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PERMANENCE IN GENERAL NON-AUTONOMOUS
SINGLE-SPECIES KOLMOGOROV SYSTEMS
WITH PURE DELAYS AND FEEDBACK CONTROL

LINFEI NIE, LIN HU AND ZHIDONG TENG

ABSTRACT. In this paper we consider whether or not
feedback control has influence on a non-autonomous single-
species Kolmogorov system with pure delays. In the case
of a general domain, the general criterion on permanence
is established, which is described by integrable form and
independence of feedback control. As applications of these
results, sufficient conditions on permanence are obtained for
a series of special single-species systems with pure delays and
feedback control.

1. Introduction. Let 7 > 0 be a constant, R = (—o0, 00),
R, = (0,00) and Ryop = [0, ). We define C[—7, 0] to be the
Banach space of bounded continuous functions ¢ : [-7, 0] — R with

the supremum norm defined by

l¢lle =" sup [p(8)].
—7<6<0

Define Cy[—7,0] = {¢ € C[-7,0] : ¢(8) > 0 and ¢(0) > 0 for all
6 € [—7, 0]}. The aim of this paper is to investigate the following
general non-autonomous single species Kolomogorov system with pure-
delays and feedback control

dz(t)
(1.1) ﬁ = z(t) f(t, T4, ue)
% = —n(t)u(t) + g(t, z.).
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System (1.1) includes many well known single species non-autonomous
population growth models with pure delays and feedback control as its
specific case, for example:

(1) Non-autonomous logistic system with delays and feedback control

dx
%: [ Zaz z(t — 7i(¢))

(2) Non-autonomous multiplicative delayed logistic system with feed-
back control

dx(t):m@)[ - Wc(t)u(té(t»

(1.3) @ =
dlctlit) = —n(t)u(t) + d(t)z(t — o(t)).

(3) Non-autonomous delayed Michaelis-menton system with feedback
control

(1.4)
dz(t - t — il
dSs ) {1 - z} bilt + ci(t)a(t —( )ri(t)) — et = o)
d?ctlit) = —n(t)u(t) + d(t)z(t — o(t)).

(4) Non-autonomous delayed Allee-effect system with feedback con-
trol

) _ o [ Z ai(t)a™ (¢ — (1))

(1.5) / H(s)a (¢ + 5) ds — c(t)u(t — 5(t))

e — (o +Zd o (t = 0,(1).
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In past decades, some single-species growth models with finite or in-
finite pure delays have been extensively studied in many articles (see
1, 4, 5, 7, 9, 15, 20, 21] and references cited therein). In particu-
lar, in [26], Vance and Coddington studied the general non-autonomous
single-species Kolmogorov system without time delay. They established
a series of sufficient conditions on boundedness, persistence, perma-
nence, global asymptotic stability and the existence of positive peri-
odic solutions (see [26, Theorems 1-6]). In [22], Teng considered the
general non autonomous single-species Kolmogorov system with pure
delays and established a series of very general and rather weak crite-
ria of integrable form for boundedness, persistence, permanence, global
asymptotic stability and the existence of positive periodic solutions.

Ecosystems in the real world are continuously distributed by unpre-
dictable forces which can result in changes in biological parameters such
as survival rates. In ecology, a practical question is whether or not an
ecosystem can withstand those unpredictable disturbances which per-
sist for a finite period of time. In the language of control variables,
we call the disturbance functions, control variables. Control variables
discussed in most literature are constants or time dependent [9-11].

Recently, we see that the dynamic behaviors for the single-species
or multi-species population equation with time delays and feedback
controls are studied in [2, 3, 6, 8, 12-14, 16-19, 27], where suffi-
cient conditions on boundedness, permanence, global stability and the
existence of positive periodic solutions and positive almost periodic
solutions are obtained. However, we note that few authors consider
whether or not feedback control has an influence on the permanence
of system (1.1). At the same time, we also note that there are al-
most no studies on whether or not the feedback control has influence
on the permanence of the non-autonomous logistic system with several
times delays and feedback control, non-autonomous multiplicative de-
layed logistic system with feedback control, non-autonomous delayed
Michaelis-Menton system with feedback control, non-autonomous de-
layed Allee-effect system with feedback control, etc.

Motivated by the above questions, in this paper we study whether
or not feedback control has influence on permanence for the general
single-species Kolmogorov systems with pure delays, and establish the
general criteria on ultimate boundedness and permanence of all positive
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solutions, which are described by integrable form and independence of
feedback control.

This paper is organized as follows. We present two important lem-
mas on the single species non-autonomous system in Section 2. In
Section 3, we state and prove a general theorem for the permanence of
system (1.1). In the last section, as applications of the above criterions,
we study the permanence of the special system (1.2)—(1.5).

2. Preliminaries. In this section, we consider the following first
order differential equation with a parameter
do(t)

(2.1) o

= g(t, a) - b(t)v(t))

where ¢(¢, ) is a continuous function defined on (¢,a) € Rig X [0, ag]
and «p is a constant, b(¢) is a continuous function defined on R¢. For
system (2.1) we introduce the following assumptions.

(A1) Function g(t, ) is a non-negative bounded on R, x [0, ag] and
satisfies the Lipschitz condition with a € [0, ag], i.e., there is a constant
L = L(ap) > 0 such that |g(¢,a1) — g(t,a2)| < Llag —ag| for allt € R
and a1, as € [0, a).

(A2) Function b(t) is non-negative bounded on Ry and there is a
constant w; > 0 such that liminf;_, f:ﬂ“ b(s)ds > 0.

From assumptions (A;) and (Aj), it is easy to prove that, for any
(to,v9) € Ryo X Ry and « € [0, ay], system (2.1) has a unique solution
v (t) satisfying v, (tg) = vo. If ve(t) > 0 on the interval of existence,
then v, (¢) is said to be a positive solution. It is easy to see that vy/(t)
is positive for all £ > t; if the initial value vy > 0.

In system (2.1), when parameter o = 0, we obtain the following
system
do(t)

(2.2) o

=g(t,0) — b(t)v(t).

Let v%(t) be a fixed positive solution of system (2.1) defined on R.o.
We say that v (t) is globally uniformly attractive on Ryq if, for any
constants n > 1 and € > 0, there is a positive constant T' = T'(n,¢) > 0
such that for any initial time ty € Ryo and any solution v,(t) of
system (2.1) with v, (o) € [n7%, 7], one has |v,(t) — vi(t)] < e for
allt > ¢g+ 7. By Lemma 1 given in [24], we have the following result.
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Lemma 2.1. Suppose that assumptions (A1) and (Ag) hold. Then,

(a) there is a constant M > 0 such that limsup,_,  vs(t) < M for
any positive solution v, (t) of system (2.1).

t+wsa

(b) If there is a constant wy > 0 such that liminf, o [, " g(s,a)ds

> 0 for all a € [0, ap], then there is a constant n > 1 such that

n~! < liminfu,(t) < limsup vy (t) < n
t—oo t—o00

for any positive solution v, (t) of system (2.1).

(¢) FEach fized positive solution u®(t) of system (2.1) is globally
uniformly attractive on Ry¢.

Let vg € Ry, to € Ry, a € [0, apl, and v, (t), vo(t) be the solutions
of systems (2.1) and (2.2) with initial value v, (t9) = vo and Vy(t9) = vo,
respectively. By [24, Lemma 2], we have

Lemma 2.2. Suppose that assumptions (A1) and (Ag) hold. Then
va(t) converges to vo(t) uniformly for t € [to, 00) as a — 0.

Remark 2.1. In system (2.2), if function g(¢,0) = 0, then system
(2.2) has a trivial equilibria E = 0, and E is globally asymptotically
stable. For any I' > 1 and t9 € R4, let a € [0, ag], and v, (t) be the
positive solution of system (2.1) with initial value v, (to) € [ 1, T).
By Lemmas 2.1 and 2.2, we further have the following result: solution
v (t) converges to 0, as @« — 0 and t — oo, i.e., for any £ > 0, there are
positive constants T' = T'(¢,I') and § = §(e) such that v, (t) < € for all
t>ty+T and o < 6.

For the convenience of statements which follow in this paper, we
introduce the definition on permanence.

Definition 2.1. System (1.2) is said to be permanent, if there are
positive constants m and M such that

m < litm inf 2(¢) < limsup z(t) < M

—0o0 t— o0

for any positive solution (z(t),u(t)) of system (1.2).



2006 LINFEI NIE, LIN HU AND ZHIDONG TENG

Remark 2.2. In system (1.2), u(t) is control variable, so we do not
consider the permanence of control variable.

3. Main results. For system (1.1), we first introduce the assump-
tions.

(H;) Function f(¢, ¢, u:) satisfies the following conditions.

(1) The function f(t,¢,) is decreasing with respect to (¢,v) €
Cy x Cy, ie., for any (d1,91), (¢2,92) € Cp x Oy, if ¢1 < @2 and
¢1 < ¢2> then f(tv ¢15w1) > f(t7¢2)w2) for all t € R.

(2) For any constants 21 > 0, 23 > 0, function f(¢,x, z2) is bounded
on R, and there are positive constants k£ and w, such that

t+w
lim sup/ f(s,k,0)ds < 0.
t

t—o0

(Hs) Function g(t, ¢) satisfies the following conditions.

(1) For any constant h > 0, function g(¢,h) is non-negative and
bounded.

(2) The function g(t,¢) is increasing with respect to ¢ € C, and
satisfies the Lipschitz condition with ¢ € C..

(H3) The function n(t) is non-negative bounded on R, and there is
a constant p > 0 such that liminf;_, ftH” n(s)ds > 0.

For any (tg, ¢, %) € Ry xC4 xCy, it is well known by the fundamental
theory of functional differential equations (see [4, 25]) that system (1.1)
has a unique solution X (t) = (z(¢),u(t)), which is through (to, ¢, )
and continuous. It is easy to verify that solutions of system (1.1) are
defined on [0, c0) and remain positive for all ¢ > 0, if the initial value
(t0)¢7w) € R+ X C+ X C+'

In this section, we proceed to discussion on the ultimate boundedness
and permanence of any positive solution of system (1.1).

Firstly, on the ultimate boundedness of any positive solution for
system (1.1), we have the following result.

Theorem 3.1. Suppose that assumptions (Hy)—(Hs) hold. Then
system (1.1) is ultimately bounded, in the sense that there are positive
constants M and T such that, if t > T, then z(t) < M and u(t) < M
for all positive solutions X (t) = (x(t),u(t)) of system (1.1).
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Proof. Let X (t) = (z(t), u(t)) be any positive solution of system (1.1).
We first prove that component z of system (1.1) is ultimately bounded.
From condition (2) of (Hy), there are positive constants Ty and u such
that for all ¢ > Ty

t+w
(3.1) /t f(s,k,0)ds < —p.
By condition (1) of (H;), we have
(3.2) ) _ ) £(0,0) < Bz(t),

dit

where $; = max;>o{|f(¢,0,0)|}. For any ¢ > 7 and 6 € [—7, 0],
integrating (3.2) from ¢ + 6 to ¢, we obtain that

(3.3) z(t+6) > z(t) exp(516) > z(t) exp(—L17).
Further, from condition (1) of (H;), we have
(3.4 PO < 2(0) £ (1, 2(0) exp(~517),0).
We now consider the following auxiliary system

d
(35) WO _ 012, u(1) exp(- 517, 0).

Let y(t) be the solution of system (3.5) with the initial condition
y(Ty) = z(T}), where T} = max{r,Ty}. By the comparison theorem of
ordinary differential equations, we further obtain from (3.4)

(3.6) z(t) <y(t) forallt>Ty.

Next, we prove that there is a T > T3 such that, for all ¢ > T5,

y(t) < k" exp (Biw),

where k* = kexp(B17). If y(t) > k* for all t > Ty, then by condition (1)
of (Hy), we have

y(t) = y(T1) exp : f(s,y(t) exp(—B17),0)ds

t

<y(Ti)exp [ f(s,k,0)ds

Ty
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for all ¢ > T;. From (3.1), we easily obtain y(¢) — 0 as ¢ — oo, which
is a contradiction. Hence, there is a positive constant ¢; > T} such that
y(t1) < k*. Further, if there are t3 > t; such that y(t3) > k* exp(B2w),
then there is a t3 € (t1, t3) such that y(t2) = k* and y(¢t) > k* for
all t € (ta, t3]. Therefore, we can choose an integer p > 0 such that
ts € (t2 + pw, t2 + (p + 1)w] and obtain

y(ts) = y(t2) exp / F(t, () exp(—Br7), 0) dt

to+w to+pw ts
—ven ([ [T 4 [T Vs
to ta+(p—1)w to+pw
X eXp(_ﬁlT)a 0) de

t3
< k* exp/ f(t, k,0)dt
t2+pw

< k* exp(ﬂlw)>

which is also a contradiction. So, we have y(t) < k* exp(fiw) for all
t € [t1, 00). By (3.6), we finally obtain that

z(t) < k" exp(Bw) = kexp(28,7) for all t > ¢;.

Further, from the second equation of system (1.1) we have

du(t)

3 < ~®u(t) + gt kexp(261w))

for all t > t; + 7. Hence, using the comparison theorem of ordinary
differential equations and conclusion (a) of Lemma 2.1, we can further
obtain that there is a constant M; > 0 such that for any positive
solution (z(t),u(t)) of system (1.1) there is a t* > ¢; + 7 such that
u(t) < My for all t > t*. Now, we let M = max{My, kexp(261w)};
then for all ¢ > ¢*,

0<z(t) <M, 0<ut)<M.

Therefore, the solution X (¢) is ultimately bounded. This completes the
proof of the theorem. ]
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In order to obtain the permanence of system (1.1), we next consider
the single-species linear system

du(t)

(37) 2 — —n(t) + 9(t,0).

By assumptions (Hz) and (H3), we see that system (3.7) satisfies all the
conditions of Lemma 2.1; hence, each positive solution of system (3.7) is
globally asymptotically stable. Let ug(t) be some fixed positive solution
of system (3.7). We further introduce the assumption

(H4) There is a constant A > 0 such that

t— o0

t+A
liminf/ f(s,0,uq;) ds,
t

where ugt = ug(t + 0) for all § € [, 0].
Remark 3.1. If g(¢,0) = 0 in system (3.7), then we choose u(t) = 0.

Next, on the permanence of components for system (1.1), we have
the following theorem.

Theorem 3.2. Suppose that assumptions (Hy)—(H4) hold. Then
system (1.1) is permanent.

Proof. Let X(t) = (x(t), u(t)) be any positive solution of system (1.1).
From Theorem 3.1, there is a constant M > 0 such that, for any positive
solution X (t) of system (1.1), there is a Ty > 0 such that z(t) < M
and u(t) < M for all ¢ > Tj. Therefore, from the first equation of
system (1.1) we have

dz(t)
(3.8) at

> z(t)f(t, M, M)
> —[ax(t)

for all t > Ty + 7, where 32 = sup,cp  {|f(t,M,M)|}. For any
t > Ty + 7 and 0 € [—, 0], integrating (3.8) from ¢ + 6 to ¢, we obtain

(3.9) z(t+60) < z(t) exp(—P20) < z(t) exp(Ba27).



2010 LINFEI NIE, LIN HU AND ZHIDONG TENG

For any t;, t; and ty > ¢; > 0, integrating directly system (1.1) we
have

(3.10)  alts) :w(tl)exp/t "t 2(8), e, ult), ue) dt.

In the following, we will use two claims to complete the proof of
Theorem 3.2.

Claim 3.1. There is a constant o > 0 such that imsup,_,  z(t) > «
for any positive solution X (t) of system (1.1).

In fact, by assumption (Hyg), we can choose small enough positive
constants € and 4, and a large enough 75 > T7, such that for all ¢ > T3

t+A
(3.11) /t f(s,eexp(Ba27), uor +€)ds > 4.

Next, we consider the following system with a parameter

du(t)

(3.12) &

= —n(t)u(t) + g(t, cvexp(Bar)),

where a € [0, o] is a parameter. Let u,(t) be the solution of system
(3.12) with the initial value uq(0) = up(0), by Lemma 2.1, u,(t) is
globally asymptotically stable, and uq(t) — wuo(t), as ¢ — 0 and
t — oo. Hence, there are positive constants «, T3 and T3 > T, a < &
such that

(3.13) Ua(t) < uo(t) + % for all ¢ > Tj.

If Claim 3.1 is not true, then there is positive solution (z(t), u(t)) of
system (1.1) such that limsup, ,. #(t) < «. So, there is a constant
Ty > T5 such that z(t) < o for all ¢ > T,. From (3.9) and the second
equation of system (1.1) we obtain

du(t)
dt

< -—n(t) + g(t, o, exp(Bar)) for all ¢t > Ty,
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Using the comparison theorem of ordinary differential equations and
global asymptotical stability of solution u,(t), we obtain that there is
a Ts > T, such that

(3.14) u(t) < uq(t) + for all t > Ts.

N ™

So, from (3.13) and (3.14) it follows that
(3.15) u(t) < ug(t) +& for all t > Ts.

By (3.9), (3.10) and (3.15) we obtain

t

z(t) = z(Ts) exp | f(s,24,u0:)ds
Ts
t

> x(Ts) exp f(s,eexp(Bat), uor +€) ds
Ts
for all ¢ > T5. Thus from (3.11) we finally obtain lim; . 2(t) = 0o
which leads to a contradiction. Therefore, Claim 3.1 is true.

Claim 3.2. There is a constant ¥ > 0 such that liminf, ., z(t) > v
for any positive solution X (t) of system (1.1).

In fact, if Claim 3.2 is not true, then there is a sequence of ini-
tial value {X,, = (én,¥n)} C C4 x C, such that, for the solution
(x(t, Xpn),u(t, X)) of system (1.1),

lim inf 2(t, X,) < —

t— o0 n2’

n=12,...

)

where constant « is given in Claim 3.1. By Claim 3.1, for every n there
are two time sequences {s((ln)} and {15((1")}7 satisfying 0 < sgn) < t&”) <
sg") < té") << s((ln) < tf(ln) < -+ and limg_; oo s,(]") = 00, such that
a o
o

(3.16) x(s(”),Xn) = x(té"),Xn) =

q

and

(3.17) % <t X,) < % for all £ € (s{, t{™).



2012 LINFEI NIE, LIN HU AND ZHIDONG TENG

From the ultimate boundedness of system (1.1), we can choose
a positive constant T(™) for every n such that z(¢,X,) < M and
u(t, X,) < M for all t > T(™). Further, there is an integer KYL) >0
such that 351") >T™ 47 for all g > K{"). Let g > KY”); then, for any
te [st(]n), tf{”], we have

dz(t, X,,)
W) 5 a0, 7(0,20,00)
Z _BZx(ta Xn)

Integrating the above inequality from s((]n) to tg"), we further have

2(ty", Xn) > 2(s§™), Xn) exp[-Ba(t§") — s7V)]-

Consequently, by (3.16),

a _« . n
— > —exp [—Bz(té ) — s((l ))} .
Hence,
1
(3.18) ¢ — s > % for all ¢ > K™,
2

By (3.11), there are positive constants P and p such that

t+r
(3.19) / f(s,eexp(Bat),ugr +€)ds > o

forallt > 0 and kK > P.

Let U, (t) be the solution of system (3.12) with the initial value
U (t) = u(sgn),Xn). By (3.9), (3.17) and condition (1) of (Hz), we

have dult, X,)
U Y n

S ~nult, Xa) +g(t, aexp(Ber))

for any n, ¢ and ¢t € [s,(lm), tém)]. Using the comparison theorem of

ordinary differential equations, we have

(3.20) u(t, Xp) < ta(t) forallte [sé”)7 tén)} .



PERMANENCE IN KOLMOGOROV SYSTEMS 2013

By Lemma 2.1, solution u,(t) is globally uniformly attractive on R.y.
We obtain that there is a constant Ty > P, and Tp is independent of
any n and q > K™ such that

(3.21) Ua(t) < ua(t) + for all ¢t > s((]") + Tp.

| ™

Choose an integer Ny > 0 such that, when n > Ny and ¢ > K™,
1) — 50 > Ty 4+ P.

Further, from (3.13) and (3.21), we obtain
(3.22) u(t) <wup(t)+e forallte [sé”) + T, t((]”)] .

So, when n > Ny and ¢ > K™, by (3.9), (3.10), (3.16), (3.17), (3.19)
and condition (1) of (H;) it follows

o =l X,

t

= m(sé") + To,Xn) exp /(”)+T f(s, 2, up) ds
Sq 0

t

o)

> — exp/ f(s,eexp(Bar), ups +¢)ds
n sgn)-ﬁ-To

L Q
n2’

which leads to a contradiction. Therefore, Claim 3.2 is true.

Finally, from Claims 3.1 and 3.2 we see that Theorem 3.2 is proved. O

Remark 3.2. From the proof of Theorem 3.2, we note that ug(t) is
some fixed positive solution of system (3.7), which is independent of
the feedback control. So, the feedback control has no influence on the
permanence of system (1.1).

Further, using Theorem 1 given by Teng and Chen in [23] on the ex-
istence of positive periodic solutions for general n-species periodic Kol-
mogorov type systems with delays, we have the following theorem on
the existence of positive periodic solutions for the periodic system (1.1).
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Theorem 3.3. Suppose system (1.1) is w-periodic and assumptions
(Hy)—(Hy) hold. We further assume that there is a constant p > 0 such
that liminf;_, f:ﬂt 9(s,k1)ds > 0 for all ky > 0. Then system (1.1)
has at least one positive w-periodic solution.

Proof. By assumptions (H;)—(H4) and Theorems 3.1 and 3.2, we
obtain that the component z of system (1.1) is permanent, that is,
there are positive constants my, M7 and T3 such that, for any positive
solution (z(t),u(t)) of system (1.1) we have m; < z(t) < M; for all
t > T;. Further, from this and the second equation of system (1.1) we
have

< —n(t)+ g, M) forallt>T +r.

Hence, using the comparison theorem of ordinary differential equations
and conclusion (b) of Lemma 2.1, we can further obtain that there are
positive constants msy, My and To > T} + 7 such that, for any positive
solution (z(t),u(t)) of system (1.1), we have my < u(t) < My for all
t > T». Now, we let m = min{my,ms} and M = max{M;, M>}; then
forall t > Ty

m<z(t) <M, m<u(t) <M.

Finally, by Theorem 1 in [23], it follows that the system has at least
a positive w-periodic solution, and this completes the proof of this
theorem. O

4. Applications. In this paper we consider the permanence of
the general single-species Kolmogorov system with pure delays and
feedback control. In the following, we shall apply the results given
in Section 3 to special system (1.2)—(1.5), which has been studied
extensively in the literature.

For the convenience of statement in this section, we use the following
notations: g* = sup,cp, g(t) and g' = infier,, ().

Consider the single species non-autonomous linear system

(4.1) WO _ (0) — n(tyute).

Let u10(t) be some fixed positive solution of system (4.1).
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We first consider system (1.2). For system (1.2), we further introduce
the following assumptions

(A1) Functions b(t), c(t), r(t), n(t), 6(t), a;(t), 7:(t), di(t) and
o1(t) are bounded and continuous functions defined on R.g, and c(t),
r(t), n(t), 6(t), a;(t), 7i(t), dr(t) and oy (t) are non-negative for all
t € Ryo; Kj(t, s) is non-negative, bounded and continuous with respect
to t € Ryo, and integrable with respect to s € [—v;, 0], 7; > 0 is
constant, t =1,2,...,n,j=1,2,... ,m, [ =1,2,... ,q.

(A2) There is a constant A > 0 such that

t+A t+A
lim inf/ n(s)ds > 0, lim inf/ a(s)ds > 0,
t t

t—o0 t—o0

and

A
lim inf/ [b(s) — u10(s)] ds > 0,
t

t—o0

where a(t) = Y1 a;(t) + Z;nzl f_ovj K(t,s)ds.

On the permanence and ultimately boundedness for system (1.2),
directly applying Theorems 3.1-3.3, we have the following result.

Theorem 4.1. Suppose that assumptions (A1) and (Az) hold. Then,
(a) system (1.2) is permanent.

(b) If system (1.2) is w-periodic and there exists a positive constant

such that liminf,_, o f:ﬂb r(s)ds > 0 or liminf;_,, ftt-w Yol di(s)ds

> 0, then system (1.2) has at least a positive w-periodic solution.

Proof. Let 7 = max{é“,7*,00',7; :i=1,2,...,n, j=1,2,... ,m,
Il =1,2,...,q}. Directly from assumptions (A;) and (Az), we can
choose a constant k£ > 0 such that

42
lim sup/ [b(s) — ka(s)] ds < 0.
t—o0 t

Then, from assumptions (A;) and (As), we easily prove that the
conditions of Theorems 3.1-3.3 hold. Therefore, by Theorems 3.1-3.3
we obtain that conclusions (a) and (b) of Theorem 4.1 are true. This
completes the proof of the theorem. ]
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Remark 4.1. From conclusion (a) of Theorem 4.1, we note that the
feedback control has no influence on the permanence of system (1.2).

Remark 4.2. In [8], Huo and Li discussed the following system

dzit) = z(t) [b(t) - Z ai(t)z(t — 7i(t)) — c(t)u(t — d(t))
(4.2) =t
du(t)

= —n(t)u(t) + d(t)z(t — o (t)).

They obtained sufficient conditions on the existence of positive periodic
solutions (see [8, Theorem 3.1]). Obviously, system (4.2) is a special
case of system (1.2), and their method is totally different from ours
in this paper. The conditions of Theorem 3.1 in [8] clearly imply the
conditions of conclusion (b) of Theorem 4.1. So our results improve the
results given in [8].

Next, we consider system (1.3). For system (1.3) we introduce the

assumptions

(B1) b(t), c(t), n(t), d(t), K(t), §(t), o(t) and 7;(t) are bounded
and continuous functions defined on Ryo, and c(t), d(t), n(t), 6(t),
o(t) and 7(t) (¢ = 1,2,...,n) are non-negative for all ¢ € Ry, and
infteRJrO K(t) > 0.

(B2) There is a constant A > 0 such that

t+A 4+
lim inf/ b(s)ds >0 and lim inf/ n(s)ds > 0.
¢ ¢

t—o0 t—o00

On system (1.3), applying Theorems 3.1-3.3, we have the following
theorem.

Theorem 4.2. Suppose that assumptions (B1) and (Bz2) hold. Then,
(a) system (1.3) is permanent.

(b) If system (1.3) is w-periodic and there exists a positive constant
a such that liminf,_, o, f:+a d(s)ds > 0, then system (1.3) has at least
a positive w-periodic solution.
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Remark 4.3. From Theorem 4.2, we note that the feedback control
has no influence on the permanence of system (1.3).

Remark 4.4. In [8], Huo and Li consider system (1.3) and established
the sufficient conditions on the existence of positive periodic solutions
(see [8, Theorem 3.2]) by Gaines and Mawhin’s coincidence degree.
Obviously, our results improve the results given in [8].

Further, we consider system (1.4). For system (1.4) we introduce the
following assumptions.

(Cl) b(t)) C(t)a d(t)a n(t)a J(t)) U(t)a ai(t)a bi(t)a Ci(t) and Ti(t) are
non-negative, bounded and continuous functions defined on R.g.

(C3) a! > 0, and there is a constant A > 0 such that

A t+A _n
lim inf b(s)ds >0 and 11m1nf Z

t—o0 t —00 t 8

where a(t) = Y1, a; (£)bi(t).
On system (1.4), we have the following result.

a;i(s)

d5>1,

Theorem 4.3. Suppose that assumptions (C1) and (Cz) hold. Then,
(a) system (1.4) is permanent.

(b) If system (1.4) is w-periodic and there exists a positive constant
a such that liminf;_, o, f:Jra d(s)ds > 0, then system (1.4) has at least
a positive w-periodic solution.

Proof. Let 7 = max{é",o%,7/*,: i = 1,2,...,n}. Directly from

IR A

assumptions (C;) and (Cz) we can choose constant k£ > 0 such that

t+A
li d .
1msup/t [ Zb +cl k:} §<0

t—o0

Hence, from assumptions (C;) and (Cy) we easily prove that the
conditions of Theorems 3.1-3.3 hold. Therefore, by Theorems 3.1-3.3
we obtain that conclusions (a) and (b) of Theorem 4.3 are true. This
completes the proof of this theorem. O

Remark 4.5. From Theorem 4.3, we note that the feedback control
has no influence on the permanence of system (1.4).
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Finally, we consider system (1.5). For system (1.5) we introduce the
assumptions

(D1) a(?), b(¢), c(t), r(t), n(t), 6(t), ai(t), d;(t), 7(t) and o;(t) are
bounded and continuous functions defined on R.g, and a(t), c(t), r(t),
n(t), 6(t), ai(t), :(t), d;(t) and o;(t) are non-negative for all ¢t € R,
and H(s) is an integrable function on [—7, 0] and f37 H(s)ds = 1,
v > 0 is constant, # > 1, oy > 1 and B; > 1 are constants,
i=1,2,...,n,j=1,2...,m.

(D2) There is a constant A > 0 such that

A A
lim inf n(s)ds > 0, lim inf e(s)ds > 0,

t—o0 t t—o0 t
and

t—o0

A
lim inf/ [b(s) — u10(s)] ds > 0,
t

where e(t) = >0 a;(t) +a(t) fiy H(s)ds.

On system (1.5), applying Theorems 3.1-3.3, we have the following
result.

Theorem 4.4. Suppose that assumptions (D1) and (D2) hold. Then,
(a) system (1.5) is permanent.

(b) If system (1.5) is w-periodic and there exists a positive constant o
such that lim inf,_, ftHa r(s)ds > 0 or liminf;_, ftHa Z;nzl d;(s)ds
> 0, then system (1.5) has at least a positive w-periodic solution.

Remark 4.6. From conclusion (a) of Theorem 4.4, we note that the
feedback control has no influence on the permanence of system (1.5).
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