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CROSSED PRODUCT C*-ALGEBRAS
BY FINITE GROUP ACTIONS
WITH THE TRACIAL ROKHLIN PROPERTY

DAWN ARCHEY

ABSTRACT. Let A be a stably finite simple unital C*-
algebra, and suppose « is an action of a finite group G with
the tracial Rokhlin property. Suppose further A has real rank
zero and the order on projections over A is determined by
traces. Then the crossed product C*-algebra C*(G, A, )
also has real rank zero and order on projections over A is
determined by traces. Moreover, if A also has stable rank
one, then C*(@G, A, a) also has stable rank one.

1. Introduction. The tracial Rokhlin property for finite group
actions was introduced in [8] to address the fact that some C*-algebras
can have no actions with the Rokhlin property of certain groups due
to K-theoretic obstructions. The tracial Rokhlin property was further
developed in [9]. In [2, 8], examples of actions with the tracial Rokhlin
property are studied. This paper studies permanence properties of
crossed products by actions with the tracial Rokhlin property. The goal
of this paper is to prove Theorem 4.2, Theorem 5.1 and Theorem 6.2
which can be collectively summarized in the following theorem.

Theorem. Let A be an infinite dimensional stably finite simple
unital C*-algebra with real rank zero, and suppose that the order on
projections over A is determined by traces. Let a:G — Aut (A4) be
an action of a finite group with the tracial Rokhlin property. Then
the order on projections over C*(G, A, a) is determined by traces and
C*(G, A, @) has real rank zero. Moreover, if A also has stable rank one,

then C*(G, A, a) has stable rank one.

These three theorems are finite group analogs of known results about
actions of Z; see [7]. The proof techniques are similar to those used
there. The most significant changes are in Lemma 3.1 (which is
analogous to Lemma 2.5 of [7]). This is the key lemma in the proof
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of all three theorems. In that proof a different construction of the
isomorphism was needed.

It is known that some hypotheses are needed to ensure that the
properties of A pass to the crossed product. For the real rank zero
situation, consider Example 9 in [3] of an outer action of Z/2Z on a
simple nuclear C*-algebra with real rank zero such that the crossed
product does not have real rank zero.

However, partial results are known, such as Theorem 2.6 of [9]. This
theorem says that if a finite group acts on an infinite dimensional simple
unital C*-algebra with tracial rank zero via an action with the tracial
Rokhlin property, then the crossed product has tracial rank zero.

The situation for stable rank one is similar. Various partial results are
known such as Theorem 4.6 of [5] which gives cancelation of projections
(a condition strictly weaker than stable rank one) under fairly mild
hypotheses. Another result along these same lines is Corollary 5.6
of [4]. There, the group must be a finite semidirect product of finite
abelian groups, but the action is unrestricted. In that case, if the group
acts on a simple unital C*-algebra with property (SP) and stable rank
one in such a way that the crossed product has real rank zero, then the
crossed product has stable rank one.

As in the real rank zero situation, it is also known that some
conditions will be needed to ensure stable rank one in the crossed
product. There is a (nonsimple) unital C*-algebra A of stable rank
one and an action Z/2Z on A such that the crossed product does not
have stable rank one. See Example 8.2.1 of [1]. However, there is no
known example for a simple C*-algebra.

This paper is organized as follows. In Section 2 we establish nota-
tion, give definitions, and prove basic facts about the tracial Rokhlin
property. In Section 3 we prove the key lemmas needed for the proofs
of the three main theorems, which are proved in Sections 4 (order on
projections is determined by traces), 5 (real rank zero) and 6 (stable
rank one).

2. The tracial Rokhlin property.

Notation. For any projections p and ¢ in A, we write p ~ ¢ if
p is (Murray-von Neumann) equivalent to q. We write p 3 ¢ if p is
(Murray-von Neumann) subequivalent to q.



CROSSED PRODUCT C*-ALGEBRAS 1757

Notation. Let A be a unital C*-algebra. We denote by T'(A) the
set of all tracial states on A, equipped with the weak* topology. For
any element of T'(A), we use the same letter for its standard extension
to M, (A) for arbitrary n, and to M (A) = U, M,,(A) (no closure).

Definition 2.3. Let A be a unital C*-algebra. We say that the order
on projections over A is determined by traces if whenever p,q € My, (A)
are projections such that 7(p) < 7(g) for all 7 € T'(A), then p X q.

Definition 2.4. Let A be an infinite dimensional simple unital C*-
algebra, and let a: G — Aut (A) be an action of a finite group G on A.
We say that a has the tracial Rokhlin property if, for every finite set
F C A, every € > 0, and every positive element z € A with ||z|| = 1,
there are mutually orthogonal projections e, € A for g € G such that:

(1) ||eg(en) — egn|| < € for all g,h € G.
(2) |lega — aegy|| < € for all g € G and all a € F'.

(3) With e =3 . €4, the projection 1 — e is Murray-von Neumann
equivalent to a projection in the hereditary subalgebra of A generated
by x.

(4) With e as in (3), we have |lexe|| > 1 —e.

When A is finite, as was shown in [9, Lemma 1.12], condition (4) of
Definition 2.4 is not needed.

The following lemma is the finite group analog of Lemma 1.4 in [7]
and can be proved using the same argument.

Lemma 2.5. Let A be an infinite dimensional stably finite simple
unital C*-algebra with real rank zero and such that the order on projec-
tions over A is determined by traces. Suppose oo : G — A is an action
of a finite group on A. Then « has the tracial Rokhlin property if and
only if for every finite set FF C A and every € > 0 there are mutually
orthogonal projections eq € A for each g € G such that:

(1) [|an(eg) — egnl| < € for g € G.
(2) |lega — aeg|| < € for all g € G and all a € F.
(3) Withe =3 g eq, we have (1 —e) < ¢ for all T € T(A).
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The next lemma is Lemma 2.4 of [7].

Proposition 2.6. Let A be a simple unital infinite dimensional C*-
algebra with real rank zero, and assume that the order on projections
over A is determined by traces. Let a:T' — Aut (A) be an action of a
countable amenable group. Let p, ¢ € M, (A) be projections such that
7(p) < 7(q) for every T'-invariant tracial state T on A. (We extend T
to M (A) as in Notation 2.2.) Then there is an s € M, (C*(T, A, a))
such that

s*s=p, ss°<gq, and ss* € My (A).

In particular, p 3 q in Moo (C*(T, 4, )).

3. The pivotal lemmas. The next two lemmas are used as the key
lemmas in the proofs of Theorem 4.2, Theorem 5.1 and Theorem 6.2.
Lemma 3.1 is the finite group analog of Lemma 2.5 in [7].

Lemma 3.1. Let A be an infinite dimensional stably finite simple
unital C*-algebra with real rank zero such that the order on projections
over A is determined by traces. Let G be a finite group of order n, and
let o : G — Aut (A) be an action of G with the tracial Rokhlin property.
Let 1: A — C*(G, A, a) be the inclusion map. Then for every finite set
F Cc C*(G,A,a), everye > 0, every N € N and every nonzero positive
element z € C*(G, A, o), there exist a projection e € A C C*(G, A, o),
a unital subalgebra D C eC*(G, A,a)e, a projection f € A and an
isomorphism p: M, ® fAf — D, such that:

(1) With (eg,n) for g,h € G being a system of matriz units for M,,
we have p(e11 ® a) = u(a) for all a € fAf and p(eg,q ® 1) € L(A) for
gea@qG.

(2) With (e4,9) as in (1), we have | p(eq,, @a) — (ag(a)] < ellall for
alla € fAf.

(3) For every a € F there exist by, bo € D such that |lea — by|| < ¢,
lae = bo|| <& and [[b]; [[b2]| < [lal|-

(4) =2 gcqplegg®1).

(5) The projection 1 — e is Murray-von Neumann equivalent in
C*(G, A, ) to a projection in the hereditary subalgebra of C*(G, A, a)
generated by z.
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(6) There are N mutually orthogonal projections fi,fa,...,fn €
eDe, each of which is Murray-von Neumann equivalent in C*(G, A, a)
tol—e.

Proof. We first note, using the same argument as in the proof of
Lemma 2.5 of [7], that it is not necessary to check the estimates
161]], 1162]] < |la|| in condition (3) of the conclusion.

Now we do the main part of the proof. Let ¢ > 0, and let F C
C*(G, A, ) be a finite set. Let N € N, and let z € C*(G, A4, a) be a
nonzero positive element.

Let ug for g € G be the standard unitaries in the crossed product
C*(G, A,a). We regard A as a subalgebra of C*(G, A, a) in the usual
way.

For each z € F write z = >  ;aguys. Let S C A be a finite set
which contains all the coefficients used for all elements of F. Let
M =1+ sup,cs |all.

Let 8y < £/16n?M. Let &; be such that if p1, ps are projections in a
C*-algebra B and if a € B is such that ||a*a—p;|| < 61 and ||aa* —p2|| <
01, then there is a partial isometry s € B such that s*s = py, ss* = ps
and |la — s|| < do. Let 0 < § < min{dy, d1, (¢/6n3),1}.

Since A has real rank zero and (by [9, Lemma 1.5]) ¢ is outer for
all g € G, Theorem 4.2 of [4] (with N = {1}) supplies a nonzero pro-
jection ¢ € A which is Murray-von Neumann equivalent in C*(G, A, @)
to a projection in zC*(G, A,a)z. Moreover, Lemma 2.3 of [7] pro-
vides nonzero orthogonal Murray-von Neumann equivalent projections
qo; 1,-+- ,92N € qu

Apply the tracial Rokhlin property (Definition 2.4) with ¢ in place
of ¢, with S in place of F' and with ¢ in place of z. Call the resulting
projections ey for each g € G, and let e = dec €g.

Set f = e1, and define wg, = ugp-1€,. We claim that the elements
(wg,h)g,hec form a d-approximate system of n x n matrix units. To
prove the claim we compute:

|wg.n — Whgll = llugn-1enug,—r — egll = [lagn-1(en) — eq4f| < 9.
Then, using egep = dg nen, we find

||w91,h1wg27h2 - 5927h1wg17h2|| <4



1760 DAWN ARCHEY

For the final condition, since ||eqpe]| > 1 — 3§ > 0, the projection e is
nonzero, so e, is nonzero for each g € G. In particular ||wy 1| = [le1|| =
1> 1— 4. This proves the claim.

Since (wg,1)g,nec forms a J-approximate system of matrix units, wg 1
is an approximate partial isometry for each g € G. More specifically,

||w911w;1 —egll = ||ugelelu; —egll = llagler) —e4ll <6
since the e, are the tracial Rokhlin projections. Also,
w100, = 1]l = leruguger = erl) = lles = er =0 < &

because u, is a unitary for each g.

Since § < 41, by the choice of §; there exist partial isometries
zg € C*(G,A,«) for each g € G such that ||z — wg1]| < & and
such that z4z; = ey and 252, = e1. Moreover, one may check that we
may take z; = ej.

Let (eg,n)g,nec be an n x n system of matrix units for M,,. Define a
linear function ¢ : M, ® ey Ae; — C*(G, A, a) by p(egn @ a) = z5az}.
One can then check in the usual way that ¢ is a homomorphism.

It is also worth computing at this stage that for g,h € G and
a € ejAer, we have |[p(egn ® a) — wyrawy (|| < 2||a||do. Let D
be the image of ¢, so that ¢ is clearly surjective as a map from
M, ® ejAe; to D. To check that ¢ is injective we first recall that
ker (¢) N (eg,n ® e1Ae1) = eg, ® I where I is an ideal of e; Ae; which
does not change as g and h vary. But if 0 = ¢(eg, ® a) = z4az;, for
some a € ej Aeq; then multiplying on the left by 2 and on the right by
zp, we see that e;ae; =a =0, so I =0. Thus ¢ is injective.

Now p(e11 ® a) = z1az] = ejae; = a for any a € e;Ae;. Also,
plegg®1) = zge12; = 242,252, = €4 € A. These two conditions make
up (1) of the conclusion.

To verify (2), let a € e; Ae; and estimate

lp(eg,g © a) — ag(a)l < 2||alldo + [lugeraeruy — ag(a)|| < ella].

For (4) we observe

Z plegg®1) = Z Zg€12, = Z eg =e.

geG geG geG
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Condition (5) holds essentially by construction since 1 — e is Murray-
von Neumann equivalent to a projection in ggAgqg, but gy € gAq and
q is equivalent to a projection in the hereditary subalgebra generated
by z. In total this gives 1 — e is subequivalent to a projection in the
hereditary subalgebra generated by z.

Now for condition (6), since ¢; ~ ¢; , we have 7(g;) < 1/2N for
0 < j < 2N and for any 7 € T(A). In particular, since 1 — e is
subequivalent to go we have 7(1 —e) < 7(go) < 1/2N. This implies
1/2 < 7/(e). Additionally 7(g;) < 1/2N implies (37 ;) < 1/2.
Combining these statements gives T(Z;-V:l g;) < 7(e) for all 7 € T(A).
So, since order on projections over A is determined by traces, Z;VZI g 3
e. Let h € A be a projection satisfying Z;VZI gj ~ h <e, and let s be
a partial isometry with s*s = Z;VZI gj and ss* = h. Let h; = sq;s*
for j =1,...,N. One checks that hq,...hy are mutually orthogonal
projections summing to h. Furthermore, since h; < h < e, we have
h; < e. Furthermore, h; ~ g; via the partial isometry sg;. So now we
have 1 —e 2 g; ~ hj. Let f; be a projection such that 1 —e ~ f; < h;.
Since f; < hj, and the h; and h; are orthogonal for 1 <, j < N, we
see that fi,..., fy are mutually orthogonal. Finally f; < h; <ein A
and eAe C eDe, so f1,..., fn are the projections we desired.

In order to show (3) we will use the following claim.

Claim. Ify = } gaguy with ag € A and |ag| < M, and if
leg,an] = 0 for all g,h € G, then there are di, da € D such that
ley — dull, llye — da|| < 8n*Mdp.

Proof of claim. We can write

ey = Z Z eqaplp = Z Z(egaheg)(eguh)

geG heG geG helG

since e4 and aj, commute. Now we make a norm estimate involving one
of the factors in the third expression for ey using the fact that z, is a
partial isometry :

H‘P (eg,g ® e1ay-1 (an) 61) — €gQhty

— 1 -
= ||egzgag (an)zyeq eganey||
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< |20y (ah)z — 2505 (an)wy, ||
+ ||zg ah) wg,lagl(ah)w5,1||
+ ||ugera, 1(ah)€1ug — eganeg||

< 2M &y + 2MS6.

Now we make an estimate involving the other factor:
HQO (egn-1g ®e1) = eg“hH

< H(p (e%hag ® 61) — ugeiuy 1

< 209 + 6.

*
9 ‘ + Hugelu}Lilg N eguhH

Let do(g,h) = p(eg,qg @ e1ag-1(an)er)p(egn-14 ® e1). Then we have
Ids(g, ) — eqanun]
< ||do(g, k) — ¢ (eg,g ® €x0tg—1(an)er) egun ||
+ H‘P (egyg ®ejog-1 (ah)el) €gUn — (egaheg) (eguh)H

< ¢ (eg,g ® exag—1(an)er)|| (280 + &) + 2M 8o + 2M6
< 4Méy + 3M6.

Now let di =3 D heq do(g, k). Then

lldi —eyll = Z Z do(g,h Z Z €ganUn
geG heG geG heG
< n?M (469 + 39)
< 8n% M.

We now turn our attention to the construction of do. We can write

ye =Y _ > anan(eg)un

9€G heG

We note that

Z Z anon(eqg)up — Z Z AhEhgUh

g€G heG g€G heG

< n?s.
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But

E E ahehguh:E § ehgahuh:E E exanUp

ge€G heG heG geG heG keG

by making the change of variables, & = hg. This last is of the same
form as ey, so using the argument above there is an element dy € D
such that

< n*M (460 + 3M$).

Z Z ELapup — dz

heG keG

Thus,
lye — da|| < n*M (45 + 3M &) 4+ n*§ < 8n* M.

We are now in a position to prove (3). Let « € F, and choose b, € S

such that z = 3 byuy. Define

=(1—-e)by(1—e) Zehbeh

heG

Now we get

by —ay = Z [(1 —e)bgen + epby(l —e€)] + Z Z erbgen.
hea heG kea

Because b, € S we have, ||[bg, ep]|| < d. Then

lbg —agll < > [II(1 — €) [bg, enlll

heG
+ (1 =€) enbgll + [|[bg: en] (1 =€)l + [lbgen (1 =€)l
+ D lexlbg, enll + D llexendyll
keG keG
k#h k#h
= (2n +n?)§

< 3n26.
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Set y = cqaguy. Then

lz —yll < Z [(bg — ag)ugl| < Z [bg — agll < n(3n?8) = 3n’6.
g€eG geEG

One easily checks that [ag,e;] = 0 for all g,k € G. Thus the claim
applies to y and provides d; € D such that ||ey — dy|| < 8n?My.
Therefore,

lex — di|| < |lex — ey|| + |ley — dy]| < 3n385 + 8n*Méy < ¢

by the choice of § and &.

Similarly, the claim provides do € D such that |lye — dz| < 8n2Mdy
which implies that do satisfies ||ze — da|| < €. o

Given objects satisfying part (1) of the conclusion of Lemma 3.1, we
can make a useful homomorphism into C*(G, A, a) which should be
thought of as a kind of twisted inclusion of A. The following lemma
is stated in terms of an arbitrary unital C*-algebra B, but we note it
applies when B = C*(G, A, «) and ¢ is the standard embedding.

Lemma 3.2. Let A be any simple unital C*-algebra, let B be a unital
C*-algebra, and let v : A — B be a unital injective homomorphism.

Let e, f € A be projections, and let n € N. Assume that there is
an injective unital homomorphism o: M, ® fAf — i(e)Bi(e) such
that, with (e; ) being the standard system of matriz units for My,
we have p(e1,1 ® a) = t(a) for all a € fAf. Then there is a corner
Ao C M1 ® A which contains

{(g 2>:a€(1_e)A(1—e) andbEMn®fAf}

as a unital subalgebra, and an injective unital homomorphism ¥: Ay —
B such that

o(5 5) =@ +v0)

forae (1—e)A(l—€) andbe M, ® fAf.
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Moreover, if a : G — Aut (A) is an action of a finite group on A,
B = C*(G, A, ), and ¢ is the standard inclusion, then for every a-
invariant tracial state T on A there is a tracial state ¢ on C*(G, A, a)
such that the extension T of T to M, 11 ® A satisfies T|a, = 0 0 1.

Proof. For the main part of the lemma we simply observe that the
proof of Lemma 2.6 in [7] works in this generality.

For the part about traces, the proof of Lemma 2.6 in [7] also works
if one replaces the conditional expectation there with the conditional

expectation E(3° . agug) = ar. O

4. Traces and order on projections in crossed products. In
this section, we prove that if A is a simple unital C*-algebra with real
rank zero such that the order on projections over A is determined by
traces, and if @ : G — Aut (A) is an action of a finite group G with the
tracial Rokhlin property, then the order on projections over C*(G, A, o)
is determined by traces.

We begin with a comparison lemma for projections in crossed prod-
ucts by actions with the tracial Rokhlin property.

Lemma 4.1. Assume the hypotheses of Lemma 3.2 with B =
C*(G, A, ), and assume in addition that A has real rank zero and
that the order on projections over A is determined by traces. Let
P Ay = C*(G, A, ) be as in the conclusion of Lemma 3.2. Suppose
that p, q € ¥(Ay) are projections such that 7(p) < 7(q) for all tracial
states T on C*(G,A,a). Then there exists a projection r € (Ap)
such that r < q and r s Murray-von Neumann equivalent to p in
C*(G, A, ).

Proof. The same proof used for Lemma 3.1 of [7] works by changing
the group from Z to the finite group G. i

Theorem 4.2. Let A be an infinite dimensional simple unital C*-
algebra with real rank zero, and suppose that the order on projections
over A is determined by traces. Let o : G — Aut(A) be an action
of a finite group with the tracial Rokhlin property. Then the order on
projections over C*(G, A, ) is determined by traces.
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Proof. We first observe that the hypotheses on A imply that A is
finite, but M, (A) satisfies all the same hypotheses, so A is in fact
stably finite.

A special case of Lemma 3.9 of [9] implies that idjs, ® a as an action
on M, ® A has the tracial Rokhlin property for any n € N. Therefore,
it suffices to consider projections in C*(G, 4, a).

The rest of the proof can be done in the same way as the proof of
Theorem 3.5 of [7]. The only changes are to use Lemma 3.1 instead of
Lemma 2.5 of [7] and Lemma 3.2 instead of Lemma 2.6 of [7]. o

5. Real rank of crossed products. The main theorem of this
section is 5.1.

Theorem 5.1. Let A be an infinite dimensional stably finite simple
unital C*-algebra with real rank zero. Suppose that the order on
projections over A is determined by traces and o : G — Aut (A) is
an action of a finite group with the tracial Rokhlin property. Then
C*(G, A, a) has real rank zero.

Proof. Set B =C*(G, A, ).

As in the proof of Theorem 4.2, the other hypotheses imply that A
is stably finite.

This proof is very similar to the proof of Theorem 4.5 of [7] except
simpler. Therefore, instead of giving the details of the proof we will
describe how the two proofs differ. The norm estimates come out a bit
different (the estimates can be improved), but we will not discuss that.

To justify the fact that the crossed product is simple, one should use
Corollary 1.6 of [9], instead of Corollary 1.14 of [7]. Similarly, in the
proof of the integer case, Osaka and Phillips applied Lemma 2.5 of [7]
to obtain e, p, and f € A projections, integers n,m > 0, a unital
subalgebra D C eBe and an isomorphism ¢ : D — M, ® fAf. We
apply Lemma 3.1 to obtain a projection e € A C C*(G, A, &), a unital
subalgebra D C eC*(G, A, a)e, a projection f € A and an isomorphism
o: M, ® fAf — D.

We use our e to replace both e and p in the proof of Theorem 4.5
of [7]. Let ¢ =1 —e. Since age = eayp, there is no need to replace p
by a smaller projection approximately commuting with ag. This is the
source of the improved estimates later on. ]
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Corollary 5.2. Let A be an infinite dimensional stably finite simple
unital C*-algebra with real rank zero, and suppose that the order on
projections over A is determined by traces. Let oo : G — Aut(A) be
an action of a finite group with the tracial Rokhlin property. Then the
restriction map is a bijection from the tracial states of C*(G, A, ) to
the a-invariant tracial states of A.

Proof. This follows from Proposition 2.2 of [6], since C*(G, A, ) has
real rank zero by Theorem 5.1. O

6. Stable rank of crossed products. In this section, we prove
that if A is an infinite dimensional simple unital C*-algebra with real
rank zero and stable rank one, such that the order on projections over
A is determined by traces, and if o : G — Aut (A4) is an action of a
finite group with the tracial Rokhlin property, then C*(G, A,«a) has
stable rank one.

Lemma 6.1. Let A be an infinite dimensional simple unital C*-
algebra with real rank zero and such that the order on projections over
A is determined by traces. Let a: G — Aut (A) be an action of a finite
group with the tracial Rokhlin property. Let q1,... ,qn € C*(G, A, a) be
nonzero projections, let ai,... ,a, € C*(G, A, a) be arbitrary, and let
€ > 0. Then there exists a unital subalgebra Ay C C*(G, A, ) which
1s stably isomorphic to A, a projection p € Ay, nonzero projections
T1,...,Tn € DAop, and elements by,... b, € C*(G, A, &), such that:

(1) llgxre — ]l <€ for 1 <k <n.

(2) For 1 < k < n there is a projection gy € rrAory such that
1—p~grin C*(G, A ).

(3) llaj = bjll <& for1<j<m.

(4) pbjp € pAop for 1 < j <m.

Proof. The same argument used in the proof of Lemma 5.2 of [7]

works here as well. As in the proof of 5.1, when we apply Lemma 3.1,
we set p = e in order to use the proof of Lemma 5.2 of [7]. O

Theorem 6.2. Let A be an infinite dimensional simple unital C*-
algebra with real rank zero and stable rank one, and such that the order
on projections over A is determined by traces. Let a : G — Aut (A)
be an action of a finite group with the tracial Rokhlin property. Then
C*(G, A, @) has stable rank one.
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Proof. The same proof used to show Theorem 5.3 of [7] can be used
to prove this theorem as well. The only difference is, instead of using
Lemma 5.2 of [7], we must use Lemma 6.1. o
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