
of metric G. O

While linear maps never yield harmonic maps on S™, quadratic func-
tions restrained to the sphere can have harmonic gradient, depending
upon the parity of the dimension.

Theorem 6.1. Let \ be a quadratic form restricted to the n-sphere
(n > 2) and o = gradS" \/2 its associated vector field.

(i) If n is even, then o can never be a harmonic section from
(S™, gean) into TS™ with a Kaluza-Klein metric (with A = 1).

(ii) If n is odd, o is harmonic if and only if A has exactly two distinct
eigenvalues a1 > as of multiplicity (n 4+ 1)/2 and n > 3.

In this case, possible choices for the Kaluza-Klein metric (with A = 1)
on TS™ are, setting i = a1 — as:

e Forn="5,C =0 and B(t) = Ke=80/"" K > 0;
e For n>5, C =0 and (a prolongation of)

n_3 (n+3)/(n—5)

B(t) =K 5 p? —(n —5)t , K>0,

fort €10, (u?/4)].
Proof. Let X be the restriction to S™ of a quadratic form on R™*1.

Since it is symmetric, the matrix of A can be diagonalized into a
matrix M and the vector field o = V5" \/2 can be written

for all x € S™.
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Straightforward computations show that (cf. [5])

V*Vo = (n+ 3)o; Vx(0)0 = (03 — 3Ao2) + (4X* = A2)0;
lo|> = Xy — A X (o) = 02 — 2)A0;

|Vo|? = |M|? — 2Xy — 2 trace M + (n + 3)\2

where, for any k£ € N*,
1
Me(z) = M¥(z) -2, and op(z) = §V>\k = M*(z) — \p(2),

where - denotes the Euclidean scalar product in R**!, and thus A\; = ),
o1 = o. Inspection of 7%(c) quickly reveals that a necessary condition
for o to be a harmonic section is Vx50 parallel to o, which implies
that M has exactly two distinct eigenvalues (cf. [5, Lemma 4.1]). Since
a quadratic form with a single eigenvalue restricts to a constant function
on S™, we can assume the first eigenvalue of M, say p, to be strictly
positive (of multiplicity p), and the other one to be zero. In this case,
if =z, + x¢ is the decomposition into eigenvectors, then ([5])

02 = [0} A(z) :M|xu|2§ A2 :M2|xu|27
and
03 — 3\oa = (p? — 3 \p)o = p?(1 — 3|z,|?)o.
Hence,
Vx()o = (1 = 4P|z, P (1= [z, *)os of? = pPlau* (1 = |zu]?);

X (o)) = 1 (1 = 4z P (1 = |zu*))]o s
Vo l|* = pu? = 2% (p+ D] |* + (n + 3)p?|z,|*.

Therefore, 7¥(¢) = 0 if and only if

(6) (n+3)B—[2(u* —4|o]?)
—(p =2+ D]z, + (n + 3)|z,[)u*) B’
= [o[*(1? = 4o[)C" + [(p = 2(p + Vzu* + (n + 3) |z ) p?
— (n +3)|0]?]C.
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To a point * = =z, + x9 € S™, we associate the circle made up of
points T = 7, + 2o € S™ such that T[> = |z,|?, or equivalently
|7, = 1—|z,]%. Note that |oz|> = |0,|?. We evaluate equation (6) at
z and 7, and subtract to obtain

(n+1-2p)(2lz,* —1)(B'=C) =0, forallzecS™

If 2p # n + 1, by continuity, this implies that B = C. But then,
equation (6) would become

(n+3)B + [-24° + (n+ 11)|0[*]C = |o]*(u* — 4|0]*) B”,
and at points where |o|? = p?/4, this is
B(? /4) + (u*/4)C(n? /4) = 0,

which contradicts the positive definiteness of G.

Therefore, necessarily p = (n + 1)/2, which forces n to be odd and
equation (6) becomes

(7) (n+3)B+ ”T_?)/ﬂ —(n— 5)|a|2} B

n+1
2

— o~ o)+ | Sl = 2+ D)o

Three cases appear: n =3, n =5 and n > 5.

For n = 3, equation (7) becomes
6B +2|0|*B" = |o|*(u* — 4]0 *)C" + 2(u* — 6] [*)C,
which can be written as an ordinary differential equation in the variable
t=|o|? €0, u%/4):
t
3B(t) +tB'(t) = 5(,3 — 410’ (1) + (u* — 6t)C(t),

with ¢ € [0, 42/4]. The homogeneous equation 3B(t) + tB’(t) = 0 has
B(t) = K/t3 (K € R) as a solution, but it is not defined at t = 0. If
B(t) = K(t)/t? is a solution, then function K must satisfy

2

K'(t) = t[%(uz - 4t)0<t>] /,
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with K (0) = 0. Therefore,

t2 B t KI(S)
5(%4@aﬂ_é-7¢d

K, [KG),
_t+/0 52d

> @ = t*B(t);

hence (u? — 4t)C(t) > 2B(t), which, for t = u?/4, contradicts B non-
negative.

If n =5, equation (7) can also be written as an ordinary differential
equation in t = |o|?
(8) 8B + 2B’ = t(u* — 4t)C' + (3u* — 16t)C,
which is satisfied for C' = 0 and B(t) = Ke(=89/#” (K > 0). For more
solutions, start with B(t) = K(t)e(’g’f)/“2 and then K must satisfy

Kﬁﬁj%Wﬂ—Mmuwwﬁqmmkaﬂ

for t € [0, (4%/4)], and, for any C positive (to ensure that the metric is
Riemannian), we can construct a positive solution to (8).
For n > 5, if we take C = 0, the ODE becomes

n—3
2

(n+3)B= {(n —5)t — ;ﬁ} B,

so we have the solution

n—3

5 —(n=5)t

(n+3)/(n—5)
} , K>0,

B@:K[

for t € [0, (u?/4)] and we prolong B to the whole of R by continuity
(keeping B strictly positive). To obtain more solutions, put B(t) =
K(t)f(t), where f(t) = [(n—3/2)u> — (n — 5)t](*+3)/(»=5) " Then
equation (7) gives the condition

K'(t) = [t(;ﬂ —4t)C" + (

1
n—2|— p? —2(n+ 3)t) C]
:| (=2(n—1))/(n—5)

)

X [n;3u2—(n—5)t
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for t € [0, (u?/4)], and we can find a primitive to construct a positive
solution on [0, (1%/4)] and extend it to R*. o

Killing vector fields are one of the most geometrically meaningful
types of sections of the tangent bundle. While we can again observe
different behavior according to the parity of the dimension, harmonic
Killing vector fields will exist in all cases, except dimension two.

Definition 6.1. Let £ be a Killing vector field on S™. Since the set
of Killing vector fields is a Lie algebra isomorphic to so(n + 1), there
exists an antisymmetric matrix A such that {(x) = Az. We define its
invariant sub-space to be

Fg = kerA.

Recall that, from the diagonalization process of matrix A over the
complex numbers, there exists a @ € O(n + 1) such that

tQAQ = diag (GQJ, 04J, . ,GQSJ, 0, . ,0),

where 05,04,...,05; are non-zero real numbers, J = ((1) Bl) and
2s = (n+ 1) — dim F¢. Therefore, for any Killing vector field on S”, a
choice of orthonormal coordinates (z1,... ,7,.1) exists on R"*! such
that

S
= E 0209,
i1

where o9; is the Killing vector field given by rotation in the (z2;_1, 2;)-
plane, i.e.,

0'21'(33‘1,... ,Z‘n+1) = (O, ,O,—xgi,xgi_l,o,... ,O)

Theorem 6.2. Let & be a Killing vector field on S*. Then
the dimension of its invariant sub-space is dim Fy = 2k + 1, with
0<k<p-—1, and € is a harmonic section into TS?P equipped with a
Kaluza-Klein metric G (with A = 1) if and only if

(1) k#p—1, i.e., dim Fg is not mazximal;
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(2) & = AM—=x2,21,... ,—Top—2k, T2p—2k—1,0,...,0), X a non-zero
constant.

One possible choice for the functions defining the metric G is C =0
and B(t) = Ke~@p=Dt/CN(p=1-k) | > 0.

Proof. Let £ be a Killing vector field on the even-dimensional
sphere S?7; then its invariant sub-space F¢ has dimension 2k + 1 with
0 < k < p—1. In suitable coordinates, the Killing vector field £ can be
written Zf;lk 02;02;, where the 05;’s are non-zero constants and oo; is
the Killing vector field given by rotation in the (z2;_1,z2;)-plane. For
Killing vector fields on S?7, the equation of harmonic sections is

BI
9) (20— 1)E+ 22V
_ 1
- B+ €)2C

(- B)|VEP + (O - QBC)WP}

since V& = —V|¢]?/2 and V*V¢ = (2p — 1)€.

First assume that 63; = A foralli=1,... ,p—k. Then £ = Ao, with
o = YP"F oy, and direct computations show that |o|2 = prl% x?
and

Voo = ((lo*=D)z1,..., (lo* = Vazp-ak, [0 22p-2k41, - - [0 22p11),

SO
Vool = |o*(1 = |of*) and Vy,.0=(lo]* ~1)o.

Moreover, since
Vol = (2p = 1)]o]* = (1/2)Alo]?
and

Alof? = AR 1612 4 2(1 + 2p)|o)?
=—4(p— k) +2(1+ 2p)|o|?,
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we deduce that |[Vo|> = 2(p — k — |o|?). Hence
Vveel = X (|of* = 1)o; Veg|? = No? (1 - |o*);
[VE[? =2X%(p — k — |o]?),
so equation (9) becomes
(10) 2X*(p—k—1)B'+(2p—1)B
= N2(p— k) = 2p+ Do PIC + Mo|*(1 — |o]*)C".

If & # p—1, then we can choose C =0 and B(t) = Ke~(@p=1t/X*(p=1-k))
K > 0. For any positive function C, one can find a positive solution of
(10) over the interval [0, A?] and extend over to RT, to obtain a suitable
function B.

If k =p—1, equation (10) becomes
(2p = 1)B = N|o*(1 = [o*)C" + M2 = (2p + D)]o|*)C,

and £ = A(—x2,x1,0,...,0). Evaluated at the point p; = (1,0,...,0),
this equation becomes

(2p = D)IB(EP1)*) + 1€(p1) *C(1E1)I*)] = 0,

which contradicts the fact that G is Riemannian.

Suppose now that there exist ¢ and j such that fy; # 62;. Then
&= (—0x9,0011, ... ,—O2p_okTop_ok, O2p—2k6T2p—2k-1,0, ... ,0),

and straightforward computations show that V,,,00; = 0 when ¢ # j
and

Voo 02i = (|02i 221, . .., |02i* 2052,

(Jo2il* = Vg1, (|o2i* — Daai, |o2i 222141, - - -, |02i P 22p11),
S0
p—k
ng = Z ogivﬂmaﬁ
i=1

= ((1€]* = 03)a, ..., (16 = 03,k )w2p—2t;

|§|2$2p+1—2k7 S |§|2x2p+1),
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and

p—k
Vel = =6/ + D 0502,

i=1

From the expression of V¢, one can also deduce that

Ve = 02(1€)* — 03)02 + 04(|]* — 07)ou + -+

+ Oap 2 (|€]* — 03, o1 )02p—2k
p—k

=Y Oa(|Ef — 65,02
=1

For a Killing vector field, |[V¢|? = (2p—1)[¢]2 — (1/2)Al¢[? and A[¢]? =
S PF 02, Ao |2, but, since |o;]? is a homogeneous polynomial,
Alooil? = AR o] + 2(1 + 2p) |0z ?
= —4+2(1 4 2p)|oai)?;

hence,
p—k
Alg]* = -4 05, +2(2p + 1)[¢]%,
i=1
and

p—k
VEP? = 2(2631 - |£|2).
=1

Therefore, equation (9) becomes

p—k
(2p— 1) 02509 —
=1
3 baio no (X g2 >
= W[(C_B )2(Z9zz 3 >

+(c- ZBC)(Z%W i)

(055 — [€17) o2
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From the independence of the vectors o9;, we deduce that

2B/ 1 iy
(229—1)—?(9%1 €1%) = W[C—B/)2<Z9gz—|§|2)
=1

+(o-5F )(Zeélw i)

foralli=1,...,p—k,

and the right-hand side of the equation is independent of 4, so neces-

Sarlly 2B/ ) 2B/ ) o
b =5ty forallij=1...p—F

3

Since there exist ¢ and j such that 6a; # 625, then B’(|£]?) = 0 and the
equation becomes

p—k
(2p—1>B=[Zo;mam?—w]c' [Zem 2p+1|£|2}
=1

Let p1 = (1,0...,0). Then &(p1) = 6202(p1), loa(p1)* = 1 and
|€(p1)]? = 63, and the condition becomes

(2p—1)B < Ze (2p+1) 92>C(9§),

which is equivalent to

(2p — 1) (B(63) + 63C < Z%)

Since G is positive definite, B(#3) + 65C(03) is strictly positive; hence,
C(63) is also strictly positive. Therefore, 2y 7~ b 02, — (2p+1)63 >0
(recall that B is a non-negative functlon) Slmllarly, testing the equa-
tion at the point p; = (0,...,0,1,0,...,0) (1 at the 2j-th position)
yields

22% (2p+1)63; >0, forallj=1,... p—k,



HARMONIC MAPS AND KALUZA-KLEIN METRICS 815

and, summing up these inequalities, we obtain

p—k

—(2k+1)) 03 >0,
=1

which is clearly impossible. Hence, if £ is a harmonic section, then
92¢:92jforalli,j:1,...,p—k. ]

Remark 6.1. Since, when p = 1, k can only take the value 0, there
exists no harmonic Killing vector field on S?, whatever the Kaluza-
Klein metric (with A = 1) on T'S?.

The harmonic sections obtained in Proposition 6.2 cannot be har-
monic maps because, although they are certainly divergence free, their
norms cannot be constant, unless null, as Killing vector fields on even-
spheres must vanish at some points.

On the subject of odd-dimensional spheres, the situation is slightly
different.

Theorem 6.3. Let & be a Killing vector field on S?PT1. Then the
dimension of its invariant sub-space is dim Fy = 2k, with 0 < k < p,
and & is a harmonic section into TS?PT1 equipped with a Kaluza-Klein
metric G, with A = 1, if and only if

(1) k # p, i.e., dim F¢ is not mazimal;

(2) 5 = >\(_an Tlyeen, _x2p72k+27 x2p72k+17 Oa .. 70)

If k =0, there is no condition on function C (except that the metric G
must be Riemannian) while B must satisfy

NB'(\?) +B(\?) =0.

For example, B(t) = Ke '/ or B(t) = K(1 4 t)~+1/¥) K > 0,
are solutions. Moreover € will be a harmonic map.

If k # 0, one solution is given by C =0 and B(t) = Ke’pt/(AQ(p’k)),
K > 0. However, as in the even-dimensional case, £ will not be a
harmonic map because it does not have constant norm.
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Proof. Let & be a Killing vector field on the sphere S?P*!. Then its
invariant sub-space F¢ has dimension 2k with 0 < £ < p. For Killing
vector fields on S?PT1, the equation of harmonic sections is

2B’

(11) (2p)¢ + ?vaﬁﬁ
_ 1
- B+ ¢2C

2B'C

/ 2 !
(€ - B)IVEP +(C' - =

) Ve€l?| €.

First, assume that all the coefficients 6-; are equal to A. Then & = Ao,
where o = Zf;lk o9;, and

Ve = (o - 1)o; [Vel]? = Mo’ (1 = |o]?);
IVEP =2X2(p+1—k —|o]?),

and equation (11) becomes

N(p—k)B' +pB =N[p+1-k) = (p+1)ofC
(12) A 2 2\
+ 7|a| (1 —lo5)C".

In the special case when dimF; = 0, then { = Ao, where o(z) =
(—x2,21,...,—Topt+2, Top+1), and & has constant norm |A|. Equa-
tion (12) then simplifies to

N B'(\?) + B(\?*) =0,

so we can choose B(t) = Ke 1/, K > 0, or B(t) = K (1+t)~(1+1/3),
and C' to be any function (as long as the resulting metric G is positive
definite). Since ¢ has constant norm, it turns out to also be a harmonic
map.

If dim F¢ = 2k with k =1,... ,p—1, then we have the solution C' =0
and B(t) = Ke Pt/O*(»=k) K > 0. As in the even-dimensional case,
to any positive function C', one can find a positive function B solving
(12).

If dim F¢ = 2p, then the equation becomes

)\4
pB = N1~ (p+1)o")C + 7|0|2(1 —lo*)C’,
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and £ = AM(—x2,21,0,...,0). We evaluate this equation at the point
p1 = (1,0,...,0) to obtain the condition

PB(N?) = —pA*C(N?),

which contradicts the positive definiteness of the metric G.

In case there exist coefficients ¢ and j such that 6o; # 025, dim Fg
must be different from 2p and the decomposition

p+1—k

=) Baio,
i=1

leads to
p+1—k

IVel> = —[¢[* + > 05iloml
=1

p+1—k

Vb= Y 02(&]° — 03)00;

i=1

p+1-k
Ve = 2( Y- |§|2).
=1

Replacing in equation (11) and using the independence of the Killing
vector fields oy;, yields

1

2t + 20 (€~ 03) =
pU2; B 21 2 _B—|—|§|2C

(C - B)ve

B'C
+ <Cl -2 B )|V£f|2} 0245
therefore,
2B’ 2B’
fagi = Fﬁgj, foralli,j=1,...,p+1—k;

hence, the necessary condition B’(|£|?) = 0. Under this condition,
equation (11) becomes

p+1—k pt+l—k
2pB = {— 1€ + Z 9§l|021|2}0/+ [2 Z 9%1—2(p+1)|f|2}0§
=1 =1
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evaluated at the point p; = (1,0,...,0), this gives

p+1—k

2B(63) = [2 Y 68 — 20+ 1)63] C(63),

=1

which is equivalent to

2p (B (63) + 65C

> 63)C

|:P+1k

and this implies that C'(03) is strictly positive and therefore, since B is

a strictly positive function,

p+1—k

> 63— (p+1)63 > 0.

Similarly, evaluating the equation at the point p; =

(1 at the 2j-th position) yields

p+1—k

o, ...

Z 951—(p+1)9§j>0, forall j=1,...

and, summing up these inequalities, we obtain

p+1—k

—k > 03 >0,
=1

ap+1_k7

,0,1,0,...

70)

which is clearly impossible. Hence, £ cannot be a harmonic section. O

7. A larger class of metrics. We can render harmonic some
of the vector fields considered previously, if we enlarge our class of
metrics on the tangent bundle by dropping the condition A = 1. Then
the conditions for harmonic sections and harmonic maps are given by

Proposition 2.1.

Proposition 7.1. Leta € R"*'\{0} and X : 8" = R, A(z) =
Then the conformal gradient field o = gradS” X is a harmonic section

for

(a,x).
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(1)n=2,C =0, A(t) = B+Ay (A4g € RT\{0}) and B(t) = Ke~'/2,
K >0, and o is also a harmonic map.

(2)n > 2, C =0, At) = B(t) + Ao (A4g € R\ {0}) and
B(t) = K[n+ (n—2)[a]®* — (n — 2)t]/™=2) K > 0; but ¢ is not a
harmonic map.

Proof. With the notations of the proof of Proposition 6.1, we see that
a conformal gradient field o will be a harmonic section if

B -\ (2 —n)B +nA = 2(ja* = A2)C" + nA? — (Ja|* — A?)]C,

and if we choose C =0 and A = B+ Ag (Ap € R\ {0}), the condition
becomes

B(t)+[(n—2)|a* +n — (n — 2)t]B'(t) = 0,

with t = |o|? = |a]? — \2.

If n = 2, B(t) = Ke /2, K > 0, is a solution; and if n > 2,
B(t) = Kn+ (n —2)|a)®* = (n — 2)t]/™=2 K > 0, is a solution,
for ¢ € [0, |al?], which can be extended to R*.

For these solutions the horizontal part of the tension field for a
conformal vector field is

—(n —1)ABo = 2\B’o,

and this is only satisfied in the case n = 2. i

Remark 7.1. A similar result can be found in [2].

Proposition 7.1. For any Killing vector field & on S™, n > 2, there
ezists a Kaluza-Klein metric on T'S™ making £ into a harmonic section.
If n = 2, then £ is also a harmonic map but not if n = 2p, p > 1. If
n=2p+ 1, & will not be a harmonic map unless it has constant norm
(cf. Proposition 6.3).

Proof. Let £ : 8% — TS? be a Killing vector field. As in
Proposition 6.2, we call F¢ its invariant sub-space and 2k + 1 its

dimension. Up to a change of coordinates, 0 = Zf;lk 02;09;, where
the 02;’s are non-zero constants and o9, is the Killing vector field given



820 M. BENYOUNES, E. LOUBEAU AND L. TODJIHOUNDE

by rotation in the (z2;_1,22;)-plane. For Killing vector fields on S??,
the equation of harmonic sections, with respect to the new metric G, is

2B’
(13) (2p—1)¢+ Fvvggf
_ 1
B0

(= B+ (¢ - 220 ) weel - 2

First assume that the coefficients y; are all equal to A\. If k # p—1, we
know, from Proposition 6.2, a Kaluza-Klein metric makes £ a harmonic
section. If k = p — 1 (this is the general case on S?), equation (13)
becomes

(2p = 1)B +2pA" = Mo*(1 - |[o*)C" + X*(2 = (2p + 1)|o]*)C,

where £ = Ao (as in Proposition 6.2). Choosing C' = 0 and A = B+ Ay
(Ag € Rt )\ {0}), we obtain the solution B(t) = Ke((1/2)=1t K > 0.

In the more general case where there exist coeflicients 4 and j such
that 02; # 05, by the same arguments as in Proposition 6.2, we show
that B(t) = By (Bo € R\ {0}) and equation (13) becomes

1
(2p = 1)Bo + 2pA’ = |[Ve£['C7 = SAEPPC,

which admits the positive solution A(t) = (=1 + 1/2p)Bot + Ap for
t € [0,sup|¢|?] and continuously prolonged over R™T.

Similar arguments apply to the odd-dimensional case.
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