ON ANNIHILATOR IDEALS IN MATRIX NEAR-RINGS

ANTHONY M. MATLALA

ABSTRACT. This paper focuses on how the structure of a faithful R-group of a near-ring R determines the ideal structure of the matrix near-ring, $\mathbf{M}_n(R)$, associated with R. Intersections of annihilating ideals of monogenic R-groups or $\mathbf{M}_n(R)$ -groups are referred to as Annihilator ideals. However, it is known that there exist some non-monogenic R-groups, say Δ , for which Δ^n is monogenic as an $\mathbf{M}_n(R)$ -group. Taking cognizance of these non-monogenic R-groups helps us draw conclusions on relationships between some Jacobson ν -radicals of R and those of $\mathbf{M}_n(R)$, $\nu=0$, s, 2. In particular, and contrary to Meldrum-Meyer's conjecture in [9], it is herein shown that $(J_0(R))^+ \not\subset J_0(\mathbf{M}_n(R))$.

1. Introduction. Relationships between ideals of a near-ring R and ideals of its associated matrix near-ring $\mathbf{M}_n(R)$ has been the subject of a number of research papers on near-rings. For instance, the Jacobson ν -radicals are shown to be related as $(J_{\nu}(R))^* \supseteq J_{\nu}(\mathbf{M}_n(R))$ where $\nu = 0, s, 2$, see [3, 13]. A similar relationship was also proved in [5] for the socle ideals. That is, $(Soi(R))^* \supseteq Soi(\mathbf{M}_n(R))$, where R satisfies the DCCL. In order to draw any conclusion on the relationship between $(J_0(R))^+$ and $J_0(\mathbf{M}_n(R))$ one needs to pay attention to nonmonogenic R-groups, say Δ , such that Δ^n is a monogenic $\mathbf{M}_n(R)$ group. These non-monogenic R-groups are identified and referred to as R-groups of ν_n -form, according to the type- ν of Δ^n as an $\mathbf{M}_n(R)$ group, $\nu = 0, s, \mathcal{K}$. R-groups of ν_n -form are used to construct an example of a near-ring R such that $(J_0(R))^+ \not\subset J_0(\mathbf{M}_n(R))$. This is despite the fact that $(J_s(R))^+ \subseteq J_s(\mathbf{M}_n(R))$ for a near-ring R such that $\mathbf{M}_n(R)$ satisfies the DCCL, see [4]. It is because of the R-groups of ν_n -form that we could construct a near-ring, R, such that $J_0(\mathbf{M}_n(R)) \neq$ $J_s(\mathbf{M}_n(R)) \neq J_2(\mathbf{M}_n(R))$ while $J_0(R) = J_s(R) = J_2(R)$.

Throughout this paper R denotes a right-distributive near-ring with multiplicative identity. If the near-ring R satisfies the descending

²⁰¹⁰ AMS Mathematics subject classification. Primary 16Y30. Keywords and phrases. Near-ring, zero symmetric, ideals, matrix near-ring, R-groups, R-subgroups, monogenic, Jacobson \(\nu\)-radical, R-kernel, socle ideal. Received by the editors on November 1, 2008, and in revised form on March 2, 2009.

DOI:10.1216/RMJ-2011-41-6-1963 Copyright © 2011 Rocky Mountain Mathematics Consortium

chain condition for left ideals, we say that R satisfies the DCCL. Similarly, if the near-ring R satisfies the descending chain condition for R-subgroups, we say that R satisfies the DCCS. We emphasize that a near-ring direct sum means a direct sum, $\Gamma = \bigoplus_{\lambda \in \Lambda} \Delta_{\lambda}$, where each Δ_{λ} is an R-kernel of Γ . The set of zero fixing maps from the group

 Δ_{λ} is an R-kernel of Γ . The set of zero fixing maps from the group Ω to itself is denoted by $M_0(\Omega)$. For basic information and results on near-rings we refer the reader to Pilz [12] and Meldrum [7].

We use matrix near-rings as defined by Meldrum and van der Walt in [11]. For a natural number n, R^n is defined to be the direct sum of n copies of the group (R,+), and an element $\overline{\rho}$ in R^n is denoted by $\overline{\rho} = \langle r_1, r_2, \ldots, r_n \rangle$, $r_i \in R$. For $r \in R$ and $1 \leq i, j \leq n$, define the function $f_{ij}^r : R^n \to R^n$ by $f_{ij}^r(\overline{\rho}) = \iota_i(r\pi_j(\overline{\rho}))$ for each $\overline{\rho} \in R^n$, where $\iota_i : R \to R^n$ and $\pi_i : R^n \to R$ are the i-th injection and projection functions, respectively. The subnear-ring of $M_0(R^n)$ generated by the set $\{f_{ij}^r \mid r \in R, 1 \leq i, j \leq n\}$ is called the $n \times n$ matrix near-ring over R, and it is denoted by $\mathbf{M}_n(R)$. For an ideal A of R there are two ways to construct an ideal in $\mathbf{M}_n(R)$ which relate naturally to A, namely $A^+ := \mathrm{Id} \langle f_{ij}^a \mid a \in A, 1 \leq i, j \leq n \rangle$ and $A^* := \{U \in \mathbf{M}_n(R) | U\overline{\rho} \in A^n$, for all $\overline{\rho} \in R^n\}$, see [14]. It is immediate from the above definitions that $A^+ \subseteq A^*$ where A is an ideal in R.

In Section 2 we collect basic results needed in this sequel. In Section 3, properties of monogenic $\mathbf{M}_n(R)$ -groups of the form Δ^n are studied, and three forms of non-monogenic R-groups are defined. In Section 4, ideals which are intersections of annihilating ideals of monogenic R-groups or $\mathbf{M}_n(R)$ -groups (called annihilator ideals) are studied. Sufficient conditions for A^+ to be contained in A are investigated, where A is the ideal in $\mathbf{M}_n(R)$ corresponding to A. In section 5, a counter example to Meldrum-Meyer's conjecture in [9] is presented.

2. Preliminaries. An R-group Δ is monogenic if there exists a δ in Δ such that $\Delta = R\delta$.

Proposition 2.1. Let R be zero symmetric. If Γ is a monogenic R-group with a near-ring direct sum decomposition, $\Gamma = \Delta \oplus H$, then the R-subgroups, Δ and H, are R-homomorphic images of Γ , hence are monogenic.

Proof. Let $\Gamma = R\gamma$. Since $\Gamma = \Delta \oplus H$ is a near-ring direct sum, each of the summands, Δ and H, is an R-kernel of Γ . Let the unique representation of γ be $\gamma = \delta + h$, where $\delta \in \Delta$ and $h \in H$. Now, let $d \in \Delta$ and $h' \in H$. Then $d + h' \in \Gamma$. Since Γ is monogenic, we have $d + h' = r\gamma$ for some r in R. By left distributivity over R-kernels, $d + h' = r\gamma = r(\delta + h) = r\delta + rh$; hence, $-r\delta + d = rh - h'$. Since Δ and H are R-subgroups of Γ , $-r\delta \in \Delta$ and -h', $rh \in H$. Thus, we have $-r\delta + d = rh - h' \in \Delta \cap H = (0)$, which gives $d = r\delta$ and h' = rh. Since d and h' are arbitrary elements in Δ and H, respectively, we conclude that $R\delta = \Delta$ and Rh = H.

Definition 2.2. A monogenic R-group, $\Omega = R\omega$, for some $\omega \in \Omega$, is of

- (i) **type-0** if it has no non-trivial *R*-kernels,
- (ii) **type**-s if it is of type-0 and for all $\omega' \in \Omega$ with $R\omega' \neq (0)$ we have that there exists a near-ring direct sum decomposition, $R\omega' = \bigoplus_{i=1}^k \Delta_i$, where each Δ_i is an R-kernel of $R\omega'$ and an R-group of type-0,
 - (iii) **type-2** if it has no non-trivial R-subgroups.
- (iv) **type-** \mathcal{K} if it is not of type-0, and it has no type-0 R-kernels as its near-ring direct summands.

Definition 2.3. Let Ω be any R-group.

- (i) An ideal A of R is a ν -primitive ideal if $A = (0 : \Omega)$ and Ω is of type- ν , $\nu = 0, s, 2$.
- (ii) For $\nu = 0, s, 2$, the Jacobson-type radical, $J_{\nu}(R)$, is the intersection of all ν -primitive ideals.

It is known that the socle ideal is characterizable as an intersection of annihilators of R-groups of type- \mathcal{K} . We note this in the next theorem.

Theorem 2.4. Let R be zero symmetric and satisfying the DCCL, and let Ω be a faithful R-group. Then $Soi(R) = \bigcap_{K \in \mathcal{K}(\Omega)} (0:K)$ where $\mathcal{K}(\Omega)$ is the set of all type- \mathcal{K} R-subgroups of Ω .

Now the Jacobson ν -radicals and the socle ideal are intersections of annihilators of monogenic R-groups (or $\mathbf{M}_n(R)$ -groups). We refer to such ideals as $Annihilator\ ideals$.

3. Monogenic $\mathbf{M}_n(R)$ -groups. In order to relate annihilator ideals in R to their corresponding ideals in $\mathbf{M}_n(R)$, we include a few results on the relationships between R-groups and $\mathbf{M}_n(R)$ -groups. Throughout this section R is assumed to be zero symmetric.

Definition 3.1 [8]. Let Ω be any R-group. Then Ω is said to be locally monogenic if for any finite subset H of Ω there is an $\omega \in \Omega$ such that $H \subseteq R\omega$.

Note that a monogenic R-group is locally monogenic. Van der Walt defined a natural action of $\mathbf{M}_n(R)$ on Ω^n as follows.

Lemma 3.2 [13]. For Ω a locally monogenic R-group, the group Ω^n is a locally monogenic $\mathbf{M}_n(R)$ -group under the action

$$U\langle\omega_1,\omega_2,\ldots,\omega_n\rangle:=(U\langle r_1,r_2,\ldots,r_n\rangle)\omega$$

for $U \in \mathbf{M}_n(R)$, $\omega_i, \omega \in \Omega$, $r_i \in R$ and $r_i \omega = \omega_i$.

Theorem 3.3 [13]. A locally monogenic R-group, Δ , has no non-trivial R-subgroups (respectively R-kernels) if, and only if, Δ^n has no non-trivial $\mathbf{M}_n(R)$ -subgroups (respectively $\mathbf{M}_n(R)$ -kernels.)

Theorem 3.4 [13]. Let Δ be a locally monogenic R-group. Then any $\mathbf{M}_n(R)$ -kernel (respectively $\mathbf{M}_n(R)$ -subgroup) of Δ^n is of the form H^n , where H is an R-kernel (respectively R-subgroup) of Δ .

It is a consequence of Theorem 3.3 that, any R-group, $R\delta$, is of type- ν , $\nu = 0, s, 2$, as an R-group if, and only if, $(R\delta)^n$ is of type- ν as an $\mathbf{M}_n(R)$ -group. We now extend this result to R-groups of type- \mathcal{K} .

Corollary 3.5. Let Δ be any monogenic R-group. The R-group Δ has a non-trivial R-kernel if, and only if, Δ^n has a non-trivial $\mathbf{M}_n(R)$ -kernel. That is, Δ is not of type-0 if, and only if, Δ^n is not of type-0.

Lemma 3.6. Let Δ be any monogenic R-group. The R-group Δ has no near-ring direct summands of type-0 if, and only if, Δ^n has no near-ring direct summands of type-0 as $\mathbf{M}_n(R)$ -subgroups.

Proof. \Rightarrow . Suppose Δ^n has a near-ring direct summand of type-0, say $\Delta^n = D \oplus B$, where B is an $\mathbf{M}_n(R)$ -kernel of type-0 and D is some $\mathbf{M}_n(R)$ -kernel. By Theorem 3.4, $D = H^n$ and $B = S^n$, where both H and S are R-kernels of Δ . Since $H^n \oplus S^n \cong_{\mathbf{M}_n(R)} (H \oplus S)^n$, it follows that $\Delta = H \oplus S$. Since Δ is monogenic, by Proposition 2.1 both H and S are monogenic, and consequently S is of type-0, by Theorem 3.3. Thus Δ has a near-ring direct summand of type-0.

 $\underline{\Leftarrow}$. Conversely, suppose Δ has a near-ring direct summand of type-0, say $\Delta = H \oplus P$, where P is an R-kernel of type-0 and H is an R-kernel. Since Δ is monogenic, it follows from Proposition 2.1 that H is monogenic. Hence Δ^n , H^n and P^n are monogenic $\mathbf{M}_n(R)$ -groups, by Lemma 3.2. It is easy to show that both H^n and P^n are $\mathbf{M}_n(R)$ -kernels of Δ^n . By Theorem 3.3, P^n is a type-0 $\mathbf{M}_n(R)$ -kernel of Δ^n . Since $\Delta^n = (H \oplus P)^n \cong_{\mathbf{M}_n(R)} H^n \oplus P^n$, it follows that Δ^n has a type-0 $\mathbf{M}_n(R)$ -kernel as a direct summand. \square

Theorem 3.7. Let Δ be any monogenic R-group. The R-group Δ is of type-K if, and only if, Δ^n is of type-K as an $\mathbf{M}_n(R)$ -group.

Lemma 3.8 [11, Lemma 1.6]. If L is a left ideal of R, then the $\mathbf{M}_n(R)$ -groups R^n/L^n and $(R/L)^n$ are $\mathbf{M}_n(R)$ -isomorphic.

The next result is a generalization of Lemma 3.8, the proof of which extends easily by applying Lemma 3.2 to any group, $(\Gamma/\Delta)^n$, where $\Gamma = R\gamma$ and Δ an R-kernel of Γ . The action of $\mathbf{M}_n(R)$ on $(\Gamma/\Delta)^n$ is defined by

 $U\langle r_1\gamma + \Delta, r_2\gamma + \Delta, \dots, r_n\gamma + \Delta \rangle := \langle s_1\gamma + \Delta, s_2\gamma + \Delta, \dots, s_n\gamma + \Delta \rangle,$ where $U\langle r_1, r_2, \dots, r_n \rangle = \langle s_1, s_2, \dots, s_n \rangle$, for some $s_i \in R$, $1 \leq i \leq n$ and $U \in \mathbf{M}_n(R)$. It is easy to show that the above action is well-defined.

Theorem 3.9. Let Γ be any monogenic R-group, and let Δ be an R-kernel of Γ . Then $(\Gamma/\Delta)^n \cong_{\mathbf{M}_n(R)} \Gamma^n/\Delta^n$.

The action of the matrix near-ring $\mathbf{M}_n(R)$ is not limited to $\mathbf{M}_n(R)$ -groups of the form Ω^n , where Ω is locally monogenic as in Lemma 3.2. There is another action of $\mathbf{M}_n(R)$ on Ω^n called Action 2, for which Ω need not be locally monogenic. Meldrum and Meyer used Action 2 to show that type-0 $\mathbf{M}_n(R)$ -groups exist in several non-isomorphic ways, see [8].

We now explain the action of $\mathbf{M}_n(R)$ called Action 2. Let $\Omega = \bigoplus_{\lambda=1}^m \Omega_{\lambda}$ be a group theoretic direct sum of monogenic R-subgroups $\Omega_{\lambda} = R\omega_{\lambda}$, $\lambda = 1, 2, \ldots, m$. Then, as a group theoretic direct sum,

$$\Omega^n := \bigoplus_{i=1}^n \left(\bigoplus_{\lambda=1}^m \Omega_{\lambda} \right).$$

There is a group isomorphism Ψ from Ω^n to

$$\bigoplus_{\lambda=1}^m \bigg(\bigoplus_{i=1}^n \Omega_\lambda\bigg) = \bigoplus_{\lambda=1}^m \Omega_\lambda^n$$

defined by

$$\Psi(\langle\langle r_{11}\omega_1, r_{12}\omega_2, \dots, r_{1m}\omega_m \rangle, \dots, \langle r_{n1}\omega_1, r_{n2}\omega_2, \dots, r_{nm}\omega_m \rangle\rangle)
= \langle\langle r_{11}\omega_1, \dots, r_{n1}\omega_1 \rangle, \langle r_{12}\omega_2, \dots, r_{nm}\omega_m \rangle\rangle.$$

This can be rewritten as

$$\langle \langle r_{11}, \ldots, r_{n1} \rangle \omega_1, \langle r_{12}, \ldots, r_{n2} \rangle \omega_2, \ldots, \langle r_{1m}, \ldots, r_{nm} \rangle \omega_m \rangle$$

Each $\langle r_{1j}, \ldots, r_{nj} \rangle$, $1 \leq j \leq m$, is an element in \mathbb{R}^n on which a matrix acts naturally. Action 2 is now defined as follows.

Definition 3.10 (Action 2) [8]. Let $U \in \mathbf{M}_n(R)$ and $\overline{\rho} = \langle \overline{\gamma_1}, \overline{\gamma_2}, \dots, \overline{\gamma_n} \rangle$ be any element in Ω^n with each $\overline{\gamma_i} = \langle r_{i1}\omega_1, r_{i2}\omega_2, \dots, r_{im}\omega_m \rangle \in \Omega = \bigoplus_{\lambda=1}^m \Omega_{\lambda}$. Then $U\overline{\rho} := \Psi^{-1}U\Psi(\langle \overline{\gamma_1}, \overline{\gamma_2}, \dots, \overline{\gamma_n} \rangle)$, is a well-defined $\mathbf{M}_n(R)$ action on Ω^n .

Proposition 3.11. Let $\Gamma = \bigoplus_{i=1}^{m} R\delta_i$ be an R-group which is a group theoretic direct sum of monogenic R-groups. If $n \geq m$, then Γ^n is a monogenic $\mathbf{M}_n(R)$ -group under Action 2.

Proof. Denote the matrix f_{ij}^r by [r;i,j] for any $r \in R$ and $1 \le i, j \le n$. Consider the following matrices, $V := \sum_{j=1}^m [r_j;1,j]$ and $U := \sum_{i=1}^n [a_i;i,1]$. Let

$$\underline{\varepsilon} := \langle \langle \delta_1, 0, \dots, 0 \rangle, \langle 0, \delta_2, 0, \dots, 0 \rangle, \dots, \langle 0, \dots, 0, \delta_m \rangle, \\ \langle 0, \dots, 0 \rangle, \dots, \langle 0, \dots, 0 \rangle \rangle.$$

We need only prove that $\underline{\varepsilon}$ is an $\mathbf{M}_n(R)$ -generator of Γ^n . Let us note that

$$(\Psi^{-1}UV\Psi)(\underline{\varepsilon})$$
= $\langle\langle a_1r_1\delta_1, a_1r_2\delta_2, \dots, a_1r_m\delta_m\rangle, \dots, \langle a_nr_1\delta_1, a_nr_2\delta_2, \dots, a_nr_m\delta_m\rangle\rangle.$

For any $\overline{\sigma} = \langle \langle r_{11}\delta_1, r_{12}\delta_2, \dots, r_{1m}\delta_m \rangle, \dots, \langle r_{n1}\delta_1, r_{n2}\delta_2, \dots, r_{nm}\delta_m \rangle \rangle$ in Γ^n , it involves simple calculations to show that

$$\Psi^{-1}\bigg(\sum_{i=1}^n\bigg(\sum_{j=1}^m[r_{ij};i,j]\bigg)\bigg)\Psi(\underline{\varepsilon})=\overline{\sigma}.$$

Since $\overline{\sigma}$ is arbitrary, we conclude that $\Gamma^n = (\mathbf{M}_n(R))\underline{\varepsilon}$. \square

We can now classify non-monogenic R-groups such as Γ in Proposition 3.11, according to the type- ν ($\nu = 0, s, \mathcal{K}$) of their corresponding monogenic $\mathbf{M}_n(R)$ -group Γ^n .

Definition 3.12. Let Γ be a non-monogenic R-group which is a group-theoretic direct sum of monogenic R-subgroups of Γ . Let $n \in \mathbb{N}$, $n \geq 1$.

- (a) If Γ^n is an $\mathbf{M}_n(R)$ -group of type-0 but not of type-s, then Γ is said to be an R-group of $\mathbf{0}_n$ -form.
- (b) If Γ^n is an $\mathbf{M}_n(R)$ -group of type-s but not of type-2, then Γ is said to be an R-group of \mathbf{s}_n -form.

(c) If Γ^n is an $\mathbf{M}_n(R)$ -group of type- \mathcal{K} , then Γ is said to be an R-group of \mathcal{K}_n -form.

4. Annihilator ideals.

Lemma 4.1. Let Δ be any monogenic R-group and r any element in R. Then $r \in (0 : \Delta)$ if, and only if, $f_{ij}^r \in (\overline{0} : \Delta^n)$.

Proof. Let r be any non-zero element in R, and let $\overline{\rho} = \langle \delta_1, \delta_2, \dots, \delta_n \rangle$ be any element in Δ^n where $\Delta = R\delta$. For each $\delta_i = r_i\delta$, with r_i some element of R, we have $f_{ij}^r \overline{\rho} = f_{ij}^r \langle r_1\delta, r_2\delta, \dots, r_n\delta \rangle = f_{ij}^r \langle r_1, r_2, \dots, r_n \rangle \delta = \langle 0, \dots, 0, rr_j, 0, \dots, 0 \rangle \delta = \langle 0, \dots, 0, r\delta_j, 0, \dots, 0 \rangle$ where $r\delta_j$ appears in the i-th place. Clearly, $r \in (0 : \Delta)$ if, and only if, $f_{ij}^r \in (\overline{0} : \Delta^n)$.

Theorem 4.2. Let Ω be a faithful R-group and $\{R\delta_{\lambda} \mid \lambda \in \Lambda\}$ a collection of monogenic R-subgroups of Ω . Then

$$\left(\bigcap_{\lambda\in\Lambda}(0:R\delta_{\lambda})\right)^{+}\subseteq\bigcap_{\lambda\in\Lambda}(\overline{0}:(R\delta_{\lambda})^{n}).$$

Proof. Let $Q:=\bigcap_{\lambda\in\Lambda}(0:R\delta_{\lambda})$, and let U be any matrix in Q^+ . We prove the result by induction on the weight of U. Firstly, let $U=f^a_{ij}$, where $a\in Q$. Then $f^a_{ij}\in\bigcap_{\lambda\in\Lambda}(\bar{0}:(R\delta_{\lambda})^n)$, by Lemma 4.1.

Secondly, let $\overline{\rho} = \langle \omega_1, \omega_2, \dots, \omega_n \rangle$ be any element in $(R\delta_{\lambda})^n$, and let $U = f_{ij}^{a_1}(f_{jk}^{a_2} + f_{jl}^{a_3})$ where $a_1, a_2, a_3 \in Q$. We now have $U\overline{\rho} = \langle 0, \dots, 0, a_1(a_2\omega_k + a_3\omega_l), 0, \dots, 0 \rangle$. Clearly, $U\overline{\rho} = \overline{0}$ because $a_2, a_3 \in Q$ and $\overline{\rho} \in (R\delta_{\lambda})^n$.

The above two cases provide a basic step to an inductive proof based on the way in which the ideal Q^+ is generated by

$$\left\{ f_{ij}^{a} \middle| a \in Q = \bigcap_{\lambda \in \Lambda} (0 : R\delta_{\lambda}), \ 1 \le i, j \le n \right\}.$$

Assume that the theorem holds for any matrix in Q^+ of weight less than n, where n is a positive integer.

Suppose U=V+W where V and W are matrices in Q^+ each of a weight less than n. Then, for any $R\delta_{\lambda}$, $\lambda\in\Lambda$, and $\overline{\delta}=\langle\delta_1,\delta_2,\ldots,\delta_n\rangle\in(R\delta_{\lambda})^n$, we have $U\overline{\delta}=V\overline{\delta}+W\overline{\delta}=\overline{0}+\overline{0}$. Thus, $U\in Q^+$. Now, suppose U=VW where V and W are matrices in Q^+ each of a weight less than n. Then, for any $R\delta_{\lambda}$, $\lambda\in\Lambda$, and $\overline{\delta}=\langle\delta_1,\delta_2,\ldots,\delta_n\rangle\in(R\delta_{\lambda})^n$, we have $U\overline{\delta}=V(W(\overline{\delta}))=V(\overline{0})=\overline{0}$. Hence the result follows.

Let Ω be a faithful R-group, and let $E_{\nu}(R)$ denote the class of all type- ν R-subgroups of Ω , and let $\mathbf{E}_{\nu}(\mathbf{M}_n(R))$ denote the class of all type- ν $\mathbf{M}_n(R)$ -subgroups of Ω^n , $\nu = 0, s, 2, \mathcal{K}$.

Theorem 4.3. Let Ω be a faithful locally monogenic R-group. Then

$$\bigcap_{\Gamma\in\mathbf{E}_{\nu}(\mathbf{M}_{n}(R))}(\overline{0}:\Gamma)\subseteq\bigcap_{\Delta\in E_{\nu}(R)}(\overline{0}:\Delta^{n}).$$

Moreover, if Ω has no R-subgroups of ν_n -form, then the two ideals are equal.

Proof. By Theorems 3.3 and 3.7, $\Delta \in E_{\nu}(R)$ implies $\Delta^n \in \mathbf{E}_{\nu}(\mathbf{M}_n(R))$. This gives $\mathbf{E}_{\nu}(\mathbf{M}_n(R)) \supseteq \{\Delta^n \mid \Delta \in E_{\nu}(R)\}$. Hence,

$$\bigcap_{\Gamma\in\beta\,E_{\nu}(\mathbf{M}_{n}(R))}(\overline{0}:\Gamma)\subseteq\bigcap_{\Delta\in E_{\nu}(R)}(\overline{0}:\Delta^{n}),$$

which proves the result.

Corollary 4.4. Let Ω be a faithful locally monogenic R-group. If Ω has no R-subgroups of ν_n -form, $\nu = 0, s, \mathcal{K}$, then

$$\left(\bigcap_{\Delta \in E_{\nu}(R)} (0:\Delta)\right)^{+} \subseteq \bigcap_{\Gamma \in \mathbf{E}_{\nu}(\mathbf{M}_{n}(R))} (\overline{0}:\Gamma).$$

The next proposition follows readily from Theorem 4.3 and Corollary 4.4.

Proposition 4.5. Let R satisfy the DCCS, and let Ω be a faithful locally monogenic R-group. If Ω has no R-subgroups of 0_n -form, then

$$J_0(\mathbf{M}_n(R)) = \bigcap_{\Delta \in E_0(R)} (0 : \Delta^n).$$

Moreover, $(J_0(R))^+ \subseteq J_0(\mathbf{M}_n(R))$.

- 5. An example of a near-ring. We give this example to illustrate how R-groups of ν_n -form affect ν -primitive ideals of $\mathbf{M}_n(R)$, $\nu = 0, s, \mathcal{K}$. It is a near-ring R with the following properties.
- 1. $J_0(\mathbf{M}_n(R)) \neq J_s(\mathbf{M}_n(R)) \neq J_2(\mathbf{M}_n(R))$ while $J_0(R) = J_s(R) = J_2(R)$.
 - **2.** $(J_0(R))^+ \not\subset J_0(\mathbf{M}_n(R))$ and $J_s(\mathbf{M}_n(R)) \subsetneq (J_s(R))^*$.

Example 5.1. The symbol \oplus_G denotes a group theoretic direct sum. Consider the group $\Omega := \mathbf{Z}_2 \oplus_G \mathbf{Z}_4 \oplus_G \mathbf{Z}_2 \oplus_G \mathbf{Z}_2$, and the following subgroups: $S := \mathbf{Z}_2 \oplus_G \mathbf{Z}_4 \oplus_G \{0\} \oplus_G \{0\}$;

$$\begin{split} \Gamma &:= \{0\} \oplus_G \{0,2\} \oplus_G \mathbf{Z}_2 \oplus_G \{0\}; \\ H_1 &:= \{\overline{0}, (1,0,0,0), (0,2,0,0), (1,2,0,0)\}; \\ H_2 &:= \{\overline{0}, (0,1,0,0), (0,2,0,0), (0,3,0,0)\}; \ T_1 &:= \{\overline{0}, (1,0,0,0)\}; \\ H_3 &:= \{\overline{0}, (0,2,0,0), (1,1,0,0), (1,3,0,0)\}; \ T_2 &:= \{\overline{0}, (0,2,0,0)\}; \\ T_3 &:= \{\overline{0}, (1,2,0,0)\}; \ T_4 &:= \{\overline{0}, (0,0,1,0)\}; \ T_5 &:= \{\overline{0}, (0,2,1,0)\}. \end{split}$$
 Define a subnear-ring R of $M_0(\Omega)$ as

$$R := \{ f \in M_0(\Omega) \mid f(S) \subseteq S; \ f(\Gamma) \subseteq \Gamma; \ f(H_i) \subseteq H_i, \ \forall i = 1, 2, 3; \}$$

$$f(T_j) \subseteq T_j, \forall j = 1, 2, \dots, 5; \ \omega - \omega' \in \Gamma \Rightarrow f(\omega) - f(\omega') \in \Gamma,$$

for all $\omega, \omega' \in \Omega$;

$$h-h'\in T_2\Longrightarrow f(h)-f(h')\in T_2, \text{ for all } h,h'\in H_l,\ l=1,2,3\}.$$

Then R is a near-ring with a multiplicative identity under point-wise addition and map composition. Observe that:

- 1. The group, $\Omega = R(1,1,1,1)$, is a faithful R-group which is not of type-0 because Γ is its non-trivial R-kernel. Since Ω is not a near-ring direct sum of R-groups of type-0, $J_0(R) \neq (0)$.
- 2. The subgroups T_j , j = 1, 2, ..., 5, of Ω are all of order 2 and hence R-subgroups of type-2. The subgroup H_1 of Ω is non-monogenic, and it is a group theoretic direct sum $H_1 = T_1 \oplus_G T_2$.
- 3. The group, H_2 , is monogenic but not of type-0 because T_2 is its R-kernel. Since H_2 has T_2 as the only R-subgroup of type-0, it has no R-group of type-0 as a near-ring direct summand, hence H_2 is of type- \mathcal{K} .
- 4. Similarly, H_3 , is monogenic and it is not of type-0 because T_2 is its R-kernel. Since T_2 is the only R-subgroup of H_3 , it follows that H_3 has no R-subgroup of type-0 as a near-ring direct summand. Thus H_3 is an R-group of type- \mathcal{K} .
- 5. The R-group, $S = T_1 \oplus_G H_2$, is non-monogenic and it has no non-trivial R-kernels. The $\mathbf{M}_2(R)$ -group, $S^2 = \mathbf{M}_2(R) \langle s_2, s_3 \rangle$ where $s_2 = (1,0,0,0)$ and $s_3 = (0,1,0,0)$, is monogenic and has no $\mathbf{M}_2(R)$ -kernels. Thus S^2 is of type-0 and thus S is an R-group of 0_2 -form.
- 6. The R-group, $\Gamma = T_2 \oplus_G T_4$, is non-monogenic and none of its R-subgroups, T_2 , T_4 and T_5 , is an R-kernel. In addition, each R-subgroup of Γ is an R-group of type-2. Since $\Gamma^2 = \mathbf{M}_2(R)\langle \gamma_1, \gamma_2 \rangle$ is monogenic, where $\gamma_1 = (0, 2, 0, 0)$ and $\gamma_2 = (0, 0, 1, 0)$, and Γ^2 has no non-trivial R-kernels, then Γ^2 is of type-s. Hence Γ is an R-group of s_2 -form.
- 7. The quotient R-groups, H_l/T_2 , l=1,2,3, are of type-0, but they are each of order 2 as groups, thus each is of type-2. Since every type-0 R-group has an isomorphic copy in the faithful R-group Ω , see [3, Theorem 2.1], these quotient R-groups, H_l/T_2 , l=1,2,3, and the R-groups, T_j , $j=1,2,\ldots,5$, are all the type-0 R-subgroups of Ω , up to isomorphism. Therefore $J_0(R)=J_s(R)=J_2(R)$.
 - (a) We show that $(J_0(R))^+ \not\subset J_0(\mathbf{M}_2(R))$. Define a map z in R by

$$z(x) = \begin{cases} \overline{0} & \text{if } x \in (H_1 \cup \Gamma) \\ (0, 2, 0, 0) & \text{if } x \in (H_l \setminus T_2), \ l = 2, 3 \\ x & \text{if } x \in \Omega \setminus (S \cup \Gamma). \end{cases}$$

Note that z annihilates all type-0 R-groups, thus $z \in J_0(R)$. Hence,

each $f_{ij}^z \in (J_0(R))^+, 1 \le i, j \le 2$. For $s_1 = (1, 3, 0, 0) \in S$,

$$f_{12}^{z}\langle s_{1},s_{1}\rangle=\langle z(s_{1}),\overline{0}\rangle=\langle (0,2,0,0),\overline{0}\rangle\neq\langle\overline{0},\overline{0}\rangle.$$

Thus $f_{12}^z \notin (0:S^2)$. Since S^2 is a type-0 $\mathbf{M}_2(R)$ -group, it follows that $f_{12}^z \notin J_0(\mathbf{M}_2(R))$.

(b) Here we show that $J_0(\mathbf{M}_2(R)) \neq J_s(\mathbf{M}_2(R))$. Consider the element z of R as defined above, and let $V := f_{11}^z + f_{12}^z$. Then $V\langle r_1, r_2 \rangle = \langle z(r_1) + z(r_2), \overline{0} \rangle$, for any $\langle r_1, r_2 \rangle \in R^2$. Now, for $\langle s_1, \overline{0} \rangle \in S^2$, where $s_1 = (1, 3, 0, 0)$, we have

$$V\langle s_1, \overline{0}\rangle = \langle z(s_1), \overline{0}\rangle = \langle (0, 2, 0, 0), \overline{0}\rangle \neq \langle \overline{0}, \overline{0}\rangle.$$

So $V \notin J_0(\mathbf{M}_2(R))$. The type-s $\mathbf{M}_2(R)$ -groups are Γ^2 , T_l^2 and $(H_l/T_2)^2$, l = 1, 2, 3. By Theorem 3.9, $(H_l/T_2)^2 \cong_{m_2(R)} H_l^2/T_2^2$, l = 1, 2, 3.

By definition $V \in ((0:\Gamma) \cap (0:H_1))^+$, and hence

$$V \in (0:\Gamma)^+ \cap (0:H_1)^+ \subseteq (0:\Gamma^2) \cap (0:H_1^2)$$

by Lemma 4.1. A simple calculation shows that $V(H_l^2) \subseteq T_2^2$ and hence $V(H_l^2/T_2^2) \subseteq \overline{0} + T_2^2$, for each l = 1, 2, 3. Therefore $V \in J_s(\mathbf{M}_2(R))$.

(c) We now prove that $J_s(\mathbf{M}_2(R)) \neq J_2(\mathbf{M}_2(R))$. Define an R-subgroup of (R, +) as $K := \{0, k_1, k_2, k_3\}$ where

$$k_i(x) = \begin{cases} b_i & \text{if } x = (0,0,0,1) \\ \overline{0} & \text{if } x \neq (0,0,0,1) \end{cases}$$

and $b_1 = (0, 2, 0, 0), b_2 = (0, 0, 1, 0)$ and $b_3 = (0, 2, 1, 0).$

Note that K is of s_2 -form as it is R-isomorphic to $\Gamma = T_2 \oplus T_4$. That is, K^2 is an $\mathbf{M}_2(R)$ -group of type-s.

Define elements t and s of R by $t(b_3) = b_3$ and t(x) = 0 otherwise, and $s(b_1) = b_1$, $s(b_2) = b_2$ and s(x) = 0, otherwise. The matrix $B := f_{11}^t(f_{11}^s + f_{12}^s)$ on R^2 yields $B\langle r_1, r_2 \rangle = \langle t(sr_1 + sr_2), 0 \rangle$. For $\langle r_1, r_2 \rangle = \langle k_1, k_2 \rangle$, observe that $B\langle k_1, k_2 \rangle = \langle t(sk_1 + sk_2), 0 \rangle$ and

$$t(sk_1 + sk_2)(0, 0, 0, 1) = t(s(b_1) + s(b_2)) = t(b_1 + b_2) = t(b_3) = b_3 \neq 0.$$

Thus, $B \notin (0:K^2)$. That is, there exists an $\mathbf{M}_2(R)$ -group of type-s which B does not annihilate. Therefore $B \notin J_s(\mathbf{M}_2(R))$.

Simple calculations show that: if $\langle b,b'\rangle \in (\bigcup_{i=1}^5 T_i^2),$ then $B\langle b,b'\rangle =$

 $\langle 0,0 \rangle$, and if $\langle b,b' \rangle \in (\bigcup_{l=1}^3 H_l^2/T_2^2)$, then $B\langle b,b' \rangle \in T_2^2$. That is, B annihilates every $\mathbf{M}_2(R)$ -group of type-2, therefore $B \in J_2(\mathbf{M}_2(R))$.

(d) In addition, since $(J_s(R))^* = (J_2(R))^* = J_2(\mathbf{M}_2(R))$, and $J_s(\mathbf{M}_2(R)) \neq J_2(\mathbf{M}_2(R))$, we conclude that $J_s(\mathbf{M}_2(R)) \subsetneq (J_s(R))^*$.

Acknowledgments. This paper forms part of the author's Ph.D. thesis completed at the University of the Witwatersrand, Johannesburg, under the supervision of Prof. J.F.T. Hartney and Prof. B.A. Watson.

REFERENCES

- 1. J.F.T. Hartney, Radicals and anti-radicals of near-rings, Doctoral dissertation, Uiversity of Nottingham, Nottingham, 1979.
- 2. ——, An anti-radical for near-rings, Proc. Royal Soc. Edinburgh 96 (1984), 185–191.
 - 3. ——, s-Primitivity in matrix near-rings, Quaest. Math. 18 (1995), 487–500.
- 4. J.F.T. Hartney and A.M. Matlala, On the nilpotence of the s-radical in matrix near-rings, in Nearrings and nearfields, Springer, New York, 2005.
- 5. ——, Structure theorems for the socle-ideal of a near-ring, Commun. Algebra 36 (2008), 1140–1152.
 - 6. A.M. Matlala, A characterization of the nil-rigid series, Quaest. Math., 2009.
- 7. J.D.P. Meldrum, Near-rings and their links with groups, Research Notes Math. 134, Pitman, NJ, 1985.
- **8.** J.D.P. Meldrum and J.H. Meyer, *Modules over matrix near-rings and the* J_0 -radical, Monats. Math. **112** (1991), 125–139.
- 9. ——, The \mathcal{J}_0 -radical of a matrix near-ring can be intermediate, Canad. Math Bull. 40 (1997), 198–203.
- 10. J.D.P. Meldrum and A.P.J. van der Walt, *Matrix near-rings*, Archiv Math. 47 (1986), 312–319.
- 11. J.H. Meyer, Left ideals and 0-primitivity in matrix near-rings, Proc. Edinburgh Math. Soc. 35 (1992), 173-187.
- 12. G. Pilz, Near-rings and near fields, North-Holland Math. Stud. 23 (1987), 211-232
- 13. A.P.J. van der Walt, *Primitivity in matrix near-rings*, Quaest. Math. 9 (1986), 459–469.

14. A.P.J. van der Walt, On two-sided ideals in matrix near-rings, in Near-rings and near-fields, G. Betsch, ed., North Holland, Amsterdam, 1987.

SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, 2050 JOHANNESBURG, SOUTH AFRICA

Email address: Anthony.Matlala@wits.ac.za