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ON THE EXISTENCE OF ZERO-SUM SUBSEQUENCES
OF DISTINCT LENGTHS

BENJAMIN GIRARD

ABSTRACT. In this paper, we obtain a characterization
of short normal sequences over a finite abelian p-group, thus
answering positively a conjecture of Gao for a variety of such
groups. Our main result is deduced from a theorem of Alon,
Friedland and Kalai, originally proved so as to study the
existence of regular subgraphs in almost regular graphs. In the
special case of elementary p-groups, Gao’s conjecture is solved
using Alon’s Combinatorial Nullstellensatz. To conclude, we
show that, assuming every integer satisfies Property B, this
conjecture holds in the case of finite abelian groups of rank
two.

1. Introduction. Let P be the set of prime numbers, and let G
be a finite abelian group, written additively. By exp(G) we denote the
exponent of G. If G is cyclic of order n, it will be denoted by C,,. In the
general case, we can decompose G as a direct product of cyclic groups
Cpn, ®---®C,, wherel < ny|---|n, € N. For each g in G, we denote
by ord (g) its order in G, and by (g) the subgroup it generates.

By a sequence over G of length ¢, we mean a finite sequence of
¢ elements from G, where repetitions are allowed and the order of
elements is disregarded. We use multiplicative notation for sequences.
Let

S=g-..og= ] 9"
geG
be a sequence over G, where, for all g € G, v4(S) € N is called the
multiplicity of g in S. We call Supp (S) = {g € G | v4(S) > 0} the
support of S and o(S) = Zle 9i = Dgeq 9Vg(S) the sum of S. In
addition, we say that s € G is a subsum of S when

s:Zgi for some @ G I C{1,...,¢}.
iel
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If 0 is not a subsum of S, we say that S is a zero-sumfree sequence.
If 0(S) = 0, then S is said to be a zero-sum sequence. If, moreover,
one has o(T') # 0 for all proper subsequences T' | S, then S is called a
minimal zero-sum sequence.

By D(G) we denote the smallest integer ¢ € N* such that every
sequence S over G of length |S| > ¢ contains a non empty zero-sum
subsequence. The number D(G) is called the Davenport constant of
the group G. Even though its definition is purely combinatorial, the
invariant D(G) found many applications in number theory (see for
instance the book [13] which presents the various aspects of non-unique
factorization theory and [12] for a recent survey). Thus, many direct
and inverse problems related to D(G) have been studied during the last
decades, and even if numerous results were proved (see [13, Chapter 5]
and [8] for a survey), its exact value is known for very special types of
groups only.

A sequence S over a finite abelian group G is said to be dispersive if
it contains two non empty zero-sum subsequences S; and Ss of distinct
length, and non-dispersive otherwise, that is, when all non empty zero-
sum subsequences of S have same length. One can readily notice, using
the very definition of the Davenport constant, that every sequence S
over G with |S| > 2D(Q) is dispersive, since S has to contain at least
two disjoint non empty zero-sum subsequences. So, one can ask for
the smallest integer ¢ € N* such that every sequence S over G with
|S| > t is dispersive. The associated inverse problem is then to make
explicit the structure of non-dispersive sequences over a finite abelian
group. Concerning this problem, Gao, Hamidoune and Wang recently
proved [11] that every non-dispersive sequence of n elements in C), has
at most two distinct values, solving a conjecture of Graham reported in
a paper of Erdés and Szemerédi [4]. This result was then generalized
by Grynkiewicz in [14].

In this article, we study a still widely open conjecture, proposed by
Gao in [7] on the structure of the so-called normal sequences over a
finite abelian group G. A sequence S over G with |S| > D(G) is
said to be normal if all its zero-sum subsequences S’ satisfy |S'| <
|S|—D(G)+1. Gao’s conjecture is the following (see also [8, Conjecture
4.9)).
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Conjecture 1. Let G ~Cp, @--- D C,,, withl1 <ny |-+ | n, €N,
be a finite abelian group. Also let S be a normal sequence over G of
length |S| = D(G) +i— 1, where i € [1,ny — 1]. Then S is of the form
S = 0'T, where T is a zero-sumfree sequence.

This notion of a normal sequence, first introduced in [7], happens
to be crucial in the characterization of sequences S over G with
|S| = D(G)+|G|—2 and which do not contain any zero-sum subsequence
S’ satisfying |S’| = |G| (see Theorem 1.7 in [7]). The following two
theorems, due to Gao (see Theorems 1.5 and 1.6 in [7]), are the only
results known concerning the structure of normal sequences over a finite
abelian group. Before stating these two results on Conjecture 1, we
recall that an integer n > 2 is said to satisfy Property B if every minimal
zero-sum sequence over C2 with |S| = 2n — 1 contains some element
repeated n — 1 times (see [13, subsection 5.8] and [9, 10, 20] for recent
progress). It is conjectured that every n > 2 satisfies Property B.

Theorem 1.1. Conjecture 1 holds whenever:
(i) G is a finite cyclic group.
(i) G ~ C2,

(ili) G ~ CT

p?

where n satisfies Property B.
where p € {2,3,5,7}.

Theorem 1.2. Let G be a finite abelian group, and let p be the
smallest prime divisor of exp (G). Then Conjecture 1 holds for every
integer 1 < min(6,p — 1).

2. New results and plan of the paper. In this paper, we use the
notion of a dispersive sequence to obtain a characterization of short
normal sequences over a finite abelian p-group, thus improving both
Gao’s results on this problem. The main theorem (Theorem 2.3) is
proved in Section 3 yet, before giving this general result, we would like
to emphasize its consequences.

Theorem 2.1. Let G be a finite abelian p-group, and let S be a
normal sequence over G with |S| = D(G) +i — 1, where i € [1,p —1].
Then S is of the form S = 0'T, where T is a zero-sumfree sequence.
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Firstly, Theorem 2.1 improves Theorem 1.2 by showing that the
assumption i < 6 is unnecessary for finite abelian p-groups. Secondly,
it improves statement (iii) of Theorem 1.1 by settling Conjecture 1 for
every elementary p-group. More generally, we can derive immediately
from Theorem 2.1 the following corollary on Gao’s conjecture.

Corollary 2.2. Conjecture 1 holds for all groups of the form
G ~ C, ® H, where H is any finite abelian p-group.

The main result of this paper is deduced from a theorem of Alon,
Friedland and Kalai (see [2, Theorem A.l]), originally proved so as to
study the existence of regular subgraphs in almost regular graphs. Our
result is the following.

Theorem 2.3. Let G be a finite abelian p-group, and let S be a
sequence over G with |S| = D(G)+i—1, where i € [1,p]. Also let A be
any (i —1)-subset of [1,p—1]. Then S contains a non-empty zero-sum
subsequence S’ such that

|S'|#£ b (mod p), for allb € A.

Consequently, Theorem 2.3 gives the existence of non-empty zero-
sum subsequences whose length avoids certain remainders modulo p.
In addition, this result applies to ‘short’ sequences, the length of
which is close to D(G), thus allowing one to tackle Gao’s conjecture,
whereas other existing results with a similar flavor (see for instance
[19, Theorem 1.2]) hold for longer sequences only. In particular,
Theorem 2.3 provides the following insight into dispersive sequences.

Corollary 2.4. Let G be a finite abelian p-group, and let S be a
sequence over G with |S| = D(G) + i — 1, where i > 1. The following
two statements hold.

(i) Ifi > 2 and S contains a zero-sum subsequence S' with p 1 |S’],
then S is dispersive.

(ii) If S contains no non-empty zero-sum subsequence S’ withp | |S'|,
then i < p— 1, and S has to contain at least i non-empty zero-sum
subsequences with pairwise distinct lengths.
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In Section 4, we give a proof of Theorem 2.3, in the special case of
elementary p-groups, using the polynomial method. Since this proof is
short and may be relevant in its own right, we will present it in full.

In Section 5 we then prove the following theorem, which extends
statement (ii) of Theorem 1.1 to every finite abelian group of rank
two. The proof of this theorem relies on a structural result obtained
by Schmid [20], which is a characterization of long minimal zero-sum
sequences over these groups, provided that a suitable divisor of their
exponent satisfies Property B.

Theorem 2.5. Let G ~ C,, ® Cpn, where m,n € N* and m > 2.
Also let S be a normal sequence over G with |S| = D(G) 4+ — 1, where
i € [1,m—1]. If m satisfies Property B, then S is of the form S = 0'T
where T is a zero-sumfree sequence.

Finally, in Section 6, we propose two general conjectures suggested
by the results proved in this paper.

3. The case of finite abelian p-groups. As stated in Section 2,
we prove our Theorem 2.3 by using the following theorem of Alon,
Friedland and Kalai (see [2, Theorem A.1]). Before stating this result,
we need to introduce the following notation. Let Z be the set of integers.
For § C Z and m € Z, we denote by card,,(S) the number of distinct
elements in S modulo m.

Theorem 3.1. Let p be a prime, and let 1 < dy < --- < d, ben
integers. For 1 < j < n, let S; C 7Z be a set of integers containing 0.
For1<i<m, let (aj1,...,a;n) be a vector with integer coordinates.

If
Z 4 — card,(S;)) + 1,

then a subset @ C I C {1,...,m} and numbers s; € S; (1 < j < n)
exist such that

Zai,j =s; (mod pdﬂ')7 foralll <j<n.
il
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For instance, it may be observed that Theorem 3.1 provides the exact
value for the Davenport constant of a finite abelian p-group, which was
originally obtained by van Emde Boas, Kruyswijk and Olson (see [3,
16]).

Indeed, let G ~ de1 ® - ®Cpar, where 1 < d; < --- < dr €N,
be a finite abelian p-group, and let us set D*(G) = >°I_, (p% — 1) + 1.
On the one hand, an elementary construction (see [13, Proposition
5.1.8]) implies that D(G) > D*(G). On the other hand, let (eq,...,e,)
be a basis of G, where ord(e;) = p% for all i € [1,r], and let
S =g ...  gm be a sequence over G of length m = D*(G). Setting
gi = ajie1 + -+ ajre, for all ¢ € [1,m] and S; = {0} for every
j € [1,7], one readily obtains the converse inequality D(G) < D*(G)
by Theorem 3.1, thus D(G) = D*(G) for every finite abelian p-group.

Using Theorem 3.1, we can now prove the main theorem of this paper.

Proof of Theorem 2.3. Let G ~ del @+ @ Cpar, where 1 < dy <
--- <d, € N, be a finite abelian p-group. Let (ey,...,e,) be a basis
of G, where ord (e;) = p% for alli € [1,7], and let S =gy -...- gm be
a sequence over G of length m = D(G) + i — 1, where ¢ € [1,p]. The
elements of S can be written in the following way:

g1 =aiiei+ -+ airer,

Im :am,161+' . '+am,7‘er-
Now, let us set n = r +1 and d,, = 1. Also let A be a (i — 1)-subset of
[1,p — 1], and A = [0,p — 1]\\A. For all j € [1,n], we set
{Z if j =mn,
S; = )
{0} otherwise.
Since (p» — card,(S,)) = (p — |A|) = |A| =i — 1, one obtains

> (p% —cardy(S;)) +1=D(G) +i—1=m.
j=1
Therefore, using Theorem 3.1, there exists asubset & C I C {1,...,m}
such that
>icr@i; =0 (mod p¥) forall1<j<r,
Yicrl=|I|=s (modp) for some s A



ON THE EXISTENCE OF ZERO-SUM SUBSEQUENCES 589

Consequently, the sequence S’ = Hie 1 9i is a non-empty zero-sum
subsequence of S such that |S'| = |I| # b (mod p) for all b € A,
which is the desired result. ]

We can now prove Theorem 2.1 and Corollary 2.4.

Proof of Theorem 2.1. We prove this theorem by induction on
i € [l,p—1]. If ¢ = 1, the desired result is straightforward. Now,
let ¢ > 2, and let us assume that the assertion of Theorem 2.1 is
true for every 1 < k < ¢ — 1. Let S be a normal sequence over G
with |S| = D(G) +i — 1, and let A be a (i — 1)-subset satisfying
{i} € A C [l,p—1]. Then, Theorem 2.3 gives the existence of a
non-empty zero-sum subsequence S’ | S such that |[S'| Z i (mod p).
In particular, one has |S’| # 4, and since S is a normal sequence, we
must have |S’| < i — 1. Now, let T | S be the sequence such that
S =TS Then |T| =D(G)+k—1, wherel <k =1i—|5<i—-1
Moreover, since S is a normal sequence, every non-empty zero-sum
subsequence T" | T has to satisfy |T"| < k =i — |S’|, that is, T is also
a normal sequence. Therefore, the induction hypothesis applied to T’
implies that S is of the form S = 0¥U. One has |U| = D(G) + ¢ — 1,
where 1 < /=14 —k <1i—1, and since S is a normal sequence, every
non empty zero-sum subsequence U’ | U has to satisfy |U’| < ¢ =i —k,
that is, U is also a normal sequence. Finally, the induction hypothesis
applied to U implies that S is of the form S = 0¥0°~*V = 0°V, where
V is a zero-sumfree sequence over G, which completes the proof. a

Proof of Corollary 2.4. (i) Let S be a sequence over G with |S| =
D(G)+1i—1, where ¢ > 2, such that S contains a zero-sum subsequence
S’ with p 1 |S’|. Then, one has |S'| = gp + r for some integers ¢ > 0
and r € [1,p — 1]. Now, let T be any subsequence of S such that
|| = D(G) + 2 — 1. Specifying A = {r} in Theorem 2.3, we obtain
the existence of a non empty zero-sum subsequence 7" | T such that
|T'| 2 r (mod p). In particular, one obtains |T"| # |S’| (mod p),
which implies |T'| # |S’|. Since T” is also a zero-sum subsequence of
S, the desired result is proved.

(ii) Let S be a sequence over G with |S| = D(G) + i — 1, where
¢ > 1, such that S contains no non empty zero-sum subsequence S’ with
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p | |S’]. If one had i > p, we would obtain, specifying A = [1,p — 1]
in Theorem 2.3, that every subsequence T' | S with |T| = D(G) +p—1
contains a non empty zero-sum subsequence 7" such that p | |T”|, which
contradicts the assumption made on S. Now, we can prove the second
part of the assertion, by induction on k € [1,7]. If £ = 1, then since
|S| > D(G), S has to contain a zero-sum subsequence S; such that
p 1|51], and we are done. Now, let k € [2,], and let us assume the
assertion is true for £ — 1, that is, S contains at least k¥ — 1 non empty
zero-sum subsequences S1, ... , Sp—1 with pairwise distinct lengths. By
hypothesis, one has p { |S;| for all j € [1,k — 1], and we can write
|S;| = gjp + rj, where ¢; > 0 and r; € [1,p — 1]. Now, let A be
a (i — 1)-subset satisfying {ry,...,rx-1} € A C [1,p — 1]. Then,
by Theorem 2.3, we obtain the existence of a non-empty zero-sum
subsequence Sy | S such that |Si| Z b (mod p) for all b € A. In
particular, |Sg| # |S,| for all j € [1, k—1], and consequently, S contains
at least k non empty zero-sum subsequences Si,...,S; with pairwise
distinct lengths, and the proof is complete. ]

4. The special case of elementary p-groups. In this section,
we propose an alternative proof of Theorem 2.3, in the special case of
elementary p-groups, which uses an algebraic tool introduced by Alon
and is called Combinatorial Nullstellensatz (see [1] for a survey on
this method). This polynomial method uses the fact that a non-zero
multivariate polynomial over a field cannot vanish on ‘large’ Cartesian
products so as to derive a variety of results in combinatorics, additive
number theory and graph theory. This method relies on the following
theorem.

Theorem 4.1 (Combinatorial Nullstellensatz). Let F be a field and
f a polynomial in Flzy,...,x,] of total degree deg(f), admitting a
monomial of the following form:

n
z{txy? - of degree Zai =deg (f).

i=1

Then, for any choice of n subsets Sy,...,S, CF such that |S;| > o
for alli € [1,n], there exists an element (s1,... ,8p) € S1XSa X+ xSy,
such that one has f(s1,...,8,) #0.
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Proof of Theorem 2.3 in the special case of elementary p-groups. Let
p be a prime, and let G >~ C}) be an elementary p-group of rank r. Also
let (e1,...,e,) be a basis of G, and let S =gy - ... gm be a sequence
over G of length m = D(G) + k — 1, where k € [1,p]. The elements of
S can be written in the following way:

g1 =aiiei+ -+ airer,

9m :am,161+' : '+am,rer-

Let A be a (k —1)-subset of [1,p— 1], and also let P € Fj,[zq,... ,Zpn]
be the following polynomial over the finite field F,, of order p,

P, . Hﬁ(i“hx j>H<§ﬁlj>

h=1j=1 jeA
_ 5H (471 =1),
i=1
where § € F,, is chosen such that P(0,...,0) = 0. In particular, since

no element of A is a multiple of p, one has § # 0. Moreover, the total
degree of

hHlei (ia,hx —j) Jg(éxfl —j)

being (r(p—1)+(k—1))(p—1) = (D(G) +k—2)(p—1) < m(p—1), we
deduce that deg (P) = m(p—1). Now, since the coefficient of [] ", a? !
is =9 # 0, Theorem 4.1 implies that there exists a non-zero element

z = (r1,...,7m) € Fp' such that P(zy,...,z,) # 0. Consequently,
setting I = {i € [1,m] | z; # 0}, we obtain that S' = [];.; 9
is a non empty zero-sum subsequence of S satisfying |S’| = |I| Z b

(mod p) for all b € A, which completes the proof. O

5. The case of finite abelian groups of rank two. In this
section, we prove a result extending statement (ii) of Theorem 1.1
to every finite abelian group of rank two. The proof of this theorem
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relies on the following result of Schmid [20], which gives a structural
characterization of minimal zero-sum sequences of length D(G) =
m + mn — 1 over the group G ~ C,, & Cy,,, where m,n € N* and
m > 2, under the hypothesis that m satisfies Property B.

Theorem 5.1. Let G ~ C,, ® Cpyn, where m,n € N* and m > 2 are
a finite abelian group of rank two. The following sequences are minimal
zero-sum sequences of mazimal length.

(i) S = e‘;rd (es)=1 1254 (—zie; + ex) where (e1,e2) is a basis of G

with ord (e3) = mn, {j,k} = {1,2}, and z; € N with 74 z, = —1
(mod ord (e;)).

(i) S = gi™~ 1H(n-’_l S)m( ;g1 + g2) where s € [1,n], {g1,92}
is a generating set of G with ord (g2) = mn and such that s = 1 or

mg1 = mgz, and x; € N with ) .~ n+1 s)m z; =m — 1.

In addition, if m satisfies Property B, then all minimal zero-sum
sequences of mazimal length over G are of this form.

Moreover, Gao and Zhuang proved a useful structural result on
normal sequences (see [7, Theorem 1.2]). In this section, we will use
the following corollary of this theorem.

Theorem 5.2. Let G be a finite abelian group, and let S be a normal
sequence over G. Then S is of the form S = O*TU, where T is a zero-
sumfree sequence with |T| = D(G)—1, and U is a sequence over G such
that Supp (U) C Supp (7).

Using the above two results, we can now prove the following theorem.

Theorem 5.3. Let G ~ C), ® Cpn, where myn € N* and m > 2,
be a finite abelian group of rank two. Let T be a zero-sumfree sequence
over G with |T| = D(G) —1, and let U be a non-empty sequence over G
such that Supp (U) C Supp (T'). If m satisfies Property B, then every
non empty zero-sum subsequence S’ of S = TU has length |S’| > m.

Proof of Theorem 5.3. Let G and S = TU be as in the statement of
the theorem. By Theorem 5.1, and since 7" = T'(—o(T)) is a minimal
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zero-sum sequence over GG, S = TU can be written in the following

fashion
Lo

S = gt H (—zig1 + 92),
i=1

where {g1,g2} is a generating set of G with ord(g2) = mn, and
l1,l € N are such that ¢; + ¢ = |S|. In particular, one has
mg1 € (mga), and ag; € {g2) if and only if m | a. Since |S| > D(G),
it has to contain a non empty zero-sum subsequence S’. Now, let us
write S’ = VW where V | ¢f* and W = [Lic/(—%ig1 + g2), for some
I C[1,45]. We obtain

o(S') = Vg - (in)gl W gs 0.

iel

Since ¢(S’) = 0 € (ga), we have

m|V—<Zmi>

iel

which implies that, for some a € N, one has

V| — <Zx> = amgs.

iel

Thus, o(S’) = (am + |W|)g2 = 0, which gives m | ord (g2) | am + [W|.
Consequently, m | |W|. If |[W| > m, then we are done. Otherwise, one
has |[W| = |I| =0, and o(S") = |V|g1 = 0 € (g2). Thus, m | [V| = |5],
and since S’ is a non empty zero-sum subsequence of S, we obtain
|S’| > m, which is the desired result. O

Theorem 2.5 is now an easy corollary of Theorem 5.3.

Proof of Theorem 2.5. Let G ~ C,, ® Cpyn, where m,n € N* and
m > 2, be a finite abelian group of rank two. Also let S be a normal
sequence over G with |S| = D(G) + i — 1, where ¢ € [1,m — 1]. By
Theorem 5.2, S is of the form S = 0*TU, where T is a zero-sumfree
sequence with |T| = D(G) — 1, and U is a sequence over G such that
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Supp (U) C Supp (7). Since m > i, S does not contain any zero-sum
subsequence S’ with |S’| > m. So, it follows from Theorem 5.3 that U
is empty, which implies £ = ¢ and completes the proof. i

6. Two concluding remarks. In this section, we would like
to present two conjectures suggested by the results proved in this
paper. The first one may be interpreted as a more general version
of Theorem 2.3 and would imply Conjecture 1 in the same way as
Theorem 2.3 implies Theorem 2.1.

Conjecture 2. Let G ~Cp, @---DC,,, withl1 <ny |-+ |n, €N,
be a finite abelian group, and let S be a sequence over G with |S| =
D(G) +i— 1, where i € [1,n1]. Also let A be any (i — 1)-subset of
[1,my — 1]. Then S contains a non-empty zero-sum subsequence S’
such that

|S'|£b (mod ny), forallbe A

Let G be a finite abelian group of exponent m. By s,,n(G) we denote
the smallest ¢ € N* such that every sequence S over G with |S| > ¢
contains a non empty zero-sum subsequence S’ with [S'| =0 (mod m).
The exact value of the invariant s,,n(G) is currently known for finite
abelian groups of rank r < 2, and finite abelian p-groups only (see [8,
Theorem 6.7]). For instance, Conjecture 2 implies that, for all integers
n,r > 1, one has s,n(C}) = (r + 1)(n — 1) + 1. This conjecture
would also help to tackle the inverse problem associated to s,,,n(G), by
giving an account of the variety of zero-sum subsequences contained in a
long sequence without any non empty zero-sum subsequence of length
congruent to 0 modulo m. Finally, any progress on this conjecture
would provide new insight into the structure of sequences over C,
without any zero-sum subsequence of length n (see [8, Theorem 7.5,
Conjecture 7.6], as well as [18]).

Let G be a finite abelian group of exponent m, and let £ > 1 be
an integer. By ngm(G), we denote the smallest ¢ € N* such that
every sequence S over G with |S| > t contains a non empty zero-sum
subsequence S’ with |S’| < ¢m. It may be observed that, for every
£ > [D(G)/m], one has the equality 7, (G) = D(G). Now, our second
conjecture is the following.
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Conjecture 3. Let G be a finite abelian group of exponent m, and
let S be a sequence over G with |S| = 1y (G)+i—1, where i € [1,¢m].
Then S contains a zero-sum subsequence S’ of length i < |S'| < ¢m.

Let G be a finite abelian group of order n and exponent m. For
instance, if £ = 1 in Conjecture 3, one obtains a generalization of
Conjecture 6.5 in [8], due to Gao. If £ = n/m, then, since it is
known that D(G) < n = ¢m, we obtain 74,(G) = D(G). Therefore,
Conjecture 3 implies that every sequence S over G such that |S| =
D(G) + i — 1, where i € [1,n], has to contain a zero-sum subsequence
S" with i < |S’| < n, which can be seen as a generalization of
Gao’s theorem (see [5, Theorem 1]). Finally, if £ = [D(G)/m] and
1 = fm, then Conjecture 3 implies that every sequence S over G with
|S] = D(G) + ¢m — 1 has to contain a zero-sum subsequence S’ with
|S’| = ¢m, which would provide an answer to a problem of Gao (see [6,
Section 3] and [8, Theorem 6.12]).

Note added in proof. Shortly after this paper was accepted for
publication, Reiher [17] proved that Property B holds for all primes. It
follows from the results of [9] that all integers n > 2 satisfy Property B.
Thus, our Theorem 2.5 holds unconditionally, which gives a positive
answer to Conjecture 1 for all abelian groups of rank two. Further
progress has since been made on this conjecture [15].
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