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ON ANNIHILATOR IDEALS IN MATRIX NEAR-RINGS

ANTHONY M. MATLALA

ABSTRACT. This paper focuses on how the structure of
a faithful R-group of a near-ring R determines the ideal
structure of the matrix near-ring, My, (R), associated with R.
Intersections of annihilating ideals of monogenic R-groups or
M, (R)-groups are referred to as Annihilator ideals. However,
it is known that there exist some non-monogenic R-groups,
say A, for which A™ is monogenic as an M, (R)-group. Taking
cognizance of these non-monogenic R-groups helps us draw
conclusions on relationships between some Jacobson v-radicals
of R and those of My (R), v = 0,s,2. In particular, and
contrary to Meldrum-Meyer’s conjecture in [9], it is herein
shown that (Jo(R))t ¢ Jo(My(R)).

1. Introduction. Relationships between ideals of a near-ring R and
ideals of its associated matrix near-ring M,, (R) has been the subject of
a number of research papers on near-rings. For instance, the Jacobson
v-radicals are shown to be related as (J,(R))* 2 J,(M,(R)) where
v = 0,52, see [3, 13]. A similar relationship was also proved in
[5] for the socle ideals. That is, (Soi(R))* 2 Soi(M,(R)), where R
satisfies the DC'C'L. In order to draw any conclusion on the relationship
between (Jo(R))" and Jo(M,(R)) one needs to pay attention to non-
monogenic R-groups, say A, such that A™ is a monogenic M, (R)-
group. These non-monogenic R-groups are identified and referred to as
R-groups of v,-form, according to the type-v of A™ as an M, (R)-
group, v = 0,s,K. R-groups of v,-form are used to construct an
example of a near-ring R such that (Jo(R))* ¢ Jo(Mp(R)). This
is despite the fact that (Js(R))T C Js(M,(R)) for a near-ring R such
that M, (R) satisfies the DCCL, see [4]. It is because of the R-groups of
Vp-form that we could construct a near-ring, R, such that Jo(M,,(R)) #
Js(Mp,(R)) # J2(M,(R)) while Jy(R) = Js(R) = J2(R).

Throughout this paper R denotes a right-distributive near-ring with
multiplicative identity. If the near-ring R satisfies the descending
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chain condition for left ideals, we say that R satisfies the DCCL.
Similarly, if the near-ring R satisfies the descending chain condition for
R-subgroups, we say that R satisfies the DC'C'S. We emphasize that

a near-ring direct sum means a direct sum, I' = @ A), where each
AEA
Ay is an R-kernel of I'. The set of zero fixing maps from the group

Q to itself is denoted by My(€2). For basic information and results on
near-rings we refer the reader to Pilz [12] and Meldrum [7].

We use matrix near-rings as defined by Meldrum and van der Walt
in [11]. For a natural number n, R" is defined to be the direct sum
of n copies of the group (R,+), and an element p in R™ is denoted
by p = (ri,re,...,mn), i € R. Forr € Rand 1 < 4, j < n,
define the function ff; : R™ — R"™ by fl.(p) = ti(rm;(p)) for each
p € R, where t; : R — R"™ and 7; : R — R are the i-th injection
and projection functions, respectively. The subnear-ring of My(R™)
generated by the set {f/; | 7 € R,1 < 4,j < n} is called the n x n
matriz near-ring over R, and it is denoted by M, (R). For an ideal
A of R there are two ways to construct an ideal in M, (R) which
relate naturally to A, namely A" := Id(f | a € A,1 < 4,j < n)
and A* := {U € M, (R)|Up € A", forallp € R"}, see [14]. It is
immediate from the above definitions that AT C A* where A is an
ideal in R.

In Section 2 we collect basic results needed in this sequel. In Section 3,
properties of monogenic M, (R)-groups of the form A™ are studied, and
three forms of non-monogenic R-groups are defined. In Section 4, ideals
which are intersections of annihilating ideals of monogenic R-groups
or M,,(R)-groups (called annihilator ideals) are studied. Sufficient
conditions for AT to be contained in A are investigated, where A is the
ideal in M, (R) corresponding to A. In section 5, a counter example to
Meldrum-Meyer’s conjecture in [9] is presented.

2. Preliminaries. An R-group A is monogenic if there exists a §
in A such that A = Rd.

Proposition 2.1. Let R be zero symmetric. If I' is a monogenic
R-group with a near-ring direct sum decomposition, ' = A @ H, then
the R-subgroups, A and H, are R-homomorphic images of ', hence are
monogenic.
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Proof. Let I' = Ry. Since I' = A @ H is a near-ring direct sum,
each of the summands, A and H, is an R-kernel of I'. Let the unique
representation of v be v = 6 + h, where 6 € A and h € H. Now,
let d € A and ' € H. Then d + h’ € T. Since ' is monogenic, we
have d 4+ h’ = rv for some r in R. By left distributivity over R-kernels,
d+h' =ry=r(§+h) =rd+rh; hence, —rd+d = rh—h'. Since A and
H are R-subgroups of I', —rd € A and —h',rh € H. Thus, we have
—rd+d=rh—h' € ANH = (0), which gives d = ré and A’ = rh. Since
d and h' are arbitrary elements in A and H, respectively, we conclude
that R§ = A and Rh = H. o

Definition 2.2. A monogenic R-group, ! = Rw, for some w € €, is
of

(i) type-0 if it has no non-trivial R-kernels,
(ii) type-s if it is of type-0 and for all w’ € Q with Rw’ # (0) we have

k
that there exists a near-ring direct sum decomposition, Rw' = @ A,,
i=1
where each A; is an R-kernel of Rw’ and an R-group of type-0,
(iii) type-2 if it has no non-trivial R-subgroups.

(iv) type-KC if it is not of type-0, and it has no type-0 R-kernels as
its near-ring direct summands.

Definition 2.3. Let € be any R-group.

(i) An ideal A of R is a v-primitive ideal if A = (0: Q) and Q is of
type-v, v =0, s, 2.

(ii) For v = 0, 5,2, the Jacobson-type radical, J,(R), is the intersec-
tion of all v-primitive ideals.

It is known that the socle ideal is characterizable as an intersection of
annihilators of R-groups of type-X. We note this in the next theorem.

Theorem 2.4. Let R be zero symmetric and satisfying the DCCL,
and let Q be a faithful R-group. Then Soi(R) = () (0:K) where
Kek(Q)
() is the set of all type-K R-subgroups of ).
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Now the Jacobson v-radicals and the socle ideal are intersections of
annihilators of monogenic R-groups (or M, (R)-groups). We refer to
such ideals as Annihilator ideals.

3. Monogenic M,,(R)-groups. In order to relate annihilator ideals
in R to their corresponding ideals in M, (R), we include a few results on
the relationships between R-groups and M, (R)-groups. Throughout
this section R is assumed to be zero symmetric.

Definition 3.1 [8]. Let Q be any R-group. Then  is said to be
locally monogenic if for any finite subset H of {2 there is an w € Q such
that H C Rw.

Note that a monogenic R-group is locally monogenic. Van der Walt
defined a natural action of M,,(R) on Q™ as follows.

Lemma 3.2 [13]. For Q a locally monogenic R-group, the group Q™
is a locally monogenic M, (R)-group under the action

Ul{wi,wa, ... ,wpn) = (U(r1,r2,. .. ,7))w

forU € M,(R), w;,w € Q, r; € R and rjw = w;.

Theorem 3.3 [13]. A locally monogenic R-group, A, has no non-
trivial R-subgroups (respectively R-kernels) if, and only if, A™ has no
non-trivial My, (R)-subgroups (respectively M, (R)-kernels.)

Theorem 3.4 [13]. Let A be a locally monogenic R-group. Then
any M, (R)-kernel (respectively M, (R)-subgroup) of A™ is of the form
H™, where H is an R-kernel (respectively R-subgroup) of A.

It is a consequence of Theorem 3.3 that, any R-group, RJ, is of type-
v, v =0,s,2, as an R-group if, and only if, (R§)" is of type-v as an
M,,(R)-group. We now extend this result to R-groups of type-K.

Corollary 3.5. Let A be any monogenic R-group. The R-group A
has a non-trivial R-kernel if, and only if, A™ has a non-trivial M,,(R)-
kernel. That is, A is not of type-0 if, and only if, A™ is not of type-0.
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Lemma 3.6. Let A be any monogenic R-group. The R-group A
has no near-ring direct summands of type-0 if, and only if, A™ has no
near-ring direct summands of type-0 as M, (R)-subgroups.

Proof. =. Suppose A" has a near-ring direct summand of type-0,
say A™ = D & B, where B is an M,,(R)-kernel of type-0 and D is some
M, (R)-kernel. By Theorem 3.4, D = H™ and B = S™, where both H
and S are R-kernels of A. Since H" @ S™ =\, (r) (H @ S)", it follows
that A = H @ S. Since A is monogenic, by Proposition 2.1 both H
and S are monogenic, and consequently S is of type-0, by Theorem 3.3.
Thus A has a near-ring direct summand of type-0.

<. Conversely, suppose A has a near-ring direct summand of type-0,
say A = H @ P, where P is an R-kernel of type-0 and H is an R-
kernel. Since A is monogenic, it follows from Proposition 2.1 that H is
monogenic. Hence A™, H"™ and P™ are monogenic M, (R)-groups, by
Lemma 3.2. It is easy to show that both H™ and P" are M, (R)-kernels
of A™. By Theorem 3.3, P" is a type-0 M,,(R)-kernel of A™. Since
A" = (H @ P)" Zp,,(ry H" © P", it follows that A™ has a type-0
M, (R)-kernel as a direct summand. O

Theorem 3.7. Let A be any monogenic R-group. The R-group A
is of type-K if, and only if, A™ is of type-K as an M, (R)-group.

Lemma 3.8 [11, Lemma 1.6]. If L is a left ideal of R, then the
M, (R)-groups R"/L™ and (R/L)™ are M,,(R)-isomorphic.

The next result is a generalization of Lemma 3.8, the proof of which
extends easily by applying Lemma 3.2 to any group, (I'/A)™, where
I' = Ry and A an R-kernel of I'. The action of M,,(R) on (I'/A)™ is
defined by

Ulry +A,ray + A,y +A) i= (s17 + A, soy + A, .y spy + A),

where U{ry,ra,...,7,) = ($1,82,...,8,), for some s; € R, 1 <i<n
and U € M,(R). It is easy to show that the above action is well-
defined.

Theorem 3.9. Let I' be any monogenic R-group, and let A be an
R-kernel of T'. Then (I'/A)™ =z, gy T /A™.
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The action of the matrix near-ring M, (R) is not limited to M,,(R)-
groups of the form Q", where Q is locally monogenic as in Lemma 3.2.
There is another action of M, (R) on Q" called Action 2, for which Q
need not be locally monogenic. Meldrum and Meyer used Action 2 to
show that type-0 M, (R)-groups exist in several non-isomorphic ways,
see [8].

We now explain the action of M, (R) called Action 2. Let Q = € Q

A=1
be a group theoretic direct sum of monogenic R-subgroups {2\ = Rwy,
A=1,2,...,m. Then, as a group theoretic direct sum,
n m
Q"= @ ( Q,\>.
i=1 “A=1
There is a group isomorphism ¥ from Q" to
m n m
D (D) - B
A=1 =1 A=1
defined by
\I/(<<1"11w1,7“12u)2, e >r1mwm>; sty <Tn1w15 Tna2Ww3a, ... ;rnmwm»)
= <<7‘11w1, o ,Tn1w1>, <7“12w% ey
Trowa)s -« s {T1mWmy - -+ s TnmWm ) )-
This can be rewritten as
<<T117 s ,’I"n1>UJ1, <T125 s 7Tn2>w27 R <r1m7 s 7r‘nm>wm>-
Each (ryj,... ,rn;), 1 <j < m,is an element in R"™ on which a matrix

acts naturally. Action 2 is now defined as follows.

Definition 3.10 (Action 2) [8]. Let U € M,(R) and p =
(71,73, - ,7n) be any element in Q" with each ¥; = (rjjws, risws, - - -,

Timwm) € @ = @ Q). Then Up := ¥ UY((71,72,-.- ,7n)), is a
A=1
well-defined M,,(R) action on Q".
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m
Proposition 3.11. Let I' = @ Rd; be an R-group which is a group
i=1
theoretic direct sum of monogenic R-groups. If n > m, then I'" is a
monogenic M, (R)-group under Action 2.

foranyr € Rand 1 <4, j <n.

n

]
g[rj;l,j] and U := Y [a;;1,1].

1 i=1

Proof. Denote the matrix f;; by [r;i,7
Counsider the following matrices, V :=
J

Let

1= ((61,0,...,0),(0,62,0,...,0),...,(0,...,0,5m),

We need only prove that ¢ is an M, (R)-generator of I'”. Let us note
that

(v 1wV e)e)
= ({a17101,a17202, . -« ,Q1Tm0m)s -, {AnT101,anT202, . .« 5 QpTmOm))-
For any o = <<T‘1151, 1“12(52, e 7T1m(5m>7 “eey <’I‘n1(51, ’I“n2(52, e 7Tnm(5m>>

in I'", it involves simple calculations to show that

n m

gt (Z <Z[rij;i,j]>>‘ll(§) =7.

i=1 \j=1

Since @ is arbitrary, we conclude that I'* = (Mn (R))g. i

We can now classify non-monogenic R-groups such as I' in Proposi-
tion 3.11, according to the type-v (v = 0, s, K) of their corresponding
monogenic M, (R)-group I'".

Definition 3.12. Let I' be a non-monogenic R-group which is a
group-theoretic direct sum of monogenic R-subgroups of I'. Let n € N,
n>1.

(a) If I'™ is an M,,(R)-group of type-0 but not of type-s, then I is
said to be an R-group of 0,-form.

(b) If T'™ is an M, (R)-group of type-s but not of type-2, then I is
said to be an R-group of s,-form.
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(c) If T'™ is an M, (R)-group of type-K, then T is said to be an R-
group of K,-form.

4. Annihilator ideals.

Lemma 4.1. Let A be any monogenic R-group and r any element
in R. Thenr € (0: A) if, and only if, f; € (0: A™).

Proof. Let r be any non-zero element in R, and let p = (1, §2,... ,0n)
be any element in A™ where A = R§. For each é; = r;0, with
r; some element of R, we have flp = fl.(ri6,m20,...,m0) =

fr(ri,ro, oo,y =(0,...,0,77;,0,...,0)6 = (0,...,0,76;,0,...,0)
where rd; appears in the i-th place. Clearly, r € (0 : A) if, and only if,
e (0:A). o

Theorem 4.2. Let Q be a faithful R-group and {Rdx | A € A} a
collection of monogenic R-subgroups of Q. Then

B
(ﬂ(o:R(sA)) C @: (R)™.

AEA AEA

Proof. Let Q := () (0: R6y), and let U be any matrix in Q. We
AEA
prove the result by induction on the weight of U. Firstly, let U =

where a € Q. Then ff € )\QA((_) : (R6x)™), by Lemma 4.1.

a
1]?

Secondly, let p = (wj,ws,...,w,) be any element in (Rdy)™, and
let U = fi(fji + f;’) where ai1,a2,a3 € Q. We now have Up =
(0,...,0,a;(aswk+azw;),0,...,0). Clearly, Up = 0 because az,a3 € Q
and p € (Rdx)™.

The above two cases provide a basic step to an inductive proof based
on the way in which the ideal QT is generated by

{fjaeQ: () (0: Rdy), 1§i,j§n}.
AEA

Assume that the theorem holds for any matrix in Q1 of weight less
than n, where n is a positive integer.
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Suppose U = V + W where V and W are matrices in Q* each of a
weight less than n. Then, for any Rox, A € A, and § = (61,82,... ,0,) €
(RS\)™, we have US = V§+W§ = 0+0. Thus, U € QT. Now, suppose
U = VW where V and W are matrices in QT each of a weight less
than n. Then, for any RSy, A € A, and § = (01, 02,... ,6,) € (RGN,
we have US = V(W (3)) = V(0) = 0. Hence the result follows. o

Let © be a faithful R-group, and let E,(R) denote the class of all
type-v R-subgroups of Q, and let E, (M, (R)) denote the class of all
type-v M,,(R)-subgroups of 2", v =0, 5,2, K.

Theorem 4.3. Let Q be a faithful locally monogenic R-group. Then

(N @©:0c () (0:4m).

I'€E, (M, (R)) A€E,(R)

Moreover, if Q has no R-subgroups of v,-form, then the two ideals are
equal.

Proof. By Theorems 3.3 and 3.7, A € E,(R) implies A™ €
E, (M, (R)). This gives E,(M,(R)) 2 {A" | A € E,(R)}. Hence,

N @0:1)c (] (©@:4am),

TeBE, (Mn(R)) ACE,(R)

which proves the result. ]

Corollary 4.4. Let Q be a faithful locally monogenic R-group. If 2
has no R-subgroups of v,-form, v =0,s,K, then

(ﬂ (O:A)>+g N @:D).

A€EE,(R) PEE, (M, (R))

The next proposition follows readily from Theorem4.3 and Corol-
lary 4.4.
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Proposition 4.5. Let R satisfy the DCCS, and let Q be a faithful
locally monogenic R-group. If Q has no R-subgroups of 0,,-form, then

Jo(Mu(R)) =[] (0:4"),
A€EEy(R)

Moreover, (Jo(R))T C Jo(M,(R)).

5. An example of a near-ring. We give this example to illustrate
how R-groups of v,,-form affect v-primitive ideals of M,,(R), v = 0, s, K.
It is a near-ring R with the following properties.

1. Jo(Mn(R)) # Js(Myn(R)) # J2(M,(R)) while Jo(R)) = J.(R) =
Jo(R)).

2. (Jo(R))" ¢ Jo(Mn(R)) and Jo(Mn(R)) C (Jo(R))*.

Example 5.1. The symbol &¢ denotes a group theoretic direct sum.
Consider the group 2 := Zs &g Z4 B¢ Zs B¢ Z2, and the following
subgroups: S := Zs &g Z4 ®¢ {0} &g {0};

I':= {0} ®¢ {0,2} g Z> & {0};

H, := {0,(1,0,0,0), (0,2,0,0), (1,2,0,0)};

H, := {0,(0,1,0,0), (0,2,0,0), (0,3,0,0)}; T} := {0,(1,0,0,0)};
Hs; :={0,(0,2,0,0),(1,1,0,0),(1,3,0,0)}; T» := {0, (0,2,0,0)};
Ty := {0, (1,2,0,0)}; Ty := {0, (0,0,1,0)}; Ts := {0, (0,2,1,0)}.

(
Define a subnear-ring R of My(Q) as

fT) CT;V¥i=1,2,...,5 w—w €T = f(w)— f(w) €T,

for all w,w’ € Q;

h—h €Ty = f(h)— f(h') € T, for all b, k' € Hy, 1 =1,2,3}.

Then R is a near-ring with a multiplicative identity under point-wise
addition and map composition. Observe that:
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1. The group, Q = R(1,1,1,1), is a faithful R-group which is not of
type-0 because I is its non-trivial R-kernel. Since €2 is not a near-ring
direct sum of R-groups of type-0, Jo(R) # (0).

2. The subgroups T}, j = 1,2,...,5, of Q are all of order 2 and hence
R-subgroups of type-2. The subgroup H; of €2 is non-monogenic, and
it is a group theoretic direct sum Hy = T1 ®g 1s.

3. The group, Hs, is monogenic but not of type-0 because T3 is its
R-kernel. Since Hs has T as the only R-subgroup of type-0, it has
no R-group of type-0 as a near-ring direct summand, hence H; is of
type-K.

4. Similarly, Hs, is monogenic and it is not of type-0 because T3 is
its R-kernel. Since T5 is the only R-subgroup of Hs, it follows that Hg
has no R-subgroup of type-0 as a near-ring direct summand. Thus Hg
is an R-group of type-K.

5. The R-group, S = T1®gH,, is non-monogenic and it has no
non-trivial R-kernels. The My (R)-group, S? = Ma(R)(s2, s3) where
s2 = (1,0,0,0) and s3 = (0,1,0,0), is monogenic and has no My (R)-
kernels. Thus S? is of type-0 and thus S is an R-group of 0p-form.

6. The R-group, I' = To@ Ty, is non-monogenic and none of its R-
subgroups, T», Ty and T, is an R-kernel. In addition, each R-subgroup
of T' is an R-group of type-2. Since I'? = My (R){71,72) is monogenic,
where 71 = (0,2,0,0) and 2 = (0,0,1,0), and I'? has no non-trivial
R-kernels, then I'? is of type-s. Hence I' is an R-group of sy-form.

7. The quotient R-groups, H;/T, | = 1,2,3, are of type-0, but they
are each of order 2 as groups, thus each is of type-2. Since every type-
0 R-group has an isomorphic copy in the faithful R-group Q, see [3,
Theorem 2.1], these quotient R-groups, H;/T», | = 1,2,3, and the R-
groups, T}, j = 1,2,...,5, are all the type-0 R-subgroups of €, up to
isomorphism. Therefore Jy(R) = Js(R) = J2(R).

(a) We show that (Jo(R))" ¢ Jo(Mz(R)). Define a map z in R by

z(z) =14 (0,2,0,0) ifze (H\T), | =2,3
x ifzeQ\ (SUT).

Note that z annihilates all type-0 R-groups, thus z € Jy(R). Hence,
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each f7 € (Jo(R))*, 1 <4,j < 2. For s, = (1,3,0,0) € S,

flz2<31’51> = <Z(51)76> = <(072’070)76> # <676>

Thus f7, ¢ (0:82). Since S? is a type-0 My (R)-group, it follows that
fia & Jo(Mz(R)).

(b) Here we show that Jo(Mz(R)) # Js(Maz(R)). Consider the
element z of R as defined above, and let V := f§ + ff,. Then
V{r1,re) = (z(r1) + 2(r2),0), for any (r1,r2) € R% Now, for (s1,0) €
S2, where s; = (1,3,0,0), we have

V<3176> = <Z(31)76> = <(0727070)76> # <676>

So V. ¢ Jo(Ma(R)). The type-s Ma(R)-groups are I'?, T? and
(Hi/Tz)?, | = 1,2,3. By Theorem 3.9, (H;/T2)* Z,(r) H}/T3,
1=1,2,3.

By definition V € ((0:T) N (0: Hy))™", and hence
VeO:D)Fn0:H)T C(0:THN(0: H?)

by Lemma 4.1. A simple calculation shows that V/(H?) C T§ and hence
V(H?/T3) C0+ T, for each [ = 1,2,3. Therefore V € Js(Mz(R)).

(c) We now prove that Js(Mz(R)) # J2(Mz2(R)). Define an R-
subgroup of (R, +) as K := {0, kq, k2, k3} where

b if z = (0,0,0,1)
ki(z) = 4 2
(2) {o if z # (0,0,0,1)

and by = (0,2,0,0), by = (0,0,1,0) and by = (0,2,1,0).

Note that K is of sy-form as it is R-isomorphic to I' = T5 @ T4. That
is, K2 is an My (R)-group of type-s.

Define elements ¢ and s of R by t(b3) = bs and t(z) = 0 otherwise,
and s(by) = by, s(b2) = by and s(z) = 0, otherwise. The matrix
B = fi,(fiy + fi,) on R? yields B(ry,rs) = (t(sry + sr2),0). For
(r1,r2) = (k1, ko), observe that B(ky, ko) = (t(sky + skz),0) and

t(sk1 + Skz)(o,o, 0, 1) = t(s(bl) + S(bg)) = t(bl + bg) = t(bg) = b3 7é 0.
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Thus, B ¢ (0 : K?). That is, there exists an My (R)-group of type-s
which B does not annihilate. Therefore B ¢ Js(Ma(R)).

5
Simple calculations show that: if (b,d') € (|J T?), then B(b,b') =
i=1

3

(0,0), and if (b,¥') € (U H?/T3), then B(b,b') € T7. That is, B
=1

annihilates every Ma(R)-group of type-2, therefore B € J3(Ma(R)).

(d) In addition, since (Js(R))* = (J2(R))* = J2(M2(R)), and
Js(M3(R)) # J2(Ma(R)), we conclude that Js(Mz(R)) € (Js(R))*.
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