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MEASURES OF NONCOMPACTNESS
AND ASYMPTOTIC STABILITY OF SOLUTIONS OF
A QUADRATIC HAMMERSTEIN INTEGRAL EQUATION

JOZEF BANAS, DONAL O’'REGAN AND RAVI P. AGARWAL

ABSTRACT. In this paper we consider the existence of
asymptotically stable solutions of a quadratic Hammerstein
integral equation. This equation is investigated in the space
of real functions defined, bounded and continuous on the real
half-axis. The main tools used in our study are measures
of noncompactness and the fixed point theorem of Darbo.
An example illustrating the result and comparison with other
results are also given.

1. Introduction. The paper discusses the nonlinear quadratic
Hammerstein integral equation

(1.1)  a(t) =p(t) + f(t, (1)) /000 g(t, T)h(r, x(7)) dr, ¢ >0.

This equation contains as special cases many functional, integral and
functional equations which arise in several papers and monographs both
in pure and applied mathematics (cf. [1-3, 8-11, 13, 19, 21], for
example).

Notice that equation (1.1) contains as a special case the classical
functional equation associated with the superposition operator [3, 18]
which has the form

z(t) = f(t, z(t)).

Moreover, the classical Hammerstein integral equation on bounded
interval

(1.2) z(t) = p(t) + / g(t, T)h(r,z(7))dr
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and its quadratic counterpart

b
(13) 2O =pO) + ftalt) [ ot rh(ra(r) dr
are also special cases of equation (1.1).

Note that equations (1.2) and (1.3) arise in various real world phe-
nomena in mathematical physics, mechanics, engineering, biology, ve-
hicular traffic theory, the theory of radiative transfer, the kinetic theory
of gases and so on (see [1, 10, 11, 13, 15, 17, 19, 22]). In this pa-
per we will study equation (1.1) in the Banach space consisting of real
functions which are defined, continuous and bounded on the real half-
line. We use measures of noncompactness and the fixed point theorem
of Darbo to establish our main result (cf. [4, 6, 12]). More precisely,
we will use a suitable measure of noncompactness, which enables us to
prove that equation (1.1) has solutions which are asymptotically stable.

In the last section of the paper we provide an example illustrating
the applicability of our result and we compare our result with results
in the literature.

2. Preliminaries and auxiliary facts. In this section we collect
some definitions and results. Denote by R the set of real numbers and
by R, the interval [0,00). Assume that E is an infinite dimensional
Banach space with norm || - || and zero element §. Denote by B(z,r)
the closed ball centered at x, with radius 7. The symbol B, stands for
the ball B(#,r). If X is a subset of E then we write X, Conv X to
denote the closure and convex closure of X, respectively.

If X,Y are subsets of £ and A € R, then we write X +Y, AX to
denote the usual algebraic operations on sets. Further, denote by Mg
the family of all nonempty and bounded subsets of E and by Mg its
subfamily consisting of all relatively compact sets.

We use the following definition of the concept of a measure of
noncompactness (cf. [6]).

Definition 2.1. A mapping u : Mg — R is said to be a measure
of noncompactness in F if it satisfies the following conditions:

1° The family kerpy = {X € Mg : u(X) = 0} is nonempty and
kerpu C Ng.
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22X CY = u(X) < p(Y).

3 u(X) = w(X).

4° p(Conv X) = pu(X).

52 u(AX + (1= N)Y) < Ap(X) + (1 = A)u(Y) for X € [0,1].

6° If (X,,) is a sequence of closed sets from Mg such that X, 1 C X,
(n = 1,2,...) and if n11_>n;o u(X,) = 0, then the intersection X,, =
N, Xy is nonempty.

The family ker p described in 1° is said to be the kernel of the measure

of noncompactness p. It is known (see [6]) that the intersection set X
from 6° is a member of the family ker p.

Now, we recall the fixed point theorem of Darbo (cf. [4, 6, 12]).

Theorem 2.2. Let 2 be a nonempty, bounded, closed and convex
subset of the Banach space E, and let Q : Q@ — Q be a continuous
mapping. Assume that there exists a constant k € [0,1) such that
w(QX) < ku(X) for any nonempty subset X of Q. Then Q has a fized
point in the set Q.

Remark 2.3. Let us denote by Fix @ the set of all fixed points of the
operator @ on the set Q. It is known (cf. [6]) that Fix Q € ker u.

In what follows we will work with the Banach space BC(R) con-
sisting of all real functions defined, continuous and bounded on the
interval R. This space is equipped with the standard norm

|z]] = sup{[z()] : ¢ € Ry}

We will use a measure of noncompactness in the space BC(R4) which
was introduced in [6]. To define this measure let us fix a nonempty
subset X of the space BC'(R4) and a number T > 0. Next, for z € X
and e > 0, denote by w” (x, €) the modulus of continuity of the function
x on the interval [0,T], i.e.,

wl(z,e) = sup{|z(t) — z(s)|: t,s €[0,T], [t —s| < e}
Further, let

wl(X,e) = sup{wT (z,e) : =€ X},
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wi(X) = gi_%wT(X,s), wo(X) = lim wy (X).

T— o0

For a fixed number ¢t € R, let
Xt)={z(t): ze€ X}

and
diam X (t) = sup{|z(t) — y(¥)|: =,y € X}.

Finally, consider the function p defined on the family Mpcor, ) by the
formula

(2.1) u(X) = wo(X) + lim sup diam X (¢).

t—o0

It is known (cf. [5, 6]) that the function u is a measure of noncompact-
ness in the space BC(R4). Moreover, the kernel ker y of this measure
consists of all nonempty and bounded sets X such that functions be-
longing to X are locally equicontinuous on R and the thickness of the
bundle formed by graphs of functions from X tends to zero at infinity.
This property in conjunction with Remark 2.3 allows us to characterize
solutions of equation (1.1) (cf. the next section).

Let us note that the measure of noncompactness p defined by (2.1)
does not characterize the family of all relatively compact subsets of
the space BC(R4). Indeed, consider the set in BC(R.) consisting
of two distinct constant functions. Observe that although this set is
relatively compact, it has nonzero measure of noncompactness pu, since
the thickness of the bundle formed of its graphs is positive.

In what follows assume that 2 is a nonempty subset of the space
BC(R,) and Q is an operator defined on Q with values in BC(R.).
Consider the operator equation of the form

(2.2) (t) = (Qx)(t), teR,.

Definition 2.4. We say that solutions of equation (2.2) are asymp-
totically stable if there exists a ball B(zo, ) in the space BC'(R.) with
B(zo,7) N # @ such that for every € > 0 there exists a T > 0 with
the property

z(t) —y(t)| <e
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for all solutions z, y of equation (2.2) such that z,y € B(zg,r) NQ and
fort > T.

Note the concept of asymptotic stability described above was intro-
duced in [9] (cf. also [16]).

3. Main result. In this section we will consider the quadratic Ham-
merstein integral equation (1.1) assuming that the following hypotheses
are satisfied:

(i) p € BCO(Ry).

(ii) The function f : R4 x R — R is continuous and there exists a
continuous function m : R4 — R such that

|f(t,$) - f(t, y)| < m(t)|rc - y‘
for all z,y € R and for any for any ¢t € R,..
(iii) The function ¢ : R4 x Ry — R is continuous.

(iv) The function h : Ry x R — R is continuous and there exist a
continuous function ¢ : Ry — R, and a continuous and nondecreasing
function b : R — R, with b(0) = 0, such that

[h(t,z) = h(t,y)| < a(t)b(|z —y|)
for t € Ry and for z,y € R.
(v) The functions 7 — a(7)|g(t,7)|, 7 — |h(7,0)g(t,T)| are inte-
grable over R, for any fixed t € R .
(vi) The functions G, Gp, Fa, Fn, Ms, My : Ry — R, defined
by the formulas

:/a Vg(t, 7)| dr, Ghr(t) :/\h(T,O)g(t,TﬂdT,
Fu(t) = [£(t,0)|Ga(?), Fp(t) = | (t,0)|Gw (1),
M,(t) = m(t)Ga(t), Mp(t) = m(t

)Gh(t)
are bounded on R. Moreover, the functions F,(t) and M,(t) vanish
at infinity, i.e., tlim F,(t) = tlim M,(t) = 0.

—000 —000
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Observe that, keeping in mind assumption (vi), we may define the
finite constant G, by putting

G, =sup{G,(t): t€ R4}

Analogously, we define the constants G}, Fy, Fp, Mg, M) also to be
finite by assumption (vi).

Further, we formulate our last assumptions.

(vii) The following equalities hold:

lim {sup{|ft0|/a Mg(t,7)|dr: te Ry
T—o0
T

f
g (s o) [atryutenar: cem ) <o
ik

ngo{sup {m(t)/|h(7‘,0)g(t,7‘)|d7': teR.

i Lo {5600 [0t 1 e }) o

(viil) There exists a positive solution r = ry of the inequality
pl| +7b(r)Mo + b(r)Fo +rMy + Fj, <7

such that M,b(rg) + M}, < 1.

Remark 3.1. Observe that the inequality M ,b(ro) + M} < 1 from
assumption (viii) is satisfied provided the term

p|| + b(ro)Fo + Fi

does not vanish identically. Indeed, assume that rg is a positive solution
of the inequality from (viii), i.e.,

1Pl + 70b(r0)Ma + b(ro) Fa + roMp + Fpp < 1o.
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Then we get
M ,rob(ro) + Mpro < ro — (||p|| +b(r0)Fo + Fp).

Consequently,

- 1 .
Mb(ro) +Mp <1 - o (IIpll + b(ro)Fa + Fh) .
From this inequality our assertion follows.

Remark 3.2. Let us discuss assumption (vii). In the theory of
improper Riemann integral with a parameter one uses the concept of
uniform convergence of improper integral with respect to a parameter
[14]. We recall the definition of that concept adapting it to our
situation.

So, assume that the function v(t,7) = v: Ry x Ry — R is such
that the integral

(3.1) 71}(75, ) dr

exists for any ¢t € R. We say that integral (3.1) is uniformly convergent
with respect to t € Ry if

T—oo

T o)
lim [ v(t,7)dr = /v(t,T) dr
0 0

uniformly with respect to ¢t € R.

Equivalently integral (3.1) is uniformly convergent with respect to
te Ry if

T—o0 t€R+

32 i { p [ ot} 0.
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Thus, in the light of definition (3.2) we can formulate equivalently
assumption (vii) in the following way: The integrals

o0

[ a0t 1 / m(t)a(r) g(t, )] dr,

/m(t)|h(7-’ 0)g(t,7)|dr, / |f(,0)h(T,0)g(t, )| dT

are uniformly convergent with respect tot € R.

Let us also provide a few remarks concerning other assumptions
formulated above. For example, assumption (ii) implies at most linear
growth of the function f(¢,z) with respect to the variable x at infinity
and at zero. Similarly, assumption (iv) allows such a growth of h as
is allowed by (viii) either at infinity or at zero. More precisely, the
function b can be assumed to be sublinear at infinity with TILH;O b(r)/r <

1 and M}, < 1 and r = 7 can be taken sufficiently large or the function
b can grow at most linearly close to zero and then we look for » = rg
close to zero rather than infinity (provided the constants are small
enough).

Now, we start by formulating our main result.

Theorem 3.3. Under assumptions (i)—(viii) equation (1.1) has at
least one solution x = x(t) in the space BC'(Ry.). Moreover, solutions
of equation (1.1) are asymptotically stable.

Proof. Consider the operator H defined on the space BC'(R.) by the

formula
o0

(He)(®) = p(6) + £(t2(t)) [ g(t.b(r,z(r)dr. t€ R
0
In view of imposed assumptions it is easily seen that the function Hzx
is well defined and continuous for an arbitrary function x € BC'(R).
Further, invoking our assumptions, for an arbitrary fixed ¢ € R, we
obtain:

[(Hz)(®)] < [p()] + \f(t,ﬂf(t))l/\g(t,T)Ilh(T,w(T))ldT
0
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< Ip@)|+ {17t 2(8)) = f(£,0)] + [£(2,0)]]
></Ig(t,T)I[Ih(Taw(T))—h(T,0)|+Ih(T,U)I]dT

IA
=3
=
+

[m(®)|z(8)] + |7(£,0)]]
9(t, 7)lla(r)b(|x(7)[) + |A(r, 0)|] dr

X
°§8

< Alpll + [m@)||2(| + £ (¢ 0)]
x /Ig(t,T)I[a(T)b(llch) + |h(7, 0)[] dr

= llpll + [lzlio(llz ) Ma (t) + b(||2][) Fa () + ||lz]| M () + Fa(t)
< [lpll +[l=[[o([[z[[) Ma + b(||x[[) Fa + [|z][Mh + Fh.

From the above estimate we deduce that the function Hz is bounded on
the interval R . This allows us to infer that the operator H transforms
the space BC(R.) into itself. Moreover, this estimate implies the
following inequality

1 Hz|| < |lpll + [lz/1b(||z][)Ma + b(|[z|)Fa + ||| My, + Fp.

This inequality in conjunction with assumption (viii) ensures the ex-
istence of a positive number 7y such that M,b(rq) + M, < 1 and the
operator H transforms the ball B, into itself.

In what follows we show that the operator V is continuous on the
ball B,,. To do this fix a number £ > 0 and take z,y € B,, such that
||z — y|| < e. Then, invoking assumptions (i)—(vi), for an arbitrarily
fixed t € Ry we get:

(3.3)
|(Hz)(t) — (Hy)(t)]

‘ ft,z(t /gtr ,z(T))dr
0

(oo}

") / gt 7)h(r, 2(r)) dr

0
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) 7 (8, 7)h(

(o]

0) / ot )h(r,y(r)) dr
< 1f(t2(®) — £t y(t))]

></| (& DIlIA(7, z(7)) = h(7,0)| + [(7, 0)[] dT

+ [ (& () = f(£,0)| + (2, 0)]]

< m(t)]a(t) - y(t)l/Ig(t,T)l[a(T)b(lle) + |h(r,0)[]dr

+ [m®)lyll + If(taO)I]/Ig(t,T)Ia(T)b(lw(T)—y(T)I)dT-
Hence we obtain

(Ha)(0) = (H)(0) < b(lalhm(®) [ alr)lg(t, )] dr

+em<>/\g<tr>< 0)/dr
Hlplbem(e) [ a(lg(t,7)ldr

\fto\/a g(t, 7| dr.
0

This yields
\|Hz — Hy|| < eb(ro)M, +eM}, + rob(e) M, + b(e)F
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From the above estimate we obtain the desired continuity of the
operator H on the ball B,,.

Next, let us take a nonempty subset X of the ball B,, and fix
arbitrarily 7' > 0 and € > 0. Choose a function z € X and ¢,s € (0,7
such that |t — s| < e. Then, in view of our assumptions we get:

(3.4)
|(Hz)(t) — (Hz)(s)| < [p(t) — p(s)]

; ‘f(t,r(t)) / o(t, T)h(r, 2(7)) dr

0

+ | f(s,2(s))] / lg(t, ) — g(s, T)|[|h(7, z(T)) — h(r,0)]
0
+|A(r, 0[] dr

< wTS,E)HIf(t,x(t))—f(t 2(s)|+1f (8 z(s)) = f (s, 2(s))l]
></\g(taf)l[a(T)b(lw(T)\)dT
+ rilo(ﬂ 0)[Jdr +[1f (s, z(s)) = f(s,0)| + £ (s, 0)[]
x / 9(t,7) — g(s,7)[[a(r)b(|z(T)]) + |h(7, 0)[] dT
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W (p,e) + [m(t)|z(t) — 2(s)| + wy, (£, )]

o0 oo

{ ro /a \gtr|dr+/\gt7 h(r, )|dT}

[m(s)|2(s)] + (f(s,0))]

[e.e]

{O/b T)g(t,7) —g(s,7)|dr

+ / 9(t,7) = 95,0}

0

<wh(p,e) + b(ro)w?” (z,e)m a(T)|g(t, 7)| dr
of
+b(ro)wr, (£,¢) [ a(r)|g(t,7)| dr

+wT(z,e)m(t) [ |g(t, 7)h(r,0)|dr

0\8 0\8

(1) [ lott,h(r, 0l dr
0
+ [m(s)ro +|f(s,0)]] a(t)|g(t,7) — g(s,7)|dr
o[

+[m(S)ToJrIf(svo)\]/\g(tﬁ) = 9(s,7)[|h(7, 0)| dr

< w'(p,€) +b(ro) Mow” (z,€) + b(ro) Gawy, ()
+ Mpw" (z,2) + Grwy, (f,€)
T

+ [m(s)ro + 1 £(5,0)]] {/a Jg(t, ) — g(s,7)| dr

0



NONCOMPACTNESS AND ASYMPTOTIC STABILITY 1781

o0

+ [[atlate, )1+ a7y ar |
+ [m(s)ro + |£(5,0)| {/|g (t,7) — g(s,7)||h(r, 0)] dr

—|—/|gt7' |+ 1g(s,7) |h(7-70)|d7-}
T

+ (Mgro + Fr)b(ro)wT (g, ) / o(7) dr
+ (Mgro + Fr)wT(g,2) / Ih(r, 0| dr

+ [m(s)ro +|f(s,0)]] a(t)|g(s,7)|dr

’i\g

[e.e]

+ [m(s)ro + | f(s,0)] /\QST h(r,0)|dr
+ [m(s)ro +|f(s,0)]] a(t)|g(t, )| dr
o

+ [m(s)ro + | (s, 0)] / 9(t, 7)h(r,0) dr,

where we denoted

w,,TO(f,s) =sup{|f(t,z) — f(s,x)|: t,s €[0,T], |t —s| <,
x € [=ro,70]},
Wf(g,&') = sup{\g(t,T) _9(377-)‘ P ts,TE [O’T]’ ‘t_ 5| < 5},
Fr =sup{|f(t,0) : t €[0,T1},
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Mz =sup{m(t) : t€[0,T]}.

Now, observe that in view of our assumptions we have the following

estimates:
o0
/a Mg(t, 7)| dr
T

I /\
\
Q
E
ﬁ.
\]
s
\]

In a similar way we obtain:

o0
|/a g(t, 7)|dr
T

<(1£(5,0) = £6,0)| + £2.0)] [ a(r)lgte )] dr
T

(3-6)

<@l (f,e /a \gt7|d7‘+|ft0|/a Mg(t, )| dr
T T

< G.w +|ft(]|/a Vg(t, )| dr,
T
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(oo}

(3.7) m(s) / (£, )R (r, 0| dr

T
0o

ng(m,s)/m(t,T)h(T, 0)|dr

+ () / lg(t, 7)h(r,0)| dr

< G (m, ) + mi2) / lg(t, 7)h(r,0)| dr,

T

[e.e]

(38) |£(s,0) / lg(t, 7)h(r,0)| dr

0
o oo

<&(£,9) [ lo(t. b5, 0l dr + 1£,0)| [ lg(t. k(7. 0] dr

0 T
oo

<T@ (fre) + | £(t,0) / l9(t, 7)h(r,0)| dr,

T

where we denoted
wT(fa 5) = sup{|f(t,0) - f(870)| P lse [UaT]v |t - 5| < 5}'

Further, let us observe that linking (3.4)—(3.8) and taking into ac-
count the uniform continuity of the functions p(t), m(t) on the interval
[0,T] and the uniform continuity of the functions f(t,z), g(t,7) on the
sets [0, T] X [—7o, ro], [0, 7] x [0, T] respectively, we obtain the following
inequality

wy (HX) < (Mab(ro) + Mp) wy (X)

oo

+rob(7'0){m(5)7 ("lg(s7)|dr +mit /a ot ) |dT}

T
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0 {1£(6,0 7a<r>|g<s,f>|dr+ 1£(5,0)] 7a(r)g(t,7)ldr}
+ro{m(s) [ s htr0ir s o) [ o(t. 70z, O}
Hiro) 7 l9(s, T)R(r,0)]dr + | (t,0) 7@ 9(t, (. 0)dr}.

From the above inequality and assumption (vii) we deduce the following
estimate

(3.9) wo(HX) < (Mab(ro) + Mp)wo(X).

Now, let us take arbitrary functions z,y € X and fix t € R;. Then,
using estimate (3.3), in view of assumptions (ii)—(vi) we get:

[(Hz)(t) — (Hy)(t)] < m(t)diam X (¢) /a Vg(t,7)| dr

m(t)diam X (1) / lg(t, )h(r, 0)] dr

0
—I—rom(t)/a(T lg(t, 7)|b(diam X (7)) dr
0

)
+ |f(t,0)|/a(r)|g(t,r)|b(diamX(7-))dr

= b(ro) M, (t)diam X (¢

) + My (t)diam X (¢)
+r0b(2r0) ( ) b(27‘ )F ( )
< b(ro) M, (t)diam X (t) + Mydiam X (t)
+70b(2r0) Ma(t) + b(2r0) Fa ().

Hence we obtain the following estimate:
diam (HX)(t) < (b(ro)Ma(t) + M})diam X (¢)
+ 7“0b(2’l“0)Ma (t) + b(ZT'[))Fa (t)
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This estimate in conjunction with assumption (vi) yields

(3.10) lim sup diam (H X )(t) < M}, lim sup diam X (t).

t—o0 t—o00

Now, combining (3.9), (3.10) and taking into account the definition of
the measure of noncompactness p given by formula (2.1), we obtain

p(HX) < (Mab(ro) + Mp)p(X).

Hence, in view of assumption (viii) and Theorem 2.2 we conclude
that the operator H has at least one fixed point x in the ball B,
which is a solution of equation (1.1). Moreover, keeping in mind
Remark 2.3 and Definition 2.4 we infer that solutions of equation (1.1)
are asymptotically stable. This completes the proof. i

4. An example and remarks. This section gives an example of
our theory. We provide also a few remarks concerning the assumptions
imposed in Theorem 3.3. Moreover, we compare our result from
Theorem 3.3 with those obtained in other papers.

To date no results have appeared in the literature on the existence
of asymptotically stable solutions of integral equations of the type
(1.1). In the papers [7, 8] we discussed the existence of solutions
of equation (1.1) which vanish at infinity. One of the assumptions
imposed in those papers requires that the function h = h(t, z) satisfies
the inequality

(4.1) |h(t, )| < a(t)b(|=])

for t € R4 and z € R. Observe that the corresponding assumption
in Theorem 3.3 (assumption (iv)) is more general than (4.1). Also in
[7, 8] we required that the function p = p(t) vanish at infinity while in
Theorem 3.3 we assumed its boundedness only.

Let us observe that assumptions (vi) and (vii) in Theorem 3.3 seem
to be more complicated than corresponding assumptions in [7] (cf.
Theorem 3.4). However, if we assume that inequality (4.1) is satisfied
then we conclude that |h(t,0)| < Ba(t) for t € R, where B = b(0) is
a constant. This shows that in such a situation we can reduce these
parts of assumptions (vi) and (vii), where the function 7 — h(r,0)
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is involved. More precisely, the requirements concerning the functions
Gh(t), Fr(t) and Mp(t) are automatically satisfied and we can dispense
with them in assumption (vi). Similarly, we can dispense with the two
last equalities in assumption (vii). Summing up we see that the result
contained in Theorem 3.3 generalizes those from [7, 8]. In order to
compare our result with those contained in other papers first we provide
an example.

Example 4.1. Consider the quadratic Hammerstein integral equa-
tion of the form

z(t) = sin(t* + 1)
[%x(t) arctanz(t) + 5Vt + 1}

- ( -~ +TVPden

1+¢24+74\1472

+

X

S~y B~

where ¢ € R,. Observe that this equation is a special case of
equation (1.1), where p(t) = sin(¢t*> + 1) and

1
flt,z) = 20 Vtx arctanz + 5Vt + 1] ,
T
L+t2 474

t3
h(t7$) = m +t\/3 332.

g(t,7) =

Obviously the function p(t) satisfies assumption (i) with ||p|| = 1 and
the function g(t,7) satisfies assumption (iii). Moreover, the functions
f(t,z) and h(t,z) are continuous on R x R and for arbitrary z,y € R
and t € R, we obtain:

£(2) ~ f(t,9) < Tt il — ),

|h(t; @) = h(t,y)| <t/ |z — yl?.

Hence we infer that the function f(¢,z) satisfies assumption (ii) with
m(t) = (m + 1)/40+/t and the function h(t, z) satisfies (iv) with a(t) =t
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and b(r) = r2/3. Moreover, f(t,0) = v/t + 1/4 and h(t,0) = t3/(t> +
10).

Further, notice that the function 7 — a(7)|g(¢,7)| is integrable over
R, for any fixed ¢t € R, and we have

o o T2 T
(4.3) Ga(t)=/a(7)|9(t’7)|d7:/1+t2+r4 ar = \/f {*/t?l?

0 0

Hence we get that G, = v/27/4. In a similar way we obtain

3 2

T T T
t,7)h(r,0)] = < :
gm0 = A m T S T e A

Linking the above estimate with (4.3) we conclude that the function
T — |g(t,7)h(r,0)| is integrable over R, for each fixed t € Ry.
Moreover, we get

V2 1
Gu(t) £ —— T—>
4 V2 +1
— 21
Gp < T

Further, we obtain

Ft) = (.06 = Yo i LT

Hence we infer that F,(t) — 0 as t — oo and

(4.4) F, < 6@ V3

Analogously, we get

Fult) = 1£,0)Gu(0) < Yo L2 L

Thus the function F}(t) is bounded and we have:

s

(4.5) Fp, < 6@ —va)'
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Arguing in the same way we obtain:

B V2r(n+1) ¥t
Ma(t) - m(t)Ga(t) S ].60 4 t2 + 1’
V2r(m+1)  Vt

160 ViZ+1

Ma(t) = m(t)G(t) <

This shows that the functions M, (t) and Mj(t) are bounded on R.
Moreover, we get:

— V2r(m +1) — V2r(m +1)
. o« < —, < 7
(4.6) Ma < =60 Mn 160

In view of the above we infer that assumptions (v) and (vi) of Theo-
rem 3.3 hold.

In what follows let us notice that with help of standard calculations
we obtain:

o0 o0 2
r
/G(T)|g(t,7')|d7'—/md’r
T T
B 1 {\/571’
Viz+1 | 4
1 T2\/§T+1> V2
— L — Y arctan(v2T+1
44/2 n<T2+\/§T—|—1 4 larctan( )

+ arctan(v/27T — 1)]},

where T" > 0 is arbitrarily fixed. This yields the estimate

oo

sup |f(¢,0)| | a(r)|g(t, )| dr

tER J
- V2 {\/_w_ 1 ln<T2—\/§T+1>
T22-v2)l 4 42 \T?+V2T+1

\/Tg[arctan(\/—T + 1) 4 arctan(v/2T — l)]}
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From this estimate we conclude that the first equality from assump-
tion (vii) is satisfied. In a similar way we can check that the other
equalities appearing in (vii) hold. We omit the easy details.

Finally, let us consider the inequality from assumption (viii) which
has the form

(4.7) Ipll + rb(r)Ma + b(r)Fa +rMp + Fp < 7.

In view of the estimates (4.4)—(4.6) we infer that each positive solution
of the inequality

(4.8)

Var(r+1) 5 m 2/3 V2r(r+1) m <r

1+ +
160 | 16(2—v2) 160 1602 v2)

also satisfies inequality (4.7).

It is easily seen that the number ry = 4 satisfies inequality (4.8).
Hence from Theorem 3.3 we deduce that equation (4.2) has at least
one solution in the space BC(R.y) belonging to the ball By (cf. also
Remark 3.1). Moreover, solutions of equation (4.2) are asymptotically
stable.

It seems that the most important and general result in this field
was obtained in the paper [20], where the author studied a special
case of equation (1.1) with f(t,z) = 1 and p = 0, i.e., the following
Hammerstein integral equation

(4.9) z(t) = /g(t,T)h(T,:B(T))dT.
0

Let us mention that assumptions concerning equation (4.9) which
were imposed in [20] are parallel to our assumptions (ii), (iii), (v) and
(vi) but two of the assumptions in [20] are different.

For our purposes let us quote those assumptions in the form adapted
to our situation. Namely, they have the form:

(ix) There exists a function z € BC(R) such that for each M > 0
we have
Jim {sup {|h(t,2) = 2(0)] : [e] < M}} =0.
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: |h(t, z)| }} 1
lim ¢ supq———: teR < -,

L:sup{/|g(t,7')|d7': t€R+}.
0

In order to show that these assumptions are more restrictive than
those imposed in Theorem 3.3, let us consider a special case of equa-
tion (4.2), where we put f(t,z) = 1 and p = 0. Namely, we consider
the following equation

where

1+t24+ 74\ 14712

(4.10) x(t):7 . < r +Tw2—(f)>dr.

Observe that the function h(t,z) = t3/(1+ t?) + tV/22 appearing in
equation (4.10) does not satisfy assumption (ix). Indeed, for any fixed
z € R we have

t3
1+1¢

lim [A(t,z) — 2(t)| = lim ‘t\/s z2 +
—»00

Jim 5 z(t)‘ = o0.

Similarly we can show that assumption (x) is also not satisfied.

Finally let us remark that we can redefine the functions g and h
appearing in equation (4.10) in such a way that we do not change this
equation but the theory developed in [20] is applicable. To this end it
is sufficient to multiply the function g by 1 + ¢t'*¢ and to divide the
function h by 1+ t'*¢, where ¢ is an arbitrarily fixed number from the
interval (0,1). Observe that in such a situation the result obtained in
[20] can be applied with z = 0.
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