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ON THE MARKER METHOD FOR
CONSTRUCTING FINITARY ISOMORPHISMS

STEPHEN M. SHEA

ABSTRACT. The theory of finitary isomorphisms began
with the work of Keane and Smorodinsky in the 1970s. They
developed machinery known as the “marker and filler” method
to show that any two irreducible equal entropy finite state
Markov processes are finitarily isomorphic provided they have
the same period. In this paper, we formalize the marker por-
tion of their machinery. In doing so, we define d-equivalence
of processes. D-equivalence assigns to pairs of processes a
nonnegative integer that quantifies, in a sense, how closely
related are the two processes. We prove upper bounds for
these quantities among Bernoulli schemes, Markov chains and
r-processes.

1. Introduction. After Kolmogorov introduced entropy to dynam-
ical systems in 1958 [8], and realized its valuable invariant nature, it
was hypothesized that entropy is a complete isomorphism invariant for
independent processes (Bernoulli schemes). Ornstein would prove this
conjecture in 1969 [11]. However, prior to Ornstein’s result, math-
ematicians began trying to construct isomorphisms between various
independent processes with the same entropy. Meshalkin was one of
these mathematicians, and in 1959, he showed that Bernoulli schemes
with non-isomorphic state spaces can be isomorphic [10]. His results
would later be expanded by Blum and Hanson [2]. Meshalkin, how-
ever, not only constructed an isomorphism, but a finitary isomorphism.
The term finitary isomorphism would later be coined by Keane and
Smorodinsky in their annals paper of 1979 [5]. Ornstein showed that
Bernoulli schemes of the same entropy are measure-theoretically iso-
morphic, but that the coding may depend on infinite pasts or futures.
After Ornstein’s result, Keane and Smorodinsky showed that Bernoulli
schemes with the same entropy are finitarily isomorphic. They later ex-
panded their result to show that finite state irreducible mixing Markov
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processes are finitarily isomorphic to Bernoulli schemes, provided they
have the same entropy [6].

In a recent paper [15], we have extended the methods of Keane and
Smorodinsky to show that entropy is a complete finitary isomorphism
invariant for finite state r-processes.

Let us formally define what we mean by a finitary isomorphism and
r-processes.

Definition 1.1. Let (X,U,u,T) and (Y,V,v,S) be two processes.
An isomorphism, ¢ from (X,U,u,T) to (Y,V,r,S) is a bimeasurable
equivariant map from a subset of X of measure one to a subset of Y
of full measure which takes p to v. The isomorphism, ¢ is finitary
if for almost every z € X there exists integers m < n such that the
zero coordinates of ¢(x) and ¢(z’) agree for almost all 2’ € X with
x[m,n] = z'[m,n], and similarly for 1. If we drop the requirement
that ¢ be invertible, we say ¢ is a finitary factor.

Suppose our process X has alphabet A.

Definition 1.2. We say a € A is a renewal state of X if the o-
algebras U(X 41, Xnt2,...) and U(... , X9, X, 1) are conditionally
independent given the event [X,, = a]. If there exists such an a, we say
X is a renewal process (often called a stationary regenerative process).

Definition 1.3. Let a € A be a renewal state in X. We say
a € A has n-Bernoulli distribution if for some nonnegative integer n,
P[X,  =a| Xy = a] = P[X,» = a] for all n’ > n.

We will say a state has n-Bernoulli distribution when we mean there
exists such a finite n. If the precise n is of interest, we will make note,
but this is, in general, not the case.

Definition 1.4. An r-process, X, is a renewal process such that
a renewal state in X has n-Bernoulli distribution for some natural
number n.
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We can now define a Markov process to be a process in which every
state is a renewal state. We can define a Bernoulli scheme to be a
Markov process in which every state has 0-Bernoulli distribution.

Common examples of r-processes include Bernoulli schemes and m-
dependent Markov chains. M-dependent Markov chains often occur
as finite factors of Bernoulli schemes. For more information on the
interplay of the Markov property and m-dependence, consult [9].

For Keane and Smorodinsky, the first and most crucial step towards
proving two processes are finitarily isomorphic was to establish markers.
We formalize this marker method with the definition of d-equivalence.

Definition 1.5. Let a € A. The distribution of the state a is defined
as the process X obtained by setting

1 if X,, =a.

Definition 1.6. Let k be a positive integer. The process X (¥)
called the k-stringing of X is defined as follows. The state space
of X(¥) is all allowable sequences of length k in X, and Xr(bk) =
(Xn,Xn+1, . 7Xn+k71) (n S Z)

X (%) is often also referred to as the k-block presentation.

Definition 1.7. Two processes X and Y are O-equivalent if X and Y
have the same entropy, and if for some positive integers k and j, there
exists a renewal state in X (*) with the same distribution as a renewal
state in Y9,

Definition 1.8. Two processes X and Z are l-equivalent if there
exists a process Y such that both X and Z are 0-equivalent to Y.

Definition 1.9. Let d be a positive integer. Two processes X and
7 are d-equivalent if there exist d processes Y7, Y3, ... ,Y; such that X
is 0-equivalent to Y7, Z is 0-equivalent to Yy, and Y; is O-equivalent to
Yiqpfor1 <i<d—-1.
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Two finite state mixing d-equivalent Markov processes are finitarily
isomorphic [6]. Two finite state d-equivalent r-processes are finitarily
isomorphic [15].

However, finitary isomorphism does not tell the whole story. With the
definition of d-equivalence in hand, new questions arise. For instance,
we could ask if, given any two Bernoulli schemes X and Y with the
same entropy, a positive integer k exists such that these two Bernoulli
schemes are always k-equivalent. We could ask the same question if
both processes were Markov or r-processes. We could also ask the
same question if we were given one process which is Bernoulli and one
which is Markov. In the next few sections we answer these questions
and others of the same nature.

2. D-equivalence of Bernoulli schemes. In this section, we
show that any two Bernoulli schemes are 2-equivalent. Before we can
prove our result in this section and future results, we need a few more
definitions.

Definition 2.1. Let A’ C A be a subset of the set of states of X,
and let b be a symbol not belonging to A. We say that the process X',
defined by

X! =

n

{Xn if X, ¢ A’

b otherwise
is obtained from X by collapsing A’.

Definition 2.2. Let by,bs,...,b be symbols not belonging to A,
q1,92,--- ,q a probability vector, and a; € A. We say that the
process X' is obtained from X by independently splitting a; according
to q1,q2,...,q if X’ is defined as follows: The states of X' are
bi,ba, ..., bj,a1,. .. ,4;_1,0;41,-.. ,0, and if ¢g,... ,c. is a sequence
of such states with c;, = b;,,... ,c;, = b;, and all other c;’s being a’s,
then P[X], =co,..., X}, = ¢ = ([T}_1 @, ) P[Xntj, = ai, 1 <t <0s,
Xn+j = c; for the other js].

With these definitions, we can now prove the following theorem.
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Theorem 2.3. Let X and Z be Bernoulli schemes with the same
entropy. Then X and Z are 2-equivalent.

Proof. The proof of the theorem follows from Lemmas 2 and 3 of [5]
with minor modifications. First note that, if X and Z both have two
states, they are the same process and clearly 0-dependent. So, we may
assume that at least one of X and Z has three states. We first suppose
that both have > 3 states. Let p = (po,p1,--. ,Pn) be the probability
vector of X and ¢ = (go,q1,--- ,qm) be the probability vector of Z.

Lemma 2.4. Let X, Z, p, and q be defined as above with n > 2 and
m > 2. Then there exists a Bernoulli scheme Yy with probability vector
r = (ro,71,---,71) such that h(X) = h(Y2) = h(Z), and for some k
and k', ro = px and 71 = qy'.

Proof. Suppose by reordering and without loss of generality that
Po > P12 2 Pny Qo 2 @1 = 2> G, and pp > gm. Then set
ro = po and 7y = ¢, Let Yy be a Bernoulli scheme with probability
vector (ro,71,1 — (ro +71)). Then h(Yy) < h(X). If necessary, we can
split (1 — (ro + 71)) to get our desired probability vector r (so that
h(Ys2) = h(X)). O

We now consider the case where n = 1.

Lemma 2.5. Let X, Z, p, and q be defined as above with n = 1
and m > 2. Then there exists a Bernoulli scheme Yy with probability
vector s = (So,81,...,81) such that h(X) = h(Y1) = h(Z), and for
some integer k, pkpy = sksy.

Proof. Choose any sy > max{po, p1 }, and then choose k large enough
so that if s; = (po/s0)*p1, then sp + 51 < 1. Define Y/ to be a
Bernoulli scheme with probability vector (sg,s1,1 — (so + s1)) so that
h(Y{) < h(X). We are able to define such a Y7, because s; — 0 as
k — oco. Now split (1 — (sg + s1)) to get the desired probability vector
s and Bernoulli scheme Y7. O



298 S. SHEA

We have now shown that if X and Z both have at least 3 states, then
X and Z are l-equivalent. If X has 2-states, then X is 0-equivalent
to a Bernoulli scheme, Y7, which has at least 3 states. By Lemma 2.4,
Y] is then l-equivalent to Z. Therefore, any two Bernoulli schemes, X
and Z, which have the same entropy are 2-equivalent. O

3. D-equivalence of Markov processes. We now extend our work
to Markov processes. The following result follows from the combined
work of Keane and Smorodinsky in [6] and Ackoglu, del Junco and Rahe
in [1] with minor modifications. For completeness, we have chosen to
combine their work, and state and prove this version of their joint result
in our terminology. However, we will at times refer the reader to [1,
6] for minor details. In the next section, we provide a complete proof
in the case of r-processes. Many of the omitted details in this proof
parallel the details included in the proof for r-processes.

Theorem 3.1. If X is a mizing, irreducible, finite state Markov
process, then there exists a Bernoulli scheme Z such that X s 1-
equivalent to Z.

Proof. Let X be a finite state irreducible mixing Markov shift. Let
X have alphabet A = {aj,az,...,a,} and probability measure u. Let
W be a Bernoulli scheme with states {bp, b1,...,b,} and probability

vector ¢ = (qo, q1,--- ,qn)-

The proof of the following lemma relies heavily on the mixing property
of X. For a complete proof, see [5].

Lemma 3.2. Let X be the Markov process defined above, with n > 2.
There exists a state ag € A such that for all integers k, there is an
allowable sequence

with of # ag for all i such that 1 <i <k.

Let a4 be as in this lemma. Since X is mixing, we can choose an
integer kg such that, for all £ > kg, and for all i such that 1 < ¢ < n,
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there is an allowable sequence
o' =ajab---al

with o} = a4 and o} = a;.

For example, a? = a,a--- a2 as.

Now let ¥ = X x W, and let Y(®) be the k-stringing (k-block
presentation) of Y. Partition Y (%) into three disjoint subsets as follows.

M = U{O{i X (bo,bo,... ,bo,bi) for1 <i< n}

N = {ao X (bil, . 7bik) where (bil, . 7bik) € {bo,bl, . ,bn}k},

and
O = everything else.

We define Y’ to be the process obtained by collapsing M, N, and
O. We naturally call the three states of Y/, M, N and O. Since the

measures of M and N tend to 0 as k — oo, we may choose k so large
that A(Y") < h(X).

The following lemma follows from the results of [1].

Lemma 3.3. We can choose the probability vector g = (go,q1,--- ,qn)
of W so that M has the same distribution in Y' as some state in the
k-stringing of a Bernoulli scheme Z and where h(X) = h(Z).

Proof. We only sketch the proof here. For a complete proof see [1].
Let

p(asi)
“=C e
where C is a constant and 1 < 7 < n. We then take the constant C
large enough so that >, ¢; < 1, and set go = 1 — >, ¢;. This
ensures that M has the same distribution in Y’ as some state in the
k-stringing of a Bernoulli scheme Z where h(Z) = h(X). m

We can now independently split the state O in Y’ to create a new
process Y with states M, IV, Oq,... , O, for some positive integer p and
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where h(Y) = h(X). We will need the following lemma from [6]. The
proof relies on both X being Markov and W being Bernoulli.

Lemma 3.4. M and N are renewal states in'Y .

We have seen that M is a renewal state in Y with the same distribu-
tion as a state in the k-stringing of a Bernoulli scheme. Therefore, M
has k-Bernoulli distribution, and Y is an r-process. N clearly has the
same distribution in Y as o in X. Therefore, X is O-equivalent to an
r-process Y. Since M is a renewal state in Y with the same distribution
as a state in Z(*®) | Y and Z are 0-equivalent. Therefore, X and Z are
l-equivalent. ]

This theorem and the work in Section 2 imply the following.

Corollary 3.5. Let X and Y be mixing, irreducible, finite state
Markov processes with the same entropy. Then X and Y are 6-
equivalent.

4. D-equivalence of r-processes. Next, we extend our results to
a new type of discrete stationary stochastic process [15]. We will need
the following lemma, the proof of which is trivial.

Lemma 4.1. If X is a renewal process with renewal state a, then
any sequence of length k, c = o109+ 0y such that o; = a for some
1 <i<k is a renewal state of X*).

We will also need the following lemma.

Lemma 4.2. Let X be anr-process with alphabet A = {ay,az,...,am}
where a = a; for some 1 < ¢ < m is the renewal state with n-Bernoulli
distribution, and suppose there does not exist a positive integer k such
that X ¥~V is Markov. For all positive integers k > 2, there exists an
allowable sequence (in X) a = ajas - oy, such that o, = a and a; # a
forl1 <i<k-—1.
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Proof. If such a sequence did not exist, then by Lemma 4.1 any state
in the (k — 1)-stringing of X would be a renewal state, and X*~1)
would be Markov. o

We are now ready to present our main result.

Theorem 4.3. If X is an r-process, there exists a Bernoulli scheme
Z, such that X and Z are 1-equivalent.

Proof. Let X be an r-process with alphabet A = {aj,as,...,am}
where a = a; for some 1 < ¢ < m is the renewal state with n-Bernoulli
distribution. Since our theorem is true for Markov processes by the
work of the previous section, we may assume that there does not exist
a positive integer k such that X(*~1 is Markov. By Lemma 4.2, for
all positive integers k > 2, there exists an allowable sequence (in X)
a = ajag---ag such that ay =a and a; #a for 1 <i <k —1. For
the rest of this proof, let o denote this allowable sequence.

Remark 4.4. By Lemma 4.1, a is a renewal state of X*),

Let W = (W, )nez be a Bernoulli scheme with states by, by, ... , by, €
B and probability vector qo, q1,--- ,q¢m- We will choose k large enough
to meet certain specifications later, but for now we may assume k is a
fixed integer > 2. Let Y/ = X x W and Y'(®) be the k-stringing of Y.
We partition the states of Y'(*) into three disjoint subsets M, N, and
O defined as follows.

M = {(a,z2,... ,x) X (bo,--- ,bo,b1) : (zay... ) € AF 71}
N={axB,---,B8): (B1,--.,B) € B*}
O = all other states of Y'(¥).

Let Y denote the process obtained from Y’(*) by separately collaps-
ing M, N and O. Thus Y" is a process on three states, which we shall
of course denote by M, N and O. The probabilities of M and N tend
to zero as k — 00, so we may choose k so large that h(Y") < h(X). We
can then split O independently to obtain a new process Y with states
M, N, O,...,0, such that h(Y) = h(X).
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Next, we verify that M and N are renewal states in Y. Since any
independent splitting of O will not destroy the renewal property of M
or N, we need only check that M and N are renewal states in Y.

Lemma 4.5. M and N are renewal states of Y" (and therefore V).

Proof. [Yy" = M] forces Yy = O,...,Y", , = O. Thus the re-
newal property of M in Y follows from the renewal property of a in
X. More explicitly, U(...Y",,Y",) and U(Y{', Y5 ...) are condition-
ally independent given [Yg' = M] if and only if U(...Y",,Y", )
and U(Y{',Y; ...) are conditionally independent given [Yj' = M].
Since W is a Bernoulli scheme, U(...Y", Yi’(k_l)) and U(Y{,Yy ...)

are conditionally independent given [Yy' = M] if U(... X Ekk), X (—k()k—l))

and U(ka),XZ(k) ...) are conditionally independent given [X, = al.
Ul.. .X(_kk), X(fk()kil)) and Z/I(Xl(k), XQ(k) ...) are conditionally indepen-
dent given [Xy = a] if a is a renewal state in X.

[Yy" = N] forces Y{" = O,...,Y)" , = O. Thus the renewal prop-
erty of N in Y also follows from the renewal property of a in X. More
explicitly, U (... Y5, Y",) and U(Y{",Yy ...) are conditionally indepen-
dent given [Yj" = N]ifand only if /(... Y",, Y ) and U (Y} ), Yy...)
are conditionally independent given [Yy’ = N]. Since W is a Bernoulli
scheme, U(...Y",,Y",) and U(Y(lléfl)’ Y, ...) are conditionally inde-

pendent given [V = N] if #(... X%, x™)) and Z/{(X((;:)_l),X,gk)...)

are conditionally independent given [Xo = a]. U(.. .X(_kQ),X(_k)) and

L{(X((,,:)_l),X,gk) ...) are conditionally independent given [Xo = a] if a
is a renewal state in X. O

It is clear that N has the same distribution in ¥ as o in X*). So
all that is left to check to prove our proposition is that there exists
a Bernoulli scheme Z such that some state in Z(¥) has the same

distribution as M in Y, and so that hA(Y) = h(Z).

Lemma 4.6. There exists a Bernoulli scheme Z such thatY and Z
are 0-equivalent.
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Proof. We know that P[Yy = M| = P[Xg =a]-P[Wyp = Wy--- =
Wi 2 = by] - P[Wix_1 = b1]. So P[Yy = M] = P[X, = a] - ¢ *qu.
Since we may choose our probability vector qo,...,g¢., freely, and
M is a renewal state in Y, we may choose our Bernoulli scheme Z
with alphabet {co,...,c} such that P[Zy = co] = qo and P[Z} =
c¢1] = P[Xo = a] - ¢1 and h[Z] = h[Y]. Now consider the state
C® = (co,... ,co,c1) in Z®). P[ZP = €] = P[Yy = M]. Since a
has n-Bernoulli distribution, we may now choose k > n and C° will
have the same distribution as M. O

We have shown that, given a finite state r-process X, there exists a
Bernoulli scheme Z, such that X and Z are 1-equivalent. ]

From this theorem and the theorems of the previous sections, we have
the following corollaries.

Corollary 4.7. Let X andY be finite state r-processes with the same
entropy. Then X and Y are 6-equivalent.

Corollary 4.8. Let X be a finite state r-process, and let Y be a
finite state irreducible mizing Markov chain such that X and Y have
the same entropy. Then X and Y are 6-equivalent.

5. Open questions. We do not believe that all of the bounds in
the above theorems and corollaries are strict. For instance, we believe
that if X and Y are two finite state mixing irreducible Markov processes
with the same entropy, then X and Y are d-equivalent for some positive
integer d where d < 6. If stricter bounds exist, we would like to find
them.

We would also very much like to extend the above results to countable
state processes. Recall that the definition of d-equivalence arose while
trying to prove processes are finitarily isomorphic. If we were able
to extend the above result to show that two countable state Markov
chains, X and Y, with the same entropy are d-equivalent for some
positive integer d, we would be able to extend the original methods of
Keane and Smorodinsky to show that entropy is a complete finitary
isomorphism invariant for countable state mixing Markov chains with
exponentially decaying return times. This would be a significantly
simpler proof than that in [13, 14].
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