ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 6, 2011

POSITIVE SOLUTIONS OF EVEN ORDER
PERIODIC BOUNDARY VALUE PROBLEMS

QINGKAI KONG AND MIN WANG

ABSTRACT. We study a class of periodic boundary value
problems associated with even order differential equations. By
applying the Krasnosel’skii fixed point theorem and the fixed
point index theory, we establish a series of criteria for the
problem to have one, two, an arbitrary number, and even an
infinite number of positive solutions. Criteria for the nonexis-
tence of positive solutions are also derived. These criteria are
given by explicit conditions which are easy to verify. Several
examples are provided to show the applications. Our results
extend, improve and supplement many results in the litera-
ture, even for the second order case.

1. Introduction. In this paper, we study the existence of positive
solutions of the 2mth order periodic boundary value problem (BVP)
consisting of the equation

(1.1) (-1)™(D* = p*)"u=a(t)f(t,u), 0<t<w,
and the boundary condition (BC)
(1.2) uP(0) =u®(w), i=0,1,...,2m —1,

where w > 0, p > 0, m € N and D = d/dt is the differential operator.
This means that

(1.3) (D* — p?)™ = Z(,l)i <m> pHpm-2i
and then (1.1) is the same as

i(q)mﬂ' <m> P2 um 2 = q() £ (¢, u).

; 7
1=0
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Throughout this paper, we assume without further mention that
(H1) a : [0,w] — [0, 00) is continuous and [’ a(s)ds > 0,
(H2) f:[0,w] x [0,00) — [0, c0) is continuous.

Periodic BVPs have received attention from many authors. For
periodic BVPs in the category of BVP (1.1), (1.2), see Atici and
Guseinov [1], Graef and Kong [5], Graef, Kong and Wang [6], Lan [13],
Rachunkovd, Tvrdy and Vrko¢ [18], Torres [19], Yao [20], and Zhang
and Wang [22] for the second order case; Li [14] for the fourth order
case; and Li [15] and Li, Li, and Liang [16] for the general even order
case. Most existing work on the second order periodic BVPs was for
the existence of one and two positive solutions, and [13] also provided
conditions for the existence of a third one. Li [14] studied the existence
of one and two positive solutions for a fourth order periodic BVP.
Although [15, 16] obtained results on the existence and uniqueness of
nontrivial solutions of higher order periodic BVPs, nothing was given
on the existence of positive solutions there. Recently, [6] investigated
a second order nonlinear periodic eigenvalue problem and obtained
conditions for the existence of one and two positive solutions and for
the nonexistence of positive solutions. However, to the best of the
knowledge of the authors, very little is known on the existence of
positive solutions of the general even order periodic BVP (1.1), (1.2),
and very little is known on the existence of more than three positive
solutions even for the second order case.

In this paper, by applying the Krasnosel’skii fixed point theorem and
the fixed point index theory, we establish a series of criteria for BVP
(1.1), (1.2) to have one, two, an arbitrary number, and even an infinite
number of positive solutions. Criteria for the nonexistence of positive
solutions are also derived. These criteria are given by explicit conditions
which are easy to verify. When restricting to the setting of BVP (1.1),
(1.2), our results extend, improve and supplement many results in the
literature, even for the second order case.

This paper is organized as follows: After this Introduction, our
main results are stated in Section 2, followed by several examples for
demonstration in Section 3. All proofs of the main results are given in
Section 4. In the last section, we interpret our results to an eigenvalue
problem associated with BVP (1.1), (1.2).
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2. Main result. Let

ePt 1 ep(w—t)

(2.1) G(t)zm, t€[0,w],
05 o B Git—s) 0<s<t<w,
(2.2) 1(te) = G(s—t) 0<t<s<uw,
and

(23)  Gilt,s) = / Cr(t, )G 1 (r,8)dr, =2, m.
0

It is easy to see

(2.4) G(w/2) < Gi(t,s) < G(0), s,te[0,w],

and from (2.3), by induction, we have

(2.5) w TG (w/2) < Gi(t,s) < WTIGH0), i=1,2,...,m.

Define
(2.6)
a=(Gw/2))™(G(0))"™ and B= tg%(?:}fz] {/0 Gm(t,s)a(s) ds}.

Note from (2.4) that 0 < o < 1.

For u € C0,w], the Banach space of continuous functions on [0, w],
we denote by ||u|| the standard maximum norm of u. The first theorem
is our basic result on the existence of positive solutions of BVP (1.1),
(1.2).

Theorem 2.1. If there exist 0 < r, < r* (respectively, 0 < r* < r,),
such that

(2.7) f(t,z) < B tr,  for all (t,z) € [0,w] X [ary, 7]
and

(2.8) f(t,z) > B~ tr*  for all (t,x) € [0,w] X [ar*,r*].
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Then BVP (1.1), (1.2) has at least one positive solution u with r, <
||U|\ <r* (respectz’vely, r* < HUH < r*).

In the sequel, we will use the following notation:
fo = liminf min] f(t,z)/z, foo =liminf min f(¢, z)/x;

z—0 te[0,w z—o0 te[0,w]

f° = limsup max] f(t,z)/z, [ =limsup max] f(t,z)/x.

z—0 t€[0,w z—o00 tE[O,w

The next three theorems are derived from Theorem 2.1 using fo, fso, f°,
and f*°.

Theorem 2.2. BVP (1.1), (1.2) has at least one positive solution if
either

(a) fO< Bt and foo > (aB); or
(b) fo > (aB)~" and f> < g 1.

Theorem 2.3. Assume there exists r. > 0 such that (2.7) holds.

(a) If fo > (aB)™1, then BVP (1.1), (1.2) has at least one positive
solution u with ||u|| < ry;

(b) if foo > (aB)™!, then BVP (1.1), (1.2) has at least one positive
solution u with ||u|| > ry.

Theorem 2.4. Assume there exists an r* > 0 such that (2.8) holds.

(a) If f° < B!, then BVP (1.1), (1.2) has at least one positive
solution w with ||u|| < r*;

(b) if f° < B7L, then BVP (1.1), (1.2) has at least one positive
solution u with ||u|| > r*.

Combining Theorems 2.3 and 2.4 we obtain results on the existence
of at least two positive solutions.

Theorem 2.5. Assume either
(a) fo > (aB)™! and fo > (aB)™', and there exists r > 0 such that
(2.9) flt,z) < B r for all (t,z) € [0,w] x [ar,7]; or
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(b) fO < Bt and f>° < B, and there exists r > 0 such that

(2.10) ft,z) > B~ 'r for all (t,x) € [0,w] x [ar,7].

Then BVP (1.1), (1.2) has at least two positive solutions uy and us with
|l <7 < |uzl]-

Note that in Theorem 2.5, the inequalities in (2.9) and (2.10) are strict
and hence are different from those in (2.7) and (2.8) in Theorem 2.1.
This is to guarantee that the two solutions u; and us are different. By
applying Theorem 2.1 repeatedly, we can generalize the conclusion to
obtain criteria for the existence of multiple positive solutions.

Theorem 2.6. Let {r;}}\; C R be such that 0 < r; < ry < r3 <
- < ry. Assume either

(a) f satisfies (2.9) with r = r; when i is odd, and satisfies (2.10)
with v = r; when i is even; or

(b) f satisfies (2.9) with r = r; when i is even, and satisfies (2.10)
with » = r; when 1 is odd.
Then BVP (1.1), (1.2) has at least N — 1 positive solutions u; with
r; < ||Uz|| <rit1,t=12,... ,N—1.

Theorem 2.7. Let {r; X1 CRbesuchthat) <ry <rg <rzg<---.
Assume either

(a) f satisfies (2.7) with r. = r; when i is odd, and satisfies (2.8)
with v* = r; when i is even; or

(b) f satisfies (2.7) with r. = r; when i is even, and satisfies (2.8)
with v* = r; when ¢ s odd.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

The following is an immediate consequence of Theorem 2.7.

Corollary 2.1. Let {r;}2; C R be such that 0 < r; <rs <rs <
-+ . Let By = U2, [argi—1,72i—1] and Ey = U2, [arg;, re;]. Assume
f(t,z) f(t,z)

limsup max =22 < B! and liminf min
E;dz—oot€E0W] T E»dz—c0 t€[0w] T

> (af)™t.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.
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Now we present a result on the nonexistence of positive solutions of
BVP (1.1), (1.2).

Theorem 2.8. BVP (1.1), (1.2) has no positive solutions if
(a) f(t,x)/x < B~ for all (t,z) € [0,w] x (0,00), or
(b) f(t,z)/z > (aB)~! for all (t,z) € [0,w] x (0,00).

We observe that, in the above theorems, if one of fy, foo, f°, f* is
involved and it is between 37! and (a3)~!, then the corresponding
conclusions fail. Motivated by the ideas in [4, 7, 12, 17], we employ
the first eigenvalue of a Sturm-Liouville Problem (SLP) associated with
BVP (1.1), (1.2) and the fixed point index theory to improve the criteria
given in Theorems 2.2-2.5.

It is clear that po = p? is the first eigenvalue of
(2.11) —u" +pPu =g, w(0) = u(w), u'(0) =u'(w),
with ug = 1 an associated eigenfunction. In the following we let

(2.12) a= min a(t), @= max a(t), ¢=min{(aB)"t,a 1p*"}.
te[0,w] te[0,w]

By replacing (a3)~! by ¢, we obtain the theorems below which provide
generalized criteria for the existence of one and two positive solutions
of BVP (1.1), (1.2) given by Theorems 2.2-2.5.

Theorem 2.9. BVP (1.1), (1.2) has at least one positive solution if
one of following is satisfied:

(a) < B! and foo > ¢

(b) fo > ¢ and f> < B7Y

(c) fo > € or foo > ¢, and there exists 7. such that (2.7) holds;

(d) fO < Bt or f° < B, and there exists r* such that (2.8) holds.

Theorem 2.10. BVP (1.1), (1.2) has at least two positive solutions
if either

(a) fo > ¢ and foo > ¢, and there exists v such that (2.9) holds; or
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(b) O < Bt and f>* < B~1, and there exists r such that (2.10)
holds.

Remark 2.1. It is easy to show that p?™ is an eigenvalue of the 2mth
order SLP consisting of the equation

(2.13) (=1)™(D* = p*)"u = pu
and BC (1.2) with uwp = 1 an associated eigenfunction. Thus for
t € 0,w]

1=w(t) = p2m/ Gm(t,8)up(s) ds = me/ Gm(t, s) ds.
0 0

From (2.6) there exists a ¢; € [0,w] such that

(2.14) /w G (t1,8)a(s)ds = B.
0
Hence ©
az " [ Gultr,9als) ds = 575,
0

and for ¢ € [0, w]

0

Therefore,
(2.15) B la < p®™ < pla.

In particular, when a > a@, i.e., the function a(t) has a small change on
[0,w], we have a~1p?™ < a~'a 1p?™ < (aB)~!. In this case, Theorems
2.9 and 2.10 are real improvements of Theorems 2.2-2.5.

For the second order case, an alternative approach using a different
SLP provides general improvements of Theorems 2.2-2.5 without im-
posing any restriction on the function a(t). We consider the nonlinear
BVP (1.1), (1.2) with m =1, i.e.,

(2.16)  —u" + p*u=a(t)f(t,u), u(0)=u(w), 4 (0)=1u(w).
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Let vy be the first eigenvalue of the corresponding SLP
(2.17) —u" + p*u=va(t)u, u(0)=u(w), u'(0)=1(w),

with an associated eigenfunction vg(¢). It is known that 9 > 0 and
vo(t) has no zero in (0,w), see [8, 9, 10]. Then we have the results
below:

Theorem 2.11. BVP (2.16) has at least one positive solution if one

of following is satisfied:

a) O < vy and fao > vo;

b) fo > 1o and f* < vy;

c) fo > vo and there exists .. such that (2.7) holds;

d) foo > vo and there exists an r. such that (2.7) holds;
e) f < vy and there exists r* such that (2.8) holds;

f) f° < vy and there exists r* such that (2.8) holds.

(
(
(
(
(
(

Theorem 2.12. BVP (2.16) has at least two positive solutions if
either

(a) fo > vo, foo > vo, and there exists an r such that (2.9) holds;or
(b) fO < vy, £ < vy, and there exists an r such that (2.10) holds.

Remark 2.2. We claim that 37! < vy < (af)~!, and hence Theorems
2.11 and 2.12 are real improvements of Theorems 2.2-2.5 when m = 1.
In fact, we note that

wo(t) = v / Cr(t, s)a(s)vo(s) ds, t € [0,].
0
Let t3 € [0, w] with vo(t2) = ||vo||. Then

(2.18) [|vol| = vo /Ow G1(t2, s)a(s)vo(s) ds < voflfvoll,
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which implies that 37! < 1. On the other hand, from (2.4) we have
that for any ¢ € [0, w]

vo(t) > v /0“’ G(w/2)a(s)vo(s) ds
= Vooz/ow G(0)a(s)vo(s) ds

> avy /Ow G1(t2, s)a(s)vo(s) ds

= avp(t2) = al|vo]|.

By (2.6) with m = 1, there exists a t; € [0,w] such that [, G1(t1, s)a(s)
ds = B. Thus

(2.19) [lvol| > 1/0/ G1(t1, s)a(s)vo(s)ds > voaf||vol],
0
which implies that vy < (a8) 1.

Remark 2.3. (i) Theorems 2.11 and 2.12 are practically convenient
to apply. This is because the eigenvalues of SLP (2.17) are easy to
compute using standard software packages for second order two-point
linear self-adjoint SLPs such as those in [2].

(ii) The results in Theorems 2.11 and 2.12 can be extended to the
general higher order BVP (1.1), (1.2) using the first eigenvalue vy of
the SLP consisting of the equation

(2.20) (—1)™(D? — p*)™u = va(t)u

and BC (1.2). Theoretically, it can be shown that vy > 0 and the
associated eigenfunction has no zero in (0,w) using the Krein-Rutman
theorem in [21]. However, since the eigenvalues of higher order SLPs
are difficult to compute numerically, such results are not very useful
practically. Therefore, we do not show the details here.

3. Examples. In this section, we give several examples to demon-
strate the applications of the criteria obtained in Section 2. For simplic-
ity we choose a(t) =1, p =1, and f(¢t,z) = f(z) in all the examples.
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Example 1. Let f(z) = z*.

If £ > 1, then lim, 04 f(z)/z = 0 and lim, , f(z)/z = co. By
Theorem 2.2 (a), BVP (1.1), (1.2) has at least one positive solution.
)

(1.
If0 < k <1, then 11H1I_>0+ f(z)/z = oo and lim,_,~ f(z)/z =0. By
Theorem 2.2 ( ), BVP (1.1), (1.2) has at least one positive solution.

)

Example 2. Let f(z) = c(z** + z*2), where 0 < k1 < 1 < ko < 0.
Let 7 = ((1 — ky)/(ky — 1))Y/(k2=k1) Then

(a) BVP (1.1), (1.2) has at least one positive solution when ¢ =
,,,.(,,.k!l + rkz)—lﬁ—l;

(b) BVP (1.1), (1.2) has at least two positive solutions u; and us
with |Ju|| < 7 < ||uz|| when 0 < ¢ < r(rkr + rk2)~15-1;

(c) BVP (1.1), (1.2) has no positive solutions when ¢ > r(rkr +
) (o)

In fact, it is clear that lim,_,o4 f(z)/z = lim,—« f(z)/z = o0, f(z)
is strictly increasing and r is the minimum point of f(z)/z on (0, c0).

When ¢ = r(r*t + r*2)=1371 we have f(z) < f(r) = g~ !r for all
z € [ar,r]. Then from Theorem 2.3 (a), BVP (1.1), (1.2) has a positive
solution u; with ||uy|| < r. Similarly from Theorem 2.3 (b), BVP (1.1),

(1.2) has a positive solution us with ||lug|| > r. However, u; and us
may be the same for the case when ||u;|| = [|uz|| = 7.

When 0 < ¢ < »(r¥* + rF2)71371 by a similar argument and from
Theorem 2.5 (a), we obtain the conclusion.

When ¢ > r(r*t + 7F2)~Y(aB)7L, f(z)/z > f(r)/r > (aB)! on
(0,00). Then the conclusion follows from Theorem 2.8 (b).

Example 3. Let
c/(z*+1) x>0,
xTr) =
r@-{¢ t
where k > 1. Let r = (k — 1)'/*. Then
(a) BVP (1.1), (1.2) has at least one positive solution when ¢ =
(1= 1) (aB);
(b) BVP (1.1), (1.2) has at least two positive solutions u; and wus
with ||u1|| < 7 < ||uz|| when ¢ > (r* % +7)(aB)?
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(c) BVP (1.1), (1.2) has no positive solutions when 0 < ¢ < (r!=% +
r)B~L

In fact, it is clear that lim, o4 f(z)/z = lim, o f(z)/z = 0, f(z)
is strictly increasing and r is the maximum point of f(z)/z on (0, c0).

When ¢ = (r'=% + r)(aB)7!, f(r) = (aB)"'r. Then f(z) > f(r) =
(aB)~r on [r,a=!r], i.e., f(z) > B~1r* on [ar*,r*], where r* = a~!r.
By Theorem 2.4 (a) or (b), There exists at least one positive solution.

When ¢ > (r17*+47)(aB) !, by a similar argument and from Theorem
2.5 (b), we obtain the conclusion.

When 0 < ¢ < (r'=% +7)371, f(z)/z < f(r)/r < B~ on (0,00).
Then the conclusion follows from Theorem 2.8 (a).

Example 4. Let

f(z) = {(()a—l + 1) 1z(sin(blnz) +1)/2 i i 8,

where 0 < b < (m1—2sin™'§)/In(a 1) with § = (o 1—1)/(a"1+1). We
claim that BVP (1.1), (1.2) has an infinite number of positive solutions.

To show this, for k =2t + 1,7 € N, let
& = exp(b ' (sin™! 6 + (k — 1)), nk = exp(b ! (kw — sin™!§)).
Then
-1

ne/€x = exp(b™!(r — 2sin™! §)) > exp(In(a™t)) = a1,

hence &, < an. Note that for z € [ank, m] C [Ek, Mk, sin(blnz) >
sin(sin™! §) = §. Therefore, for = € [an, 7k],

fl@)> (' + 1) tan(6+1)/2 =B 'n,

i.e., (2.7) holds with r, = ny.
For k = 2i, 7 € N, let

& = exp(b 1 ((k — )7 —sin "1 9)), n, = exp(b~ (kw4 sin~ 1 §)).
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Then
ne/Ek = exp(b™ (7 + 2sin ! §)) > exp(In(a™)) = a7 %,

hence & < an. Note that for z € [ang, nk] C [k, 7x], sin(blnz) < —4.
Therefore, for x € [ang, ni],

fl@) < (@t + 1) tp(—6+1)/2 =8 m,

i.e., (2.8) holds with r* = 7.

Therefore by Theorem 2.7, BVP (1.1), (1.2) has an infinite number
of positive solutions.

Example 5. Let
f(x)= <1 + k(tan™' z — %))x, x>0,

where k € (0,4/7). Then BVP (1.1), (1.2) has at least one positive
solution.

In fact, note that a(t) = 1 and p = 1 in the equation. From
(2.15), B = p?™ = 1, and hence ( = 1. Since lim, .o f(z)/z =
1 —kr/4 and lim,_, f(z)/xz = 1+ kmr /4, the conclusion follows from
Theorem 2.9 (a). However, when k is small enough, the condition
lim; o f(z)/z > a1 is not satisfied, so Theorem 2.2 fails to work.

4. Proofs. The proof of Theorem 2.1 is based on the following
Krasnosel’skii’s fixed point theorem, see [11].

Lemma 4.1. Let X be a Banach space and K C X a cone in
X. Assume Qq, Qs are bounded open subsets of X with 0 € Qy and
Q1 C Qq, and let

FKﬁ(ﬁg\Ql)—)K

be a completely continuous operator such that either

(a) [[Tu|| < ||ul| for any v € K N Oy and ||Tul|| > ||u|| for any
u € KNoQy; or
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(b) ||Tul| > |Ju]| for any v € K NOQ and |[Tu|| < ||u]| for any
u € KNoQy.

Then T has a fized point in K N (Q2\ Q).

We now introduce some related preliminaries. The first one is for the
Green’s function that we will use to deal with BVP (1.1), (1.2) . It is
well known, see for example, Zhang and Wang [22], that the function
G1(t, s) given by (2.2) is the Green’s function for the BVP

{—u"+p2u:0, 0<t<w,
u(0) = u(w), v'(0) = v (w).

Lemma 4.2. For any m > 1, the function G,(t,s) given by (2.3) is
the Green’s function for the BVP consisting of the equation

(4.1) (-1)™(D?* - p))™u =0, 0<t<uw,
and BC (1.2), i.e., for any h(t) € C[0,w]
u(t) :/ G (t,s)h(s)ds
0
is the unique solution of the BVP consisting of the equation
(4.2) (-1)™(D? — A" u=h(t), 0<t<w,
and BC (1.2).

Proof. Obviously the conclusion holds for m = 1. Assume it is true
for m = k—1. When m = k, the solution u of BVP (4.2), (1.2) satisfies

—(D? — pHu(t) = /0“’ Gr—1(t,s)h(s) ds.

Then by the conclusion for m=1,

u(t) = /0 ) Gl(t,r)< /0 ) le(r,s)h(s)ds> dr

—/ (/Ow Gl(t,T)Gk_l(T,s)dT>h(s) ds

_ /0 " Gilt, 5)h(s) ds.
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This means that Gy, (¢, s) is the Green’s function for BVP (4.1), (1.2). o

Let « be defined by (2.6). Define a cone K in C[0,w] by
(4.3)
K={ueC0,w] | u(t) >0, tel0,w] and tn[lgn]u(t) > aflu|l}
€0,w

and an operator I' : C[0,w] — C[0,w] by

(44)  Tu-= /0 C Gt s)al(s)f (s, u(s)) ds, t € [0,u].

Lemma 4.3. T'(K) C K and T is completely continuous.

Proof. For any u € K, T'u > 0 on [0,w]. By (2.5) with i = m, for any
t € 0,w]

(Tu)(t) > /Ow W G™(w/2)a(s) f (s, u(s)) ds
=« /Ow W™ G™(0)a(s) f(s,u(s)) ds.

Since T'u € C[0,w], there exists a t3 € [0,w] such that ||[Tu|| =
(Tw)(t3). Hence, for any t € [0,w]

w

Tl :/Ome(tg,s)a(s)f(s,u(s))ds g/ W =1Gm(0Va(s) £ (5, u(s))ds.

0
Therefore, miny¢g ., (I'u)(t) > o|T'u|| and this implies that I'(K) C K.
The complete continuity of I' can be shown by a standard argument
using the Arzela-Arscoli theorem. We omit the details. o

In the following, for r > 0, we let

(4.5) Q, = {ueCO,w]||lul]| <r}

Proof of Theorem 2.1. Let K and €, be defined by (4.3) and (4.5),
respectively. For any v € K N9Q,, ||u|| = r« and ar. <u(t) < r. on
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[0,w]. From (2.7), f(t,u(t)) < B~ 'r, on [0,w]. For any t € [0,w]

(Tu)(t) = /0 " Gt $)a(s) f(s, u(s)) ds
< B lr, /Ow Gn(t, s)a(s)ds

< BB =1 =l
Thus ||Tu|| < ||u||. For any u € KNOQ,«, ||ul| = r* and ar* < u(t) <

T,*
on [0,w]. From (2.8), f(t,u(t)) > B~1r* on [0,w]. Let t; € [0,w] be
defined as in (2.14). Then

(Cu)(tr) = / " Gty s)a(s) (s, u(s)) ds

2,6’711“*/ G, (t1,8)a(s) ds
0
=B~ = |lull-
Thus ||Tw|| > ||ul|. Therefore, the conclusion follows from Lemma

4.1 (a). ]

Proof of Theorem 2.2. (a) If fO < 871, there exists an r, > 0 such
that
flt,z) <B™le < BTy, (@) € [0,w] x [0,7].

If foo > (af)7!, there exists # > r, such that
f(t,z) > (aB) lz, (t,z) € [0,w] x [F,00).
Then for any r* with ar* > 7
flt,z) > (af)te > B tr* forall (t,z) € [0,w] x [ar*,r*].

Then the conclusion follows from Theorem 2.1.

(b) The proof is similar to Part (a) and hence is omitted. O

The proofs of Theorems 2.3 and 2.4 are in the same way and hence
are omitted.
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Proof of Theorem 2.5. (a) If there exists an r > 0 such that (2.9)
holds, then by the uniform continuity of f(¢,z)/xz on any compact
subset of [0,w] x [0, 00), there exist r; and ry such that ry < r < rp and
f(t,z) < =tz for all (¢,z) € [0,w] X [ar;,7;], i = 1,2. By Theorem
2.3 (a) and (b), BVP (1.1), (1.2) has two positive solutions u; and us
satisfying ||ui|] < r1 and ||uz|| > ro.

Similarly, case (b) follows from Theorem 2.4. O

The proofs of Theorems 2.6 and 2.7 are in the same way and are
hence omitted.

Proof of Corollary 2.1. From the assumption we see that for suffi-
ciently large ¢

@ <B1 forall (t,2) € [0,w] X [aTai_1, 72i1]
and
@ > (aB)™1 for all (t,z) € [0,w] X [ara;, 72i].

This shows that for sufficiently large 4
ft,x) < B~ re < B lrg; y for all (t, ) € [0,w] X [ore; 1,72 1]
and

ft,z) > (@f) 'z > (aB) tary = B ry

for all (¢,z) € [0,w] X [are;, 2]
Therefore, the conclusion follows from Theorem 2.7. o
Proof of Theorem 2.8. (a) Assume BVP (1.1), (1.2) has a positive
solution u with ||u|| = r for some » > 0. Then u is a fixed point of

the operator I' defined by (4.4). From the assumption, f(t,u(t)) <
B~ tu(t) < B 1r on [0,w]. Thus for any ¢ € [0, w]

u(t) = (Tu)(t) = /Ow Gm(t,s)a(s)f(s,u(s))ds

<pB'r /w Gm(t,8)a(s)ds <r
0
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which contradicts ||u|| = 7. Therefore, BVP (1.1), (1.2) has no positive
solutions.

(b) Assume BVP (1.1), (1.2) has a positive solution u with ||u|| = 7.
Similar to the proof of Lemma 4.3 we can show that I'u € K and
hence ar < wu(t) < r on [0,w]. From the assumption, f(¢,u(t)) >
(aB) tu(t) > B~ lr. Let t; € [0,w] be defined as in (2.14). Then

u(tr) = Tu(tr) / Gon(tr, 5)a(s) f(s, u(s)) ds
>,8 / G, tl, )d e

which contradicts ||u|| = 7. Therefore, BVP (1.1), (1.2) has no positive
solutions. O

To prove Theorems 2.9 and 2.10, we need the following well-known
result in [3] on the fixed point indices for operators on cones.

Lemma 4.4. Let K and Q, be defined by (4.3) and (4.5), respectively.
Assume T': KN Q. — K is a compact operator such that Tu # u for
ue KNoQ,.

(a) If ||ITul| > ||u|| for u € K NIQ,, then i([,KNQ,,K)=0.
(b) If ||Tu|| < ||u]| for u € K N0, then i(T, K NQ,, K) = 1.

Based on Lemma 4.4 we derive sufficient conditions for (I, K N
Q,,K)=0.

Lemma 4.5. (a) Assume fo > a *p*™. Then i(I, K NQ.,K) =0
for all sufficiently small r > 0.

(b) Assume fo > a'p*™. Then i([,K N Q,,K) = 0 for all
sufficiently large r > 0.

Proof. (a) Let 0 < I < 1 be fixed, and define I'; : C[0,w] — C|0, w]

by
(Tyu) (¢ / Gom(t, 8)ul(s) ds
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Similar to the proof of Lemma 4.3, we can show that I'; is compact and
I''K C K. Fix t4 € (0,w) and define r; = (o [[" Gm(ts,s) ds)'/ =0,
Then for 0 < 7 < r; and u € K N 0Q,, u!(t) > (ar)! on [0,w], and
hence

Dyl > Ty () = / " Gt s)ui(s) ds

(4.6) > (ar)! /Ow G (tays)ds = (ar)a™'r; ™!

> (ar)laflrlfl =r =||ull.

By Lemma 4.4 (a), i(I'1, K N Q,, K) = 0.
Define a homotopy operator H : [0,1] x K — K by

H(s,u) =(1—s)T'u+ sTu.

Then H(s,-) is compact for 0 < s < 1. Since fo > a 1p?™, we can
choose € > 0 and 0 < ry < 7y such that for (¢,2) € [0,w] x [0,72]

a(t)f(t,x) > (p*™ + &)z and z' > (p®™ + )z

Let 0 < r < ro. We now show that H(s,u) # u for all 0 < s < 1 and
u € K N 0Q,. Assume the contrary, i.e., there exist an s; € [0,1] and
u; € K NoQ, with H(sy,u;) =wuy. Then u; satisfies

@7)  (=)™D? = p*)Mur(t) = (1= s1)a(t)f(t,ua(t)) + s1ui (t)
and BC (1.2). Hence

/ D2 2yt de
- / "1 = s )a(®) £t ur(8)) + s1ed (1)) d.
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By (1.2) we have
p2m /Ow wr () dt = /()“)(—1)"1(02 — )y () dt
= [ 0= s0a) st 1a(0) + s )] a
> (1w [ o) d
+ s1 /Ow(pzm + €)uy (t) dt
:(p%1+sxéwuﬂﬂdt

which is a contradiction since u;(¢) > 0 on [0,w]. Hence,

(0, K NQ,, K) = i(H(0,-), K NQ,, K)
—i(H(1,),K N, K) =i(l1,KNQ,, K) = 0.

(b) The proof is similar to Part (a) and hence is omitted. O

Proof of Theorem 2.9. (a) If fO < 37!, then the proofs of Theorems
2.1 and 2.2 imply that ||[Tu|| < ||u|| for v € K N0, with r > 0 small
enough. By Lemma 4.4 (b), (I, K N Q,,K) = 1.

Similarly, if foo > (af)~!, then the proofs of Theorems 2.1 and 2.2
imply that ||Tu|| > ||u|| for v € K N 9Nk with R large enough. By
Lemma 4.4 (a), i([, K N Qg,K) = 0. If fo, > a=1p?™, then the same
conclusion follows from Lemma 4.5 (b). Therefore,

i, KN (Qr\ D), K) =i([, K NQg, K) —i(l, K NQ,, K)
=0—1+#0,

and hence I'u = u has a positive solution.

The other parts of the theorem can be proved similarly. Note that by
Lemma 4.4 and the proof of Theorem 2.1, if there exists r, > 0 such
that (2.7) holds and T'u # w on K N9Q,., then i(I', K NQ, ,K) = 1;
and if there exists an r* > 0 such that (2.8) holds and T'u # u on
K N 0Qy«, then i(T', K N Q- K) = 0. i
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Proof of Theorem 2.10. (a) As in the proof of Theorem 2.9 we see
that (2.9) implies i(T', K N Q,., K) = 1, and from the assumptions fo >
min{(aB)~!,a71p?™} and foo > min{(aB)t,a"1p?™}, there exist 0 <
R; < r < Ry such that {(T', K NQg,,K) =0and {(I', KNQR,, K) =0
for 0 < Ry < r < Ry. Therefore, i(I', K N (Qr, \ ), K) # 0 and
i(T, KN (Q,\Qg,), K) # 0, and hence I'u = u has at least two positive
solutions.

(b) The proof is similar to Part (a) and hence is omitted. o

The proofs of Theorems 2.11 and 2.12 are in the same direction as
those of Theorems 2.9 and 2.10 based on the following lemma.

Lemma 4.6. (a) Assume fy > vy. Then i(I', K NQ,,K) =0 for all
sufficiently small r > 0.

(b) Assume f° < vy. Then i(T, K NQ,,K) = 1 for all sufficiently
small r > 0.

(c) Assume foo > vy. Then i(T, K NQ,.,K) = 0 for all sufficiently
large 7 > 0.

(d) Assume > < vy. Then i(T, K NQ,,K) =1 for all sufficiently
large r > 0.

Proof. (a) Let 0 < [ < 1 be fixed, and define I'y : C[0,w] — C|0, w]
by

(Tau) (¢ /Glts ul(s) ds.

Similar to the proof of Lemma 4.3, we can show that I's is compact and
I';K C K. Fix t; € (0,w) and define r3 = (o [;’G1(t5, s)a(s)ds)/ 170,
Then for 0 < » < 73 and u € K N 0Q,, u!(t) > (ar)! on [0,w], and
hence

I[Toul| > (Tsu)(ts) = / " G (ts, s)a(s)ul(s) ds

(4.8) /G1 t5, )
- (ar)fa~tr}

(ar)'a™'rt ™ =1 = ||ul|.

v
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By Lemma 4.4 (a), i(T'2, K N Q,,K) =0.
Define a homotopy operator H : [0,1] x K — K by

H(s,u) = (1 — s)T'u + sTau,

where T is defined by (4.4) with m = 1. Then H(s,-) is compact for
0 < s < 1. Since fy > vy, we can choose € > 0 and 0 < r4 < r3 such
that, for (¢, ) € [0,w] x [0, 74],

ft,x) > (vo+e)r and z' > (v +¢)z.

Let 0 < 7 < r4. We now show that fl(s,u) #u forall0 < s<1and
u € K NOR,. Assume the contrary, i.e., there exists so € [0,1] and
uz € K N9Q,. with H(s2,u3) = ug. Then uy satisfies

(4.9) —ufy + pPug = (1 — s2)a(t) f(t, uz) + sza(t)us

and BC (1.2). Without loss of generality assume vg(t) be the eigen-
function of SLP (2.17) associated with vy such that vy(¢) > 0 on (0,w).
Multiplying both sides of (4.9) by v and integrating the resiting equal-
ity over the interval [0,w], we have

/ "Il (1) + pPun(B)]uo(t) dt
-/ “1(1 = 52)a(t) £t us(6)) + saalt)ul (t)]oo () dt.

Using integration by parts and BC (1.2), we obtain that
[ atthuaOu(o
= [T+ a0l d
— [0 = s2)a@) (0, ua(0) + s2a(0h ]un(e)
> (1= ) [ G+ ehaO)ua(t)un(t)
+ 59 /0 (vo + &)a(t)us(t)vo (£) dt

— (o +e) /0 " a(tyus (tyvo(t) dt
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which is a contradiction since [’ a(t)ua(t)vo(t) dt > 0. Hence,

(T, K NQ,, K) =i(H(0,"), KNQ,, K)
=i(H(1,"),KNQ,,K) =il KNQ,,K)=0.

The proofs of (b), (c) and (d) are similar to Part (a) and hence are
omitted. O

Proof of Theorem 2.11. (a) If f° < vy, then by Lemma 4.6 (b),
i(T, KNQ,, K) =1 for some sufficiently small r. Similarly, if fo, > v,
by Lemma 4.6 (a), i(I''K N Qg,K) = 0 for sufficiently large R.
Therefore,

Z(FaKm(QR\ﬁr)aK)
=i([,KN Qg K) —i(I,KNQ,,K)=0—10,

and hence I'u = u has a positive solution.

The other parts of the theorem can be proved similarly. Note that by
Lemma 4.4 and the proof of Theorem 2.1, if there exists r, > 0 such
that (2.7) holds and T'u # w on K N9Q,.,, then i(I', K N Q, ,K) = 1;
and if there exists r* > 0 such that (2.8) holds and T'u # u on KNI,
then ¢(T', K N Q,«, K) = 0. O

Proof of Theorem 2.12. (a) As in the proof of Theorem 2.11 we
see that (2.9) implies (T, K N Q,, K) = 1, and from the assumptions
fo > vy and foo > vg, there exist 0 < Ry < r < Ry such that
(T, KNQg,,K)=0and i(I', K NQg,,K) =0for 0 < R; <r < Rs.
Therefore, i(T', K N (Qr, \Q,), K) # 0 and i(T, KN (2, \ A, ), K) # 0,
and hence I'u = u has at least two positive solutions.

(b) The proof is similar to Part (a) and hence is omitted. o

5. Nonlinear eigenvalue problem. In the last section, we apply
our results in Section 2 to the eigenvalue problem consisting of the
equation

(5.1) (=1)™(D? = pH)u = da(t) f(t,u), 0<t<w,
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and BC (1.2), where p > 0 and A > 0. Let 8 and ¢ be defined as in
(2.6) and (2.12), respectively. By simply applying Theorems 2.9, 2.10,
Corollary 2.1 and Theorem 2.8 with f replaced by Af we obtain the
following results immediately.

Theorem 5.1. BVP (5.1), (1.2) has at least one positive solution if
A > 0 satisfies either

(8) MO < 871 and A > G;
(b) Afo > ¢ and Af>® < g1
(€) Mo > ¢ or Moo > ¢, and there ezists v € (0,00) such that

r

5.2 A< A= ;
( ) BmaX(t’z)e[oyw}x[anr] f(t7 1’)

or
(d) AfO < B71 or Af>® < 871, and there exists v € (0,00) such that

r

5.3 AN = :
(5.3) Bmin z)e(o,w)xarr] f(t )

Theorem 5.2. BVP (5.1), (1.2) has at least two positive solutions if
A > 0 satisfies either

(a) Afo > ¢ and A\fso > (, and there exists v € (0,00) such that
A < A with A\, defined in (5.2); or

(b) Af% < B71 and A\f> < B71, and there exists r € (0,00) such that
A > X* with \* defined in (5.3).

Theorem 5.3. Let {r; X1 CRbesuchthat) <ry <rg <rzg<---.
Let By = UR [arg;—1,72;—1] and E = U2, [arg;, rei]. Assume

t t
limsup max ft2) =0 and liminf min f(t.2)
E12z—00 t€E[0,w] T E;>z—00 te[0,w] x

= Q.

Then for any A > 0, BVP (5.1), (1.2) has an infinite number of positive
solutions.
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Theorem 5.4. BVP (5.1), (1.2) has no positive solutions if A > 0
satisfies either

(a) Af(t,z)/z < B~ for all (t,z) € [0,w] x (0,00), or
(b) Mf(t,z)/x < B~ for all (t,z) € [0,w] X (0,00).
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