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A SURVEY ON WEIGHTED DENSITIES AND THEIR
CONNECTION WITH THE FIRST DIGIT PHENOMENON

BRUNO MASSE AND DOMINIQUE SCHNEIDER

ABSTRACT. This paper is a general treatment of the var-
ious notions of densities used in papers on mantissa distribu-
tion of sequences of numbers. Equivalence classes of weighted
densities are identified, and their hierarchy is stated. This per-
mits us to give clear answers to several questions about the
first digit phenomenon. Moreover, however light the weights
are, we exhibit an example of a sequence of positive numbers
whose mantissae do not admit any distribution in the sense of
the corresponding density.

1. Introduction and definitions. Following the early works of
Benford and Newcomb [1, 17] on real life numbers, many authors have
studied the distribution of the first digit in base 10 of sequences (un )n
of positive numbers like u, = 2", u, = n!, u, = n™ and u,, = F,, where
F,, is the nth Fibonacci number, u,, = n or u,, = p,, where p,, is the nth
prime number and so on (see [19] for a survey). In the first four cases
they proved that, if D(u,) denotes the first digit of u,, and log;, the
decimal logarithm, the natural density of A} = {n € N*: D(u,,) = k}
is log,o((k + 1)/k), that is to say,

o1 Y k+1
NEH-IOO N nz;l lA;(n) = log;q (T) (k=1,...,9);
(here and in the sequel, 1p is the indicator function of the subset
B). In particular, about 30.1 percent of the u, have first digit 1 in
the sense of the above formula. This property is known as the first
digit phenomenon. Classical applications of this phenomenon are fraud
detection [18] and computer design [11, 15].

In fact, we know a more precise property which needs three other
definitions to be stated: Benford’s law (in base 10) is the probability

2010 AMS Mathematics subject classification. Primary 60B10, 11B05, 11K99.
Keywords and phrases. Benford’s law, first digit phenomenon, mantissa,

weighted density, hierarchy.
Received by the editors on June 22, 2011.

DOI:10.1216/RMJ-2011-41-5-1395 Copyright ©2011 Rocky Mountain Mathematics Consortium

1395



1396 BRUNO MASSE AND DOMINIQUE SCHNEIDER

measure yp on the interval [1;10[ defined by
pa([l;a]) =logpa (1 <a<10).

The mantissa of a positive real number z is the unique number M(z) in
[1;10[ such that there exists an integer k verifying x = M (x)10* (there
exists another definition of the mantissa, but for technical reasons we
shall use this one). A sequence (U,), of real numbers in [1;10] is called
natural-Benford if it is naturally distributed as pp, that is to say, if

N
) 1
Ngl}_loo N 231 11;4[(Un) =logiga (1 < a < 10).
n—

The above formula means that, for each a € [1;10], the set {n € N*:
1 < U, < a} admits a natural density, its natural density is log;,a
and this can be interpreted as the weak convergence of the uniform
probability measure on the set {U1,... ,Un} to pp as N — +oo.

A sequence (uy), of positive numbers is also called natural-Benford
if the sequence of mantissae (M(uy)), is natural-Benford. We can
now state: the sequences (2"),, (n!),, (n"), and (F,), are all natural-
Benford. The study of the mantissa is of course more general than the
study of the first digit and allows us to easily derive the distribution of
every digit and every string of digits of the u,,.

When u,, =n or u, = p, (see [8, 24]),

1

N
1
1 lim inf — 14w = -
M it 7 2 Lay(n) =

and

1 & 5
lim sup — 1g=(n) = =.
J N; a3 (n) 9

So these two sequences do not verify the first digit phenomenon in the
sense of the natural density. From [4], we know that they verify this
phenomenon in the sense of the logarithmic density, that is to say,

N

. 1 1 k+1
lim Z ﬁlAg(n) = log, (T) (k=1,...,9)

N—+oo log N =
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where log is the natural logarithm. In a way (but not the same way as
above), about 30.1 percent of the u,, have first digit 1. One corrects the
defect in (1) by properly assigning lighter weights to larger numbers.

A more precise property is available in [6] and needs another defini-
tion to be stated. A sequence (Uy,), of real numbers in [1;10] is called
logarithmic-Benford if it is logarithmically distributed as pup, that is to
say, if

NNt
li — —1p.,(U,) =1 1 <a<10).
yim <§_21n> 2 latU) = 1ot (1<a<10)
The above formula means that, for each a € [1;10[, the set {n € N* :
1 < U, < a} admits a logarithmic density, its logarithmic density
is log;y @ and again this can be interpreted as the weak convergence
of some sequence (Py) of discrete probability measures to pup as
N — 400, the atoms of Py again being Uy, ... ,Uy. A sequence (up)n
of positive numbers is also called logarithmic-Benford if the sequence
of mantissae (M (uy,)),, is logarithmic-Benford.

We can now state: the sequences (n), and (pp), are logarithmic-
Benford. Note that [8, 23] consider the relative logarithmic density in
the set of prime numbers which is strictly weaker than the logarithmic
density, as we shall see below.

In the spirit of Diaconis’s work about binomial coefficients [2], it is
also proved in [6] that the rows of the infinite matrix (M(u2"))m,n,
which are logarithmic-Benford and not natural-Benford, tend to be
natural-Benford as m tends to infinity; that is to say, there exists an
increasing function N from N* to N* such that

N(m)

1
lim —_— 1. myy — 1 =0.
m> oo 153510 N(m) ngl i1;a{(M(uy")) —logiga

Of course, many sequences of mantissae of positive numbers are nei-
ther natural nor logarithmic-Benford, but some of them, like (M (10™)),,
or (M((=1)" + 2)),, do admit a distribution (distinct from the Ben-
ford’s one) anyway.

1.1. Some questions. The quite strange facts described above
generate many questions. Here are a few that shall be answered in
Section 5 below:
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Question 1. Are there densities which are strictly weaker (see below)
than the logarithmic one?

Question 2. Are there classical sequences of positive numbers whose
mantissae do not admit any distribution in the sense of natural or
logarithmic densities? If yes, what about weaker densities?

Question 3. Is there an interest to consider weights lighter than
1/n or heavier than 1?7

Question 4. Is the first digit phenomenon verified by u, = 27,
up = nl, up, =n" or u, = F, if we use weights heavier than 1, like n®
with a > 0 or a™ with a > 1 for instance? If yes, is there a maximal
value for a?

Question 5. Is the first digit phenomenon verified by u, = n or
Un, = Py, if we use weights heavier than 1/n, like 1/4/n for instance? If
not, does the choice of one of these weights have an influence anyway?

Question 6. If u, = n or u,, = p,, we know from [6] that the rows of
(M(ull'))m,n are logarithmic-Benford, do not admit any distribution in
the sense of the natural density and tend to be natural-Benford. What
will happen if we choose intermediate weights (between 1 and 1/n)?

1.2. Weighted densities. This leads us, in the wake of [8, 9], for
example, to consider the general notion of weighted densities of A C N*
where N* is the set of positive integers.

Let (wpn)n>1 be a sequence of positive real numbers summing to
infinity and, for each N > 1, let Wy = 22[21 wy,. One says that
A C N* has a w,-density when the sequence

converges and its limit is then called the w,-density of A. This is the
limit of the weighted frequency of the elements of A among those of
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N*. The condition on the weights w,, is necessary to assign the density
1/2 to the set of even numbers, for example, and the density 0 to every
finite subset of N*.

Another sequence (v,)n>1 of positive real numbers summing to infin-
ity being given, we set Vi = ZnN:1 v, and we say that the w,-density

is stronger than the v,-density when, for every A C N*,

(55 22 1) eomense) = (3522 1200)_comvre)

n=1 n=1

and when, in this case, the two limits are equal. If either density
is stronger than the other one, then the two densities are said to be
equivalent.

The most commonly used weighted densities are the two we have
considered above: the 1-density called natural or arithmetic density
and the 1/n-density called logarithmic or harmonic density. In [6],
the 1/nlogn-density is also considered and called the loglog-density.
In some papers on Benford’s law ([8, 23], for example), we also find
the so-called logarithmic density conditioned (or relative) to the prime
numbers which can be seen as the 1/p,-density. The other weights that
come immediately to mind are w,, = a™ where a > 1, w,, = n® or w, =
p® with @ > 0 or =1 < a < 0, w, = n%(logn)? or w,, = p(logp,)”
with & > —1 and 8 € R, w,, polynomial, and w, = 1/(g,(n)) with
go(n) = n, gi(n) = nlogn, g2(n) = n(logn)(loglogn), and so on (n
large enough).

1.3. Contents. It is well known ([22, page 272] for example) that
the 1-density is strictly stronger than the 1/n-density and Kuipers and
Niederreiter [16, page 64] mentioned a quite surprising property: all the
n“-densities with —1 < o < 0 and 0 < « are equivalent to the 1-density.
In Section 2, we state three theorems found in Hardy’s book [12]
which give a clear view on the hierarchy between weighted densities.
To the best of our knowledge, these theorems are not mentioned in
papers on Benford’s law. Section 3 is devoted to new results. The
first one shows that equivalent weights lead to equivalent densities.
The second one proves that the hierarchy between the 1/(gq(n))-
densities (¢ = 0,1,2,...) is strict. The third one states that, however
light the considered weights are, we can find a classical sequence of
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positive numbers whose mantissae do not admit any distribution in
the sense of the corresponding density. Combining Sections 2 and 3
enables us to identify in Section 4 an infinite number of equivalence
classes of weighted densities and in Section 5 to give simple and clear
answers to the questions we have listed above. We give in Section 6
a short overview on other densities used in the study of the first digit
phenomenon and their connections with weighted densities. Some open
problems are described in Section 7. For the sake of clarity and self-
contained exposition, we give in an Appendix the proofs of the theorems
stated in Section 2, rewritten in the context of weighted densities.

We have focused on numeration in base 10, but all statements remain
true in every base b > 2 except for the sequence (2"),, which is not a
Benford sequence in bases 2, 4, 8, and so on.

2. Summation method properties. These properties are derived
from Cesaro’s and Toeplitz’s works and are stated and proved in [12,
pages 42-63] in the general context of hierarchy of summation methods
applied to a sequence (s,) of finite sums of a series. But a close
look at the proofs shows that the nature of the sequence (s,) is not
important. We state them below in the context of weighted densities,
for instance the sequence (14(n)) where A C N* will take the place of
(sn). Theorem 1 below is also stated and proved in [16, pages 63—64].

Let us recall that (v,) and (w,) are two sequences of positive real

numbers summing to infinity and that Vy = ZN v, and Wy =

N n=1
Y et W

Theorem 1. A sufficient condition for the w,-density to be stronger
than the v, -density is

(2) <v_n> is non-increasing
wn ),
or
W,
(3) <v—") is non-decreasing and (UN N> is bounded.
Wn ) WNVN /) N

Theorem 2 below gives a clear view on the effect of the heaviness of
the weights.
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Theorem 2. Let A C N*. If the sequence (vn/wp)n is non-
increasing, then

N N
Wn, Un
lim 5, Z —14(n) <limy Z Vo 14(n)
n=1 n=1
N
— v
< limy Z —14(n)
n=1 VN
N
w
<limy Z ——14(n)
n=1 w.

Theorem 3 below will permit us to prove that the exponential weights
are not relevant in the context of weighted densities of a subset of N*.

Theorem 3. Let A C N*. If the sequence (Wy_1/wn)n is bounded,
then A cannot admit any w,-density unless A is finite or cofinite.

3. New results. Let us recall that (v,) and (w,) are two sequences
of positive real numbers summing to infinity and that Vy = ZN

N n=1 Un
and Wy =), Wn.

Proposition 1. If v, and w, are equivalent as n — +oo, then the
vp-density and the w,-density are equivalent too.

Proof. 1t is well known that Vy and Wy are equivalent as N — 400
since the v, and the w, sum to infinity. So we can write w, =
U, + vp01(n) with lim, 61(n) = 0 and Wy = Vy + Vn63(N) with
th 02(N) =0 and

() = ;—1’; 61(n).
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Now consider A C N*. For every N > 1,

N N N Un|Vn + Vnbi(n) — Wy
— 14(n) - 2 14(n)| <
2y M 2y S 2
N
[V — W] Un
< — 0
< W + ;WN 1(n)
Vi
< 2—10,(N)|.
< 2 loy(N)

So A admits a wy,-density if and only if it admits a v,-density and, in
this case, the two densities are equal. ]

Remark. In fact, the above calculations imply a deeper property: De-
fine the lower and the upper wy-densities of A by lim 5 25:1 (wn /W)
14(n) and limy Zivzl(wn/WN) 14(n). If v, and w, are equivalent,
then the lower (respectively upper) w,-density and the lower (respec-
tively upper) v,-density of any A C N* are equal. And it is easy to
verify that, if two weighted densities are equivalent, the corresponding
lower (or upper) densities of any A C N* are not necessarily equal.
For example, the upper 1-density and the upper n-density of the set
of positive integers whose first digit is 1 are respectively 5/9 and 3/4,
although the 1-density and the n-density are equivalent as we shall see
below.

The classical example of a subset of N* which admits a logarithmic
density but does not admit any natural density is B = U;;’:Oo{n e™ <
n < 2e™}. We now generalize this example to densities lighter than
the natural and the logarithmic ones.

Set log(l) = log, exp(!) = exp and, for ¢ > 1, log(q+1) = 1og(q) olog,

expl?t) = exp(? oexp and

+oo
B, = U {n:exp@(e™) < n < exp®(2e™)}.
m=0
With these notations, the numbers gq4(n) (see the introduction for
definitions) can be defined by go(n) = n and g,(n) = g4_1(n)log'? n
(¢ > 1 and n large enough).
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Proposition 2. For ¢ > 1, B, admits a 1/(gq(n))-density, but does
not admit any 1/(gq—1(n))-density.

Proof. We shall use techniques like those of Fuchs and Let]:c]a in
[4]. Let ¢ > 1, wn = 1/(gg-1(n)), vn = 1/(gq(n)), Wn = 321 wn,
VN = Zf’ Up, @ = exp®(e™), by, = exp(?(2e™),

Com={n:am <n<by},
Dp={n:an1<n<ap}

and
E,={n:b, 1 <n<bpy}
Then

M
Zm:l ZNECm—l Wn — lim ZTLGCm—l Wn

Z%:o > neD,, Wn m Y neD,, Wn

because the numbers in the numerators sum to infinity and so do the
ones in the denominators. For the same reasons,

N
w
lim Z X 1p,(n) = lim
n=1 WN M

T al Wn Zne Crm Wn
Fmy > % 1p,(n) = lim Zn€%n ",
n=1 Wy m Zne E., Wn

. A . m
Using classical integral calculations, we get >, o w, ~ €™, > p
_,m-1

m m—1 m
w, ~em—e and ), cp w, ~2(e™—e™ 1) as m — +oo. Hence,

N N
w 1 — w e
lim 5, E —1p,(n) = —— and limy E —1p,(n) = 75—
el WN e—1 el WN 2(6 — 1)

Since lim,, ), ¢, Un = log2 and lim,, Yo p,, Un = limg, > one £,
v, = 1, the same arguments give

N N
v — v
lim g —1p (n) = limy g —1p, (n) = log 2. |
n=1 VN ! n=1 VN !
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The following theorem gives a general view of the 1/g,(n)-densities
(¢ =1,2,...) in connection with the first digit phenomenon. For any
real z, {z} denotes the fractional part of z, that is to say, {z} = = — [z]
where [z] is the greatest integer smaller than z and J, is the Dirac
measure at z. For z > 0, we set f(z) = {log;, z}.

Theorem 4. Let ¢ > 0. The sequence (M(log'%"? n)),, does not
admit any distribution in the sense of the 1/(gq(n))-density.

Proof. In the sequel, ng is any integer greater than exp(q”)(l)_
For n > ng, let w, = 1/(g4(n)), zn = M(log(q+2) n) and yn =
loglo(log(qH) n). For N > nyg, let

o w N w
_"5I d — s ,
Wy Oen and Qn Wy tund

n=ngo n=no

Py =

where Wy = 32N

n=n

, Wn, and let

N

Gr(t) = Y % etumd (¢ real).

el W

Note that Wy is equivalent to log(q+1)N as N — 4oo and that
Gy is the Fourier transform of Qu. Since f(z) = f(M(z)), we get
QN = Pxf71, that is to say, Qn(I) = Pn(f%(I)) for every interval
I C [0,1]. Tt is easy to verify that the weak convergence of the
sequence (Py)n to some probability measure p is equivalent to the
weak convergence of (Qn)n to uf ! and, by Lévy’s theorem on weak
convergence, this is equivalent to pointwise convergence of (Gy)n to
the Fourier transform of pf~1. So, to prove our theorem, it suffices to
verify that the sequence (G (27))n diverges.

Fix N > ng. Since e2i™{Un} — ¢2imun _the classical Abel transform of
a sum gives

N-1

Z Wn(€2i7ryn _ €2i7ryn+1)‘

n=no

1

GN(27T) = €2i7ryN + W—N
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Now, the mean value inequality gives

2 (log 10)~*

e2imYn _ e2i7ryn+1‘ <
gq+2(n)

(n=ng,...,N—1).

Moreover,
W, W,
G2l ~ 10g(‘1+2) - (n — 400).

Since the numbers above sum to infinity,

N-1 N-1
W, Wy,
YooY I (N foo).
o at2 (n) Rl log(q+2) n ( )

The classical generalizations of Cesaro’s theorem (see [12, page 43] or
the lemma in Section 8 of the present paper) show that

N-1 w

Notoo = Wy log' ™™ n

because lim,, m = 0. So (Gn(27))n diverges since (e2™¥~)y
diverges and

1
lim —

N—1
W, (e2m¥n — e2imyn+1) = (. O
N—+oco WN Z n( )

n=ng

4. Hierarchy of weighted densities. Combining Sections 2 and
3 gives a clear vision of the hierarchy between weighted densities.

General principle: Theorem 2 shows clearly that the heavier
weights w,, are, the rarer are the subsets A of N* which admit a
wy-density. Moreover, when A does not admit any density, w,’s
heaviness affects the lower and the upper w,-densities of A (see the
above remark).

On this subject, we must mention [9] which contains a study of the
continuity of the function o — (d,(A),dq(A)) where A C N* is fixed,
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a is varying in [~1;+4o00] and d_(A) and d,(A) are, respectively, the
lower and the upper n®-densities. For example, the set A of positive
integers whose first digit is 1 does not admit any n“-density for o > —1,
but, since it verifies the conditions of Theorem 2 in [9], the function
a+ (d,(A),d,(A)) is continuous at point —1 and so d,,(A) and d,(A)
monotonically tend to log,,2 as a — —1%.

Exponential weights: The weights w, = a™ (a # 1) are not
relevant because the condition ), w, = 400 implies & > 1 and then,
by Theorem 3, the only subsets of N* which admit a w,-density are
the finite and the cofinite ones. The densities of these kinds of subsets
of N* are respectively equal to 0 and 1, whatever is the value of o > 1.

Strict hierarchy: It is evident (see directly above) that the a-
densities with o > 1 are strictly stronger than the 1-density, and it is
well known that the 1-density is strictly stronger than the 1/n-density
([22, page 272] for example). We can now state: the 1/n-density is
strictly stronger than the 1/(nlogn)-density which is strictly stronger
than the 1/[n(logn)(loglogn)]-density and more generally, for ¢ > 0,
the 1/(gq4(n))-density is strictly stronger than the 1/(gq4+1(n))-density.
Indeed, the 1/(gq(n))-density is stronger than the 1/(gq+1(n))-density
by condition (2) in Theorem 1, and the 1/(g4+1(n))-density is not
stronger than the 1/(gq(n))-density as Proposition 2 shows.

Natural density equivalence class: Most of the weights which
come naturally to mind lead to densities which are equivalent to the
1-density. Firstly, as Kuipers and Niederreiter noticed [16, page 64], all
the n®-densities with —1 < « are equivalent. Indeed, if —1 < a1 < ao,
condition (2) of Theorem 1 proves that the n®*2-density is stronger
than the n®-density and condition (3) shows the converse. Secondly,
for -1 < @ and B € R, the n*(log n)ﬂ-density is equivalent to the n®-
density and then to the 1-density because condition (2) proves that it
is stronger than the v/n®—!-density and weaker than the n®*!-density.
Moreover, Proposition 1 shows that all P(n)Q(logn)-densities (P and
@ polynomials) belong to this equivalence class too and so do the pg-
densities with & > —1 because p, ~ nlogn as n — 4oo.

Logarithmic density equivalence class: Somehow, this equiv-
alence class is smaller than the previous one (although it possesses
infinitely many elements). Condition (3) of Theorem 1 shows that, if
wy, = (logn)® /n with a > —1, then the w,-density is equivalent to
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the 1/n-density. This and Proposition 1 prove that the P(logn)/n (P
polynomial) and the (log p,,)/pr-density (utilized in [14]) belong to this
equivalence class too.

Weaker densities equivalence classes: When w,, = (log'?™!) n)®/
gq(n) (¢ > 1) with o > —1, the same arguments show that the w,,-
density is equivalent to the 1/g,(n)-density and again the only simple
way to construct other equivalent densities seems to use Proposition 1.
For example, the 1/p,-density (utilized in [8, 23]) and the 1/nlogn-
density are equivalent (case ¢ = 1).

Maybe the weakest density: Let w' = 1/g,(n). Then, by
Theorem 2, the limits below exist, and we can set

q—+o0

N (a)
W (4) = lim <li_mN P 1A(n)>
n=1 WN

and

And so we have defined a new lower density and a new upper density
which define a density when they are equal. This new density can be
named the W,-density. It is not, apparently, a weighted density and is
weaker than all the densities we have considered in the present paper.

5. Consequences for Benford sequences. We give here some
answers to the questions we have listed in Section 1.

Answer to Question 1: The 1/g,(n)-densities for ¢ > 1 are all strictly
weaker than the logarithmic one.

Answer to Question 2: Assuming that everybody agrees to consider
(loglogn), as a classical sequence, Theorem 4 shows that the correct
answer to Question 2 is yes. It also shows that, however light the
weights are, we can find a sequence of positive numbers whose mantissae
do not admit any distribution in the sense of the corresponding density.

Answer to Question 3: Proposition 2 and Theorem 4 show that there
is an interest in considering densities which are strictly weaker than
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the logarithmic one. The question of the interest of densities strictly
stronger than the natural one remains open because of the second point
of Section 4.

Answer to Question 4: Yes, the first digit phenomenon is verified by
Uy, = 2", u, = n!, u, = n" or u,, = F), if we choose heavier weights like
n® with o > 0 and no, there is no maximal value for a. The first digit
phenomenon is not verified if we choose weights like o™ with o > 1.

Answer to Question 5: No, the first digit phenomenon is not verified
by u, = n or u, = p, if we choose weights like 1/1/n because, if that
was the case, it would be verified in the sense of the natural density.
However, Theorem 2 shows that, if we choose weights like n® with
—1 < a <0, that will bring the upper and the lower densities (see the
remark in 3.1) together.

Answer to Question 6: No row of (M (u]))m,» admits a distribution
in the sense of the natural density and then in the sense of the n®-
density for —1 < a < 0. But these rows tend (as m — +o0) to be
distributed as pp in the sense of the natural density [6]. Somehow,
there is a quantum leap from o = —1 to & = 0 (and even o = 1, and
so on) as m — +o00. Of course, the last sentence of the answer to
Question 5 is still true here.

6. Other densities. Some authors [8, 14, 23] have introduced the
notion of conditional densities relative to the set of prime numbers. The
natural conditional density [8] is in fact the 1-density, the logarithmic
conditional density [8, 14] is the 1/p,-density and is equivalent to the
1/nlogn-density by Proposition 1, and the logp,, /p,-density [23] is
equivalent to the 1/n-density.

In [21], Serre claimed that Bombieri proved the following result: the
analytic density of A = {n: D(p,) = 1} is logy; 2, that is to say,

li -t 7 = i -1 7 =log,, 2
S, (o) 7;” Pt (o )nezA” 0810

where ¢ is the Riemann zeta function. This density is sometimes
called Dirichlet density or (-density and is equivalent to the logarithmic
density [22, page 274]. Moreover, the analytic density relative to prime
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numbers of B C N* is defined by

lim (—log(c —1))™" > p;°

oc—1+
pn€EB

(Dirichlet used it to prove his theorem on arithmetic progressions), but
we have not found it in papers on the first digit phenomenon.

In [3, 5, 7, 13, 20], for instance, the H.,-density is defined in the
following manner. A subset A C N* being given, set Hy, = 1a(n)
(n>1) and for m > 1,

1=
H,,=— H, 1 >1).
; n ; 1 (n )

When the sequence (Hm,n)n converges, its limit is called the H,,-
density of A. One says that A admits a H.,-density when
lim lim,Hp,,= lim lim,Hp,.
m——+oo m——+oo

and then its H,-density is the common value of these two limits. Since
the sequences (14(n)), are bounded, all H,,-densities are equivalent
to the natural density [12, page 62]. By Cesaro’s theorem, the natural
density is stronger than the H..-density. In [5], Duran shows that
the H-density is stronger than the logarithmic density. In [3],
Diaconis exhibits examples which prove that the converses of these
two properties are false.

In short, each conditional weighted density can be viewed as a
classical weighted density and belongs to one of the equivalence classes
we have listed above, and the natural density is strictly stronger than
the H.,-density which is strictly stronger than the logarithmic density
which is equivalent to the analytic density.

We have focused our attention on densities employed in papers about
the first digit phenomenon, but many other densities are considered by
Analytic Number Theory specialists. Many are listed in [10].

7. Conclusion. We list in this section a few open (as far as we
know) questions about weighted densities and their hierarchy.
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Open question 1: What is the exact influence of the weights w,
over the discrepancy

(i T (M) ) - Togiga

n=1

?

sup
1<a<10

Open question 2: Is the natural density the strongest weighted
density among those which are relevant in the study of mantissae
distributions?

Open question 3: Can we find two weighted densities such that
none of them is stronger than the other? If yes, can we find a subset
of N* admitting two distinct weighted densities?

Open question 4: We can replace w, = 1 by w, = n® with
—1 < a < 0in the study of the rows of the infinite matrix (M (u”))m,n
where uw, = n or u, = p,. How does the choice of a influence the
choice of the function N in the formula

N(m)
. Wn
lim  sup ——— 11 of(M(ul?)) —loggal =0
m—-+o00 1<a<10 nz::l WN(m) [1,a[( ( n)) glO

and the convergence rate?

Open question 5: Is the analytic density relative to prime numbers
equivalent to the 1/p,-density and then equivalent to the 1/nlogn-
density?

Open question 6: Is the W,-density (see the last paragraph of
Section 4) strictly weaker than any 1/g,(n)-density?

Open question 7: Does the sequence (M (p,)) admit a distribution
in the sense of the H.,-density?

APPENDIX

For the sake of clarity and self-contained presentation, here are the
proofs of the three theorems stated in Section 2, rewritten in the context
of weighted densities.

Lemma. Let (Sp)n>1 be a convergent sequence of real numbers and
(CNn)Nn a triangular array (N > 1, 1 < n < N) of real numbers
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verifying
N
(4) the sequence <Z |CN,n|> is bounded,
n=1 N
foralln>1,
(5) lim CN,n =0
N —+o00
and for all N > 1,
N
(6) S Onn =1
n=1
For N > 1, we set
N
In =Y SuCnpm.
n=1

Then the sequence (I'n)n>1 converges and (Sp)n>1 and (T'n)n>1 have
the same limit.

Proof. Let K > 0 be a bound evoked in (4). Let ¢ > 0 and Ny be
such that, for every n > Ny and every N > Ny, |S, — Sy| < eK 1,
and let N > Ny. Then

N N
|Tn — Sn| = Z SnCNm — SN Z Cnpn
n=1 n=1
No N
= 1) (S —SN)CNn+ D (Su—SN)CNm
n=1 n=Np+1
No
<) (Sa = SN)Cnn| +¢
n=1

by (6) and the definition of Ny. It remains to remark that, by (5),

=0

No
lim | (S, — Sn)Chon
=1

N—+oco
n=

since all the sequences (S, — Sy)n>1 (n=1,...,Ny) converge. o
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8.1. Proof of Theorem 1. Let A C N* and, for every N > 1,

N N
Z Wn Z Un

SN = W—N].A(n) and TN = WlA(n)
n=1 n=1

Then w181 = W15’1 and WNSN = WNSN — WN_lSN_l (N: 2,)
and then, for every N > 1,

ITnVN = Z—1W1S1 + :}—2(W252 - WiS1) +---
1 2

v
+ X (WnSn —Wn_-1Sn-1),
wN

that is to say,

N
In = Z SnCN,n
n=1
with W
UN N
Oyy = NUN
N,N wn Va

and, forn=1,... ,N — 1,

Cn. = Un _ Unt1 %
Nom = Wn, Wn 41 VN '
So condition (5) of the lemma is verified. Condition (6) is, too, since,
if 14(n) are all equal to 1, so are Sy and Ty .

If (2) is verified, then Cy,, are nonnegative, and so the sequence

(o),

is constant and this gives the lemma’s condition (4).

If (3) is verified, then Cy n is nonnegative and Cy,, is negative for
n=1,... ,N —1. Then

N N-1
D ICnml=Cnn =D Crone
n=1 n=1
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Since, as we have seen above,

N-1

Cnn+ Z Cnn =1,

n=1

this and the second part of the second condition of Theorem 1 prove

that
N
> [Cxn
n=1

is bounded. Condition (4) of the lemma is verified.

—oCyn - 1=2 Wy
’ ’LUNVN

8.2. Proof of Theorem 2. With the same notations as in
Theorem 1, the coefficients Cy , in the formula

N
TN = Z SnCN,n

n=1

are nonnegative (see the calculations above) if the condition of Theo-
rem 2 is verified. Let ¢ > 0, I = lim,,.S,, and Ny an integer such that
for all n > Ny,

S, >1—c¢.

Then, for each N > Ny,

No N
Ty > ZSnCN,n + (I—z’:‘) Z ON,n-

n=1 n=Np+1
This implies lim Ty > I — € because

lim Cy,=0 =1,...,N
N, O (n 0)

and so

N

lim E CNn =1

N—+oco ’
n=Nop+1

(recall that the Cy,,, verify the lemma’s condition (6)).

The superior limits can be investigated in the same way.
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8.3. Proof of Theorem 3. Again let A C N* and

SN—Z—IA

Then, for each N,

WNSN = Wn-1S5v-1 Wy —WnNo
WN WwN

(Sv — Sn-1)-

1a(N) — Sy =
_ Wn_1

WN

Sn

We can conclude using Cauchy criterion for convergence because the
sequence Wy _1/wy)n is bounded and the sequence (14(N))y cannot
converge unless A is finite or cofinite.
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