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DEGREE k LINEAR RECURSIONS mod (p)
AND NUMBER FIELDS

T. MACHENRY AND KIEH WONG

ABSTRACT. Linear recursions of degree k are determined
by evaluating the sequence of generalized Fibonacci polynomi-
als, {Fk,n(t1, . . . , tk)} (isobaric reflects of the complete sym-
metric polynomials) at the integer vectors (t1, . . . , tk). If
Fk,n(t1, . . . , tk) = fn, then

fn −
k∑

j=1

tjfn−j = 0,

and {fn} is a linear recursion of degree k. On the one hand,
the periodic properties of such sequences modulo a prime
p are discussed and are shown to be related to the prime
structure of certain algebraic number fields; for example, the
arithmetic properties of the period are shown to characterize
ramification of primes in an extension field. On the other
hand, the structure of the semi-local rings associated with the
number field is shown to be completely determined by Schur-
hook polynomials.

1. Introduction. A sequence {fn} is a linear recursion of degree k,
denoted by [t1, . . . , tk], if, given a sequence of integers t1, . . . , tk, the
following equation is satisfied for all n ∈ Z:

(1.1) fn −
k∑

j=1

tjfn−j = 0.

In this paper we shall discuss the periodic nature of such sequences and
the periodic nature of such sequences modulo primes. In particular,
we characterize those k-linear sequences which are periodic, and those
which are periodic modulo a prime. While we believe that these

Keywords and phrases. Symmetric polynomials, Schur polynomials, linear
recursions, number fields.

Received by the editors on May 9, 2007, and in revised form on November 6,
2008.

DOI:10.1216/RMJ-2011-41-4-1303 Copyright c©2011RockyMountainMathematics Consortium

1303



1304 T. MACHENRY AND KIEH WONG

results are new and interesting, it is the setting that they occur in
and the applications of these results that we are most interested in.
The setting in question is that of the ring of symmetric polynomials,
and the applications are to the theory of algebraic number fields on the
one hand and to the theory of multiplicative arithmetic functions on
the other. It is the first of these applications, the number fields, that
will be emphasized in this paper, while the second, the multiplicative
arithmetic functions, will be discussed in more detail in a paper to
follow shortly.

In Macdonald [13], MacHenry [14, 15] and MacHenry and Tudose
[16], the notion of isobaric polynomials was introduced, or rather
reintroduced. These are just the symmetric functions written in the
elementary symmetric polynomial (ESP) basis. Historically, interest in
symmetric polynomials arose because of the relation between the roots
of a (say, monic) polynomial and its coefficients (for example, see [5]).
If, for example, we take our monic polynomial to be

Xk − t1X
k−1 − · · · − tk

with roots
λ1, . . . , λk,

then it is the classical result that the tj are, up to sign, the ESPs of
the λi. Regarding the λi as indeterminates, the k-degree symmetric
polynomials are those polynomials on the λi’s, which are invariant
under the action of the symmetric group of degree k acting on the
generators. When we rewrite the symmetric functions in the ESP
basis (e.g., see [13]), we see that the form of the polynomials no
longer emphasizes the symmetry of the generators, but rather it is
the partitions of the natural numbers which comes to the fore. After
the mapping

tj = (−1)j+1Ej ,
where Ej is the j-th elementary symmetric polynomial in k variables,
an isobaric polynomial looks like this:

Pk,n =
∑

α`n
Cαt

α1
1 . . . tαk

k

where α = (α1, . . . , αk) is an integer vector with
∑k

j=1 jαj = n; that
is, (1α1 , . . . , kαk) is a partition of n into parts with αj j’s. We shall
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say that a symmetric polynomial written in this way, emphasizing the
partitions of the integers, has isobaric degree n. It can be thought of as
a polynomial whose variables are Young diagrams (e.g., see Li [12]), or
more accurately, the Young diagrams representing partitions of n into
parts not larger than k. Note that the coefficients Cα are integers.

Of special interest to us in this paper are the sequences of isobaric
polynomials which form linear recursions, that is, sequences for which,
given the variables t = (t1, . . . , tk), we have for each k a sequence of
polynomials {Pk,n} for which

Pk,n = t1Pk,n−1 + · · ·+ tkPk.n−k.

The mapping from the λ-basis to the ESP basis is a ring isomorphism,
that is, we can speak of the (k-graded) ring of isobaric polynomials.
Letting tj = 0 for j > k yields a projection of the ring onto the k-th
level of the grading.

It is proved in [14] that such sequences form a free k-graded Z-module
with a basis consisting of Schur-hook polynomials (also see [16]). In
[15] this was called the module of Weighted Isobaric Polynomials or
the WIP-module. It can be thought of as a module of polynomials
but is best considered as a module of sequences of polynomials. In
Section 3, we suggest a way of looking at this module which is both
intuitively transparent and algebraically very useful. But first we
discuss two especially important sequences in this setting. They are
the generalized Fibonacci sequence (GFP), and the generalized Lucas
sequence (GLP) [14]. In the λ-basis, they are better known as the
sequence of Complete Symmetric Polynomials, and the sequence of
Power Symmetric Polynomials.

In the isobaric basis the GFPs are of the form,

Fk,n =
∑

α`n

( |α|
α1 . . . αk

)
tα1
1 . . . tαk

k ,

where α = (α1, . . . , αk), |α| =
∑

j=1,... ,k αj ; and the GLPs, of the form

Gk,n =
∑

α`n

n

|α|
( |α|
α1 . . . αk

)
tα1
1 . . . tαk

k .
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In general, a weighted isobaric polynomial (or WIP-polynomial) is
given by the expression:

Pω,k,n =
∑

α`n

( |α|
α1, . . . , αk

) ∑k
j αjωj

|α| tα1
1 . . . tαk

k ,

where ω = (ω1, . . . , ωk) is a weight vector. Each weight vector deter-
mines a k-linear recursion [14]. The weight vectors for the generalized
Fibonacci sequence and the generalized Lukas sequence are given, re-
spectively, by ω = (1, 1, . . . , 1, . . . ), and by ω = (1, 2, . . . , n, . . . ). It
is straightforward to check that Pω,k,n is a k-linear recursive sequence
of isobaric polynomials for each ω and k. And, that we can add two
weighted sequences in the WIP-module by adding their weight vectors,
thus realizing the abelian group structure of the module and empha-
sizing that the preferred basic element of the module is a sequence.

For each k we call any weighted sequence of isobaric polynomials
a generic k-linear recursive sequence, allowing the application of an
evaluation map to the indeterminates. The WIP-module, and, indeed,
the entire ring of k−isobaric polynomials Pk,n, is determined implicitly
by the k−degree monic polynomial

C(X) = Xk − t1X
k−1 − · · · − tk = Xk −

k∑

j=1

tjX
k−j

by virtue of the two fundamental theorems of symmetric functions
alluded to above, and the change of basis. Therefore, we call this
polynomial

C(X) = Xk −
k∑

j=1

tjX
k−j ,

the core polynomial. Thus given the core polynomial, the whole isobaric
structure falls into place. But the core polynomial itself is uniquely
given once we have assigned the generic variables t1, . . . , tk, so we
find it convenient to use the notation [t1, . . . , tk] to denote the core
polynomial. Since we can take k to be arbitrarily large, it is also
convenient to give power series the honorary status of core polynomial
(with some adjustment necessary to the bracket notation).
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These remarks will be more effective when we look not just at the
generic core, but also consider evaluation maps on the t-vectors, that is,
when we look at polynomials of degree k with numerical coefficients. (In
Section 3, the unity of these ideas will become especially transparent).

Suppose we choose to evaluate the indeterminates t in the ring of
integers; then each sequence {Pω,k,n(t)} gives a numerical k-degree
linear recursion; and since, in particular, t is given, the core is uniquely
determined. Moreover, every k-degree linear recursion can be realized
in this way. The contents of Section 3 will suggest that choosing to
use the GFP as our generic sequence has a great deal of merit. This
sequence contains the polynomials

(1) Fk,0 = 1

(2) Fk,1 = t1

(3) Fk,2 = t21 + t2

(4) Fk,3 = t31 + 2t1t2 + t3

(5) Fk,4 = t31 + 3t21t2 + t22 + 2t1t3 + t4

(6) etc.

of isobaric degrees 0, 1, 2, 3, 4, . . . .

If we let k = 2, that is, use the projection tj = 0 for j > 2, and let
[t1, t2] = [1, 1], we find that the sequence {F2,n} is just the Fibonacci
sequence. A similar exercise for the GLPs yields the Lucas sequence.
In either case, the core polynomial is X2−X−1. However, once a core
polynomial is chosen, given k and the generic linear recursion, all is
determined. So in particular, if we choose a generic k-linear recursion,
then for each evaluation of the t-vector, exactly one core polynomial is
selected. In this way, we get a one-to-one relation between k-cores and
all numerical linear recursions. (See Section 4).

A sequence {fn} is periodic if there is a positive integer c such that,
for all n, fn+c = fn. The first two questions we ask, then, are:

(1) Which numerical linear recursions are periodic?

While this question is not difficult to answer, its answer seems not to
appear in the literature.

(2) What is the length of a period of a numerical linear recursion
mod (p)? (see [6, Chapter 3]).



1308 T. MACHENRY AND KIEH WONG

(At the end of this paper, we include a Maple algorithm, due to
Professor Mike Zabrocki of York University, for computing a tight
bound for the period of any k-order linear recursion modulo a prime p.)

2. Periodic linear recursions. We now answer the two questions
asked in Section 1, reminding the reader that the generic recursion that
we are using is the GFP sequence.

Theorem 2.1. A linear recursion is periodic if and only if every
root of the core polynomial is a complex root of unity. In particular,
if the core polynomial is the cyclotomic polynomial CP (n) of degree
φ(n), where φ is the Euler totient function. Then its associated linear
recursion is periodic with period n, see [16]. (It is interesting to
compare this theorem with the Lech-Mahler theorem, see [1].)

The proof will be discussed in Section 3.

Denote the period, either mod (p) or mod (1), of a linear recursion
induced by [t1, . . . , tk] by cp[t1, . . . , tk] where p is either a rational
prime or p = 1, and the tj are the coefficients of the core polynomial.

Theorem 2.2 (Evarest, van Poorten, Shparlinski, Ward [6, page
46, Theorem 3.1]). Every linear recursion is periodic modulo p for
every rational prime p. The p-period of a linear recursion induced by
[t1, . . . , tk] satisfies cp[t] 6 pk.

This follows from simple combinatorial arguments, essentially the
pigeonhole principle. We improve this bound to a best bound, pk−1, in
Section 4. We observe that if a sequence is a periodic linear recursion,
then

Fk,cp = Fcp = 1, Fcp−1 = · · · = Fcp−k+1 = 0, Fcp+1 = t1.

While there is nothing deep about the proofs of these two theorems,
it is of some interest that they occur within the confines of the ring of
symmetric functions and become obvious when this particular basis is
chosen. However, the particular techniques for studying recursions and
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periodic recursions reveal an even deeper connection with symmetric
functions framed in the language of isobaric polynomials, which in turn
points to a strong connection with combinatorial algebra. In the next
section we discuss some not so well-known “well-known” results, and
add some new information which we believe not to be well-known. We
now discuss our most important tool; namely, the companion matrix of
the core polynomial and a rather remarkable structure induced by it.

3. The companion matrix of the core polynomial. With each
core polynomial, we associate its rational canonical matrix, the so-
called companion matrix (for example, see [6]). We first consider the
companion matrix for the generic core polynomial of degree k.

A =




0 1 · · · 0
0 0 · · · 0
0 0 · · · 1
· · · · · · · · · · · ·
tk tk−1 · · · t1


 .

Since detA = (−1)k+1tk, detA
n = (−1)n(k+1)tnk , A is singular if and

only if tk = 0. But, if tk = 0, the core polynomial is reducible; so we
assume A to be nonsingular. Thus, A is invertible and generates a
cyclic group (finite, if the coefficients of the core polynomial satisfy the
conditions of Theorem 2.1; otherwise, infinite). The inverse of A is

A−1 =




−tk−1t
−1
k −tk−2t

−1
k · · · t1t

−1
k t−1

k

1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0


 .

We record the orbit of the k-th row vector of A under the action of A,
below A, and the orbit of the first row of A under the action of A−1 on
the first row of A is recorded above A, and consider the ∞× k matrix
whose row vectors are the elements of the doubly infinite orbit of A
acting on any one of them. For k = 3, A∞ looks like this (we explain
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the symbols for the elements below):

A∞ =




· · · · · · · · ·
S(−n,12) −S(−n,1) S(−n)

· · · · · · · · ·
S(−3,12) −S(−3,1) S(−3)

1 0 0
0 1 0
0 0 1
t3 t2 t1
· · · · · · · · ·

S(n−2,12) −S(n−2,1) S(n−2)

S(n−1,12) −S(n−1,1) S(n−1)

S(n,12) −S(n,1) S(n)

· · · · · · · · ·




∞×3

.

This matrix has a number of important features which we summarize
in

Theorem 3.1 (cf. [2, 3, 7, 9, 10]). (i) The row vectors consist
of the orbit of any row with A acting as a transformation matrix (on
the right, say), and the components of the row vectors are just isobaric
reflects of Schur-hook polynomials.

(ii) The set of k×k contiguous row vectors of A∞, with the entry in
the lower righthand corner being the Schur-hook function S(n), yields a
(faithful) matrix representation of the cyclic group generated by A:

An=

(
(−1)k−1S(n−k+1,1k−1) · · · (−1)k−jS(n−k+1,1k−j) · · · S(n−k+1)

· · · · · · · · · · · · · · ·
(−1)k−1S(n,1k−1) · · · (−1)k−jS(n,1k−j) · · · S(n)

)
.

Or, more succinctly, we have

An = [(−1)k−jS(i,1k−j)]k×k,

where the entries are isobaric Schur-hook reflects whose Young diagrams
have arm length i and leg length k − j in the case of positive n.

(iii) The elements in each row of A∞ are the coefficients of a repre-
sentation of the powers (positive and negative) of any of the roots of
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the core polynomial denoted by λn in terms of a basis consisting of the
first k − 1 powers of λ:

λn+k−1 =

k−1∑

j=0

(−1)k−j−1S(n,1k−j−1)λ
j

for n ∈ Z, where λ is a root of the core polynomial (and, as remarked
above, the coefficients are Schur-hook reflects whose Young diagrams
have arm length n and leg length k − j when n is positive).

(iv) Each column of A∞ is a k-degree linear recursion of Schur-hook
polynomials induced by the core polynomial [t1, . . . , tk]. In particular,
the righthand column is just the (doubly infinite) sequence of generalized
Fibonacci polynomials, Fk,n, see [6, 1.1.12].

(v) tr (An) = Gk,n(t) for n ∈ Z, where Gk,n is just the sequence of
generalized Lucas polynomials, which is also a t-linear recursion.

Remark. Since we have assumed that, in the core polynomial tk 6= 0,
the matrix A is invertible, and since A∞ is generated by A, A∞ ex-
tends the sequences of Schur-hook polynomials (in particular, the GFP,
as well as the GLP) northward to negatively indexed terms, see [6,
1.1.3]. It is reasonable to call the negatively indexed entries in the ma-
trix Schur-hook polynomials also. In fact, they can be represented as
quotients of two positively-indexed Schur polynomials, which in general
are not hooks. It would be interesting to have a combinatorial inter-
pretation of these negatively indexed functions. One might compare
this result with the theorem in MacHenry, [15], which gives rational
convolution roots to all of the elements in the WIP-module (also see
[17]), i.e., to all of the sequences of symmetric functions in the free
Z-module generated by the Schur-hook polynomials.

Proof of Theorem 3.1. (i) The orbit structure is a consequence of the
construction of the matrix. The operation of the companion matrix on
a k-vector of integers generates a linear recursion with respect to the
vector t. They are, in fact, the Schur-hook sequences claimed in the
theorem [16].

(ii) follows from the arguments in (i).
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(iii) follows from the Hamilton-Cayley theorem. A simple induction
shows that these coefficients are just the stated Schur-hook functions
of the theorem.

(iv) This is discussed in (i).

(v) The traces of the k × k-blocks are the sums of all of the Schur-
hook reflects whose Young diagrams partition the same n; but such
sums of Schur-hooks are well known to be GLP of isobaric degree n
[16].

The infinite companion matrix is a remarkable summary of all of
the features connected with linear recursions (as enumerated in The-
orem 3.1). The righthand column consists of GFPs, i.e., the generic
kth order linear recursions; it displays the role of Schur-hook functions
as both constituents of sequences of kth order linear recursions, one of
which is the GFP sequence, and as coefficients for a representation of
the powers of the roots of the core polynomial. It contains a matrix
representation of the free abelian group generated by the companion
matrix, in particular, a matrix representation of the free abelian group
generated by any of the roots of the core. It also contains, as traces, the
GLPs. Recall that the GFPs and the GLPs are respectively, isobaric
versions of the complete symmetric polynomials and the power sym-
metric polynomials. With this we have shown a connection between the
theory of linear recursion and an important submodule of the algebra
of symmetric polynomials, the WIP-module. Moreover, we have intro-
duced an extension of the symmetric polynomials to negatively indexed
symmetric functions which are related to the reciprocals of powers of
the roots of the core polynomial. Thus, we have a striking summary
of the connection between the theory of equations and the theory of
linear recursions within the ring of symmetric polynomials. We note
that, while many of these properties of the extended companion matrix
are known to Lascoux and his students (see Chen and Louk [4], also
see [6, 9]), the role of the GFPs and the GLPs, as well as the form of
the negative entries, may not be so well known. This matrix will be a
useful and important tool in what follows.

Before we state the next result, we must clarify the following point. A
linear recursion is specified when (1) the recursion degree and recursion
relation are given, and (2) when the initial conditions are also given.
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In our case the recursion relation and degree are given when the vector
(t1, . . . , tk) is specified, by (1.1). As for (2), we first note that every
column of A∞ is a linear recursion as a result of the fact that the rows
of A∞ are the orbits of any row of the companion matrix under the
actions of the companion matrix on its rows (righthand or lefthand
action), generating an infinite cyclic group. That is, the cyclic action
of the companion group is equivalent to columns being linear recursions
(of degree k for some fixed k). Since we assume that A is nonsingular,
i.e., that tk 6= 0, the recursion goes in both directions (northward
as well as southward). The identity matrix is “embedded” in the
companion matrix, and we can start the recursion going (in either
direction) by letting the columns of the identity matrix be the initial
conditions for the column containing it. Since the core polynomial
(with a nonzero constant term) uniquely determines A∞, each column
is uniquely specified as a k-degree recurrence sequence with specified
initial conditions. Since the degree k infinite companion matrix is a
projection of the degree k+1 infinite companion matrix, it is clear how
to specify recursions of infinite degree.

Corollary 3.2. Let [t1, . . . , tk], tj ∈ Z, be an irreducible core
polynomial with companion matrix A, and denote the cyclic group
generated by A as H. Let Ap,A

∞
p and Hp denote A,A∞ and H with

elements reduced modulo p. Then Hp is a finite cyclic group exactly
when the columns of A∞

p are periodic linear recursions. The length of
the period of each of the column sequences is equal to the order of the
cyclic group Hp, which is 6 (pk − 1). Moreover, every root of the core
polynomial generates a finite cyclic group whose order is just the order
of Hp.

Proof. That the columns of A∞ are linear recursions is justified by
Theorem 3.1 (iv), so the effective part of the assumption is that the
columns of A∞

p are periodic. Clearly, if Hp is periodic, then so is each
of its columns. On the other hand, since, by Theorems 1.1 and 3.1 in
[6], these columns (having the same core polynomial) have the same
period length, thus Hp is finite with order the period length of any of
the columns of A∞

p . That the roots of the irreducible core polynomial
when taken modulo p generate a finite cyclic group of order equal to
the order of Hp follows from Theorem 3.1 (iii).
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Remark. Let 1C, 2C, . . . , kC denote the columns of A∞
p . Then it is

easy to show that a column can be added row-wise to a another column
shifted column-wise and yield a sequence which is periodic modulo p,
with the same period length as either of the summands. Thus,

k∑

j=1

ajjCk,n+ij

has the same core polynomial as any of its summands and so is a
periodic sequence with same period length as any column. These are
just the elements of the WIP-module. In [16, Theorems 3.1 and 3.4]
it is shown that the elements of the WIP-module are the only possible
linearly recursive sequences of symmetric polynomials.

Applying the facts learned above about the companion matrix, we
now consider the periodic behavior of linear recursions modulo a
prime p.

4. p-periodicity and the companion matrix. We use the
notation [t1, . . . , tk]p to indicate the core polynomial with coefficients
taken modulo (p), and, as mentioned above, cp and cp[t1, . . . , tk] to
denote the period of A with entries taken modulo (p), which, in turn,
we write as Ap. For any matrix M, trM denotes the trace of the M.

Theorem 4.1. (i) cp[t] = cp[t1, . . . , tk] ≤ pk − 1.

(ii) The (cyclic) group generated by Ap (Hp) has order cp[t].

(iii) The columns of A∞
p have periods dividing cp[t]; and the least

common multiple of the periods of the columns of A∞
p is cp[t].

(iv) λcp [t] =p 1, where λ is a root of C(X)[t], and cp[t] is the least
positive integer for which this is true; i.e., cp[t] is the p-order of λ.

(v) trAn
p is linearly recursive with period 6 cp[t].

Proof of Theorem 4.1. (i) is a consequence of Corollary 3.2. Clearly
Ap generates a cyclic group of order dividing cp; on the other hand,
since each of the columns of A∞ is a linear recursion, and since they
generate H, the l.c.m. of their periods must be cp (also see [19]).
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(iv) is a direct consequence of Theorem 3.1 (iii), 3.1 (iv) and Theorem
4.1 (iii).

(v) is a consequence of Theorem 3.1 (v).

Remarks. As pointed out above, Corollary 3.2 accounts for the truth
of Theorem 2.1. The core polynomials for the primitive nth roots
of unity are the cyclotomic polynomials of degree φ(n), whose roots
have the obvious geometric period of n; that is, cp[t] = n, where t is
the appropriate vector of coefficients of the cyclotomic polynomial of
degree φ(n). This also affords a geometric interpretation of periodicity
for the roots of the core polynomial in the plane of complex numbers
with coordinates taken (mod p), which is analogous to the cyclotomic
periodicity.

The example of the Fibonacci sequence and the trace sequence asso-
ciated with its infinite companion matrix shows that Theorem 4.1 (v)
cannot be improved: c5[1, 1] = 20 while the period of the sequence G2,n

is 8.

5. The number field O[t] and the semi-local ring Op[t].
We are now in a position to give an interesting application of these
ideas to algebraic number fields. For this purpose we take the core
polynomial to be irreducible and consider the number field F = Q(λ) =
Q[X]/id〈C(X)〉. Let us denote the ring of integers (the maximal order)
in this field by O[t], and we write O[t] ⊗ Zp = Op[t]. We can
write the elements of the field F either as a module over the basis
{1, λ, . . . , λk−1}, or uniquely as k-tuples (m0, . . . ,mk−1) with entries
from Q with multiplication determined by the minimal polynomial of
the field or, as a result of the Hamilton-Cayley theorem, as a module
with the basis {I,A, . . . ,Ak−1}. This gives a matrix representation of
the elements in the field. Call it the standard representation. We also
have the same three options in Op[t], using these bases modulo (p).
Theorem 3.1 (iii) can be regarded as giving a representation of the
powers of λ in F , as polynomials in the integral λ-basis where the
coefficients are Schur-hook polynomials evaluated at [t]. Note that we
have an induced standard matrix representation in the ring Op[t].

One of the concerns of the theory of algebraic number fields is the
relation between primes in the extension field F and the rational primes
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in Z that they sit over. If we let p be a rational prime generating the
prime ideal p in Q and let P be the ideal in O[t] extending p, then
P = Pε1

1 . . .Pεs
s is the prime decomposition of P in the Dedekind ring

O[t]. If fj is the relative degree of the prime ideal Pj , i.e., the degree of
its minimal polynomial, then either s = 1 and ε1 = 1, in which case P
is a prime ideal and p is inert; or, s > 1 but εj = 1 for all j’s, in which
case P is the product of distinct prime ideals and p splits; or, some
εj > 1 and p ramifies. These properties are reflected in the semi-local
ring Op[t]. Moreover, there is a relation between the phenomenon of
periodicity of the linear recursion associated with the core polynomial
and properties of the primes in the extensions of the core localized
at p. This will be discussed in the following sections. It is well known
that for each irreducible core polynomial only a finite number of primes
ramify; when they do, they divide the discriminant of the field. With
few exceptions, the converse is also true, and those exceptions will not
occur in our discussion (see, for example, Janusz [8]); hence, for the
purposes of this paper, p ramifies if and only if p|∆, where ∆ is the
discriminant of F . We shall want to use the following well-known fact.

Proposition 5.1 (see [8]).

∆ = (−1)k(k−1)/2N(C(X))det C′(t).

C′(t) is the derivative of the core polynomial, that is, the different.

Noting that C′(t) can be regarded as an element of Op[t], and,
denoting C′(t) by D[t], we have

Corollary 5.2. Dp[t] generates an ideal in Op[t] (the discriminant
ideal) if and only if p|∆, that is, if and only if p ramifies in O[t].

Proof. p divides the discriminant of the core polynomial modulo p if
and only if p ramifies, which occurs if and only if the different vanishes
modulo p at a root of the core polynomial, and this happens if and
only if the different generates an ideal in the semi-local ring Op[t] (the
alternative being that the different is a unit in Op[t]).
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In keeping with the notation A∞[t], we let M∞[t] be the Hp[t]-
orbit of any row vector in the matrix M[t]. Since, by construction,
the columns of a standard matrix are t-linear recursions, the following
proposition can be proved by induction.

Proposition 5.3. The righthand column of D∞[t] is the sequence
of GLPs; that is, the righthand column of D∞[t] is a list of the traces
of the matrices representing An[t]; thus, the righthand column of the
matrix consists of the terms of the GLP-sequence, cf. (3.15).

Proof. If the core polynomial is Xk−∑k
j=1 tjX

k−j , then the different

D is the polynomial D[t] = kXk−1 −∑k−1
j=1 tj(k − j)Xk−j−1. This is

represented by the vector (−tk−1, . . . ,−(k − 1)t1, k) in O[t], and the
orbit of this vector under the action of the companion matrix of the
core polynomial gives the standard matrix representation. Since acting
on a vector in O[t] by A[t] automatically generates linearly recursive
columns determined by [t1, . . . , tk], it is necessary only to notice that
the element in the upper righthand corner of the matrix representing
D[t] is k. Induction does the rest.

Remark. There is an interesting connection between the GFP-
sequence and the GLP-sequence; namely, they are related by partial
differentiation. Precisely,

∂

∂tj
Gn = nFn−j , j = 1, . . . , k,

cf. this with Lehmer’s notion of companion sequences (see [11]).

Remark. It follows from Proposition 5.3 that the period of the
different Dp[t] is the same as cp(Op[t]) if p does not ramify. If p splits
(recall that in this paper ‘splits’ mean factors but does not ramify),
then Dp[t] is in the group of units Gp[t] and is a coset of Ap[t],
possibly identical with Ap[t]. If p ramifies, then D[t] is a maximal
ideal inOp[t]. Theorem 5.3 and the remark above give the rather pretty
set of connections among the GFP-sequence, the core polynomial, the
derivative of the core, and the GLP-sequences: GFP determines the
core, the derivative of the core yields GLP, the derivative (any first
partial) of GLP yields the GFP.
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6. Structure of the semi-local ring Op[t] = O[t]
⊗

Zp. Op[t]
is a finite, commutative ring; it is, therefore, a semi-local ring. The
structure of semi-local rings is well known (for example, see [18]). We
restate the structure theorem here (Theorem 6.4) for easy reference.
Op[t] also has an orbit structure under the action of the group gen-
erated by Ap[t], which, while not mysterious, is not readily found in
the literature, and plays an integral role in our results. We shall first
discuss this orbit structure and then exploit the semi-local nature of
Op[t].

If tk 6= 0 (mod p), then Ap[t] is nonsingular, and, hence, is a
unit in Op[t]. The units in Op[t] are exactly those elements with
norms different from 0, that is, having a standard matrix with nonzero
determinant. An element with zero norm, then, either is zero or belongs
to a proper ideal. Denote the group of units of Op[t] by Gp[t] and
its subgroup gp〈Ap[t]〉 by Hp[t], the period subgroup. Then Op[t]
is a Zp(Hp[t])-module, or more conveniently, a right Hp[t]-module.
Clearly, Op[t] is the disjoint union of its orbits under the action of
Ap[t]. A number of observations follow from these facts. It will be
useful to list them for future reference:

(1) The orbit of zero is a singleton.

(2) An ideal consists of the disjoint union of orbits, each of which has
orbit length dividing cp[t]. (Clearly, two orbits are either disjoint or
identical, up to cyclic permutation.)

(3) Two distinct orbits in the same maximal ideal differ from one
another by a coset representative of Hp, i.e., if O1 and O2 are distinct
orbits in the maximal ideal I, then there is a coset representative g of
Hp in Gp such that O1g = O2. (Of course, a coset representative may
belong to the stabilizer of Hp. O1 and O2 need not be bijective.)

(4) The orbits of Gp are the cosets of Hp.

(5) The columns of an orbit are t-linearly recursive, with a period
dividing cp[t].

(6) The (standard) matrix representation of Op[t] is implicit in the
orbit structure of Op[t].

If m ∈ Op[t], and if mi,j is the (i, j)th component of the standard
matrix representation Mp of m, the row vectors mi of Mp are just the
elements of the Ap-orbit of m.
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Rp

Gp I1 I2
. . . Is

Hp

< 1 >

J

< 0 >

FIGURE 1. Lattice diagram of semi-local ring.

A pseudo-Hasse diagram that illustrates the construction of a typical
finite ring Op[t] is given in Figure 1.

In Figure 1, Gp is the group of units in the finite ring Op[t],
Hp = gp〈Ap〉, |Hp| = cp is the period of the associated k-linear
recursion Fk,n(t1, . . . , tk) (mod p), the Ij are the maximal ideals in
this ring and J is the radical. The “pseudo” in pseudo-Hasse refers to
the fact that we show the lattice structure of the group of units in this
ring in the same diagram. For an example, see Figure 2.

e1 = (−1, 1,−1), e2 = (−1,−1, 1), e1 and e2 are idempotents,
|O3| = 27, |G3| = 16, |H3| = 8, |G3 : H3| = 2.

A3 =




0 1 0
0 0 1
1 −1 0


 .

We record the following well-known fact:
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[0, 2, 1] = X3
− 2X − 1 = (X + 1)(X2

− X − 1)

R3 = [0, 2, 1]

G3 = H3 ∪ −H3

H3 = gp < A3 >

gp < 1 >

I1 =< X + 1 > I2 =< X2
− X − 1 >

(1, 1, 0)
(0, 1, 1)

(1,−1, 1)
(1, 0,−1)

(−1,−1, 0)
(0,−1,−1)
(−1, 1,−1)
(−1, 0, 1)

(−1,−1, 1)
(1, 1,−1)

(0, 0, 0)

FIGURE 2. Lattice diagram of [0,2,1].

Proposition 6.1. There is a one-to-one correspondence between
maximal ideals of Op and irreducible factors of C(X) (mod p).

Proposition 6.2 (Traces). Let m = (m0, . . . ,mk−1) ∈ Op[t].
tr (m) = m0Gk,0+ · · ·+mk−1Gk,k−1, where {Gk,n} is the sequence of
generalized Lucas polynomials, i.e., the isobaric reflect of the complete
symmetric polynomials.

Proof. Express m as (m0,m1, . . . ,mk−1) and note that the rows of
M are vectors mAi. Writing Ai

j for the jth column of Ai, we have
that the trace of m is

(mA0)A0
1 + (mA1)A1

2 + · · ·+ (mAk−1)Ak−1
k .

But a suitable rearrangement of this sum is just

m0trA
0 +m1trA

1 + · · ·+mk−1trA
k−1,

which, by Theorem 3.1 (v), yields Proposition 6.2.
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Also note that, since each component of a vector in an orbit is in
exactly one trace computation, the sum of the components of vectors
in an orbit is equal to the sum of the traces of the vectors in the orbit.
That is,

Proposition 6.3. (i) The sum of the elements of the Ap[t]-orbit of
the vector m is the sum of the traces of the row vectors, mi, i.e.,

∑

i,j

mi,j =
∑

i

trmi.

(ii) If m ∈ Op, i.e., if det (m) = 0, then

∑

orbits of I

∑

i

tr (mi) = 0.

Theorem 6.4 (cf., [18, VI.2], [8]). Op[t] is a semi-local ring. In
particular, letting J(Op[t]) = Rad (Op[t]) = I1 ∩ · · · ∩ Is = I1 · · · Is,
I1, . . . , Is a complete set of maximal ideals in Op[t], there is a smallest
integer m such that Jm = Im1 · · · Ims = 0, and Op[t] = ⊕jOp[t]/I

m
j ,

where each factor is a local ring.

Remark. For finite, commutative, semi-simple rings, several of the
radical operators coalesce. The radical mentioned in the theorem can
be taken, for example, to be the intersection of maximal ideals, or as
the nilpotent radical.

As pointed out above, we use the term ‘p splits’ to mean that the
core polynomial factors modulo (p), but that it does not ramify.

Theorem 6.5. (i) If p is inert, then Op[t] is a field.

(ii) If p splits, then Op[t] has a trivial radical and thus is semi-simple,
i.e., it is the direct sum of s simple rings (fields in this case), where s
is the number of prime ideals in the factorization of Op[t].

(iii) If p ramifies, then Op[t] has a nontrivial radical and is a direct
sum of s (nontrivial) local rings.
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Proof. Theorem 6.5 is a direct consequence of the structure theorem,
Theorem 6.4. The m in Theorem 6.4 is the l.c.m. of the ramification
indices.

Remark. An ideal element m outside of the radical is cyclic, i.e.,
satisfies mn = m for some natural number n. If m = e is an
idempotent, then the powers of eA coincide with the orbit of e. This
is because (eA)n = eAn; thus, eA generates a cyclic group of order
dividing cp[t]. Using the standard matrix representation of elements
in O[t] or in Op[t], we can assign to each element a rank by letting
r(m) = rank (M), where M is the standard matrix representation of
m. We then observe that all elements in the same orbit have the same
rank; that the rank of a unit is k, the degree of the core polynomial;
and that the rank of an ideal element is at most the co-degree of the
ideal , i.e., k−d, where d is the degree of the minimal polynomial of the
ideal. (The rank of the representing matrix cannot exceed the degree
of the minimal polynomial.)

Theorem 6.6. Suppose that p splits and that {e1, . . . , es} is a
complete set of distinct primitive idempotents in Op[t].

r

( s∑
1

ej

)
=

s∑
1

r(ej) = k.

Proof. By Theorem 6.5 (ii), Op[t] is semi-simple. We observe that:
1 ≤ r(ej) < k, and since

∑s
1 ej = 1, r(

∑s
1 ej) = k. The proof will then

be a consequence of the following lemma and corollaries.

Lemma. If we let e be the sum of the elements in any subset of the
set of primitive idempotents {ei} and let e be the complementary sum,
then

r(e) + r(e) 6 k.

Proof. If E1 and E2 are k × k-matrices such that E1E2 = 0, then
r(E1) + r(E2) 6 k. Since E1E2 = 0, we have that r(E1) 6 ν(E2) 6
k − r(E2), where ν is the nullity of E2, and the lemma follows.
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Corollary 6.7.
r(e) + r(e) = k.

Proof. Using the above Lemma and the remark at the beginning of
the proof of the theorem, we have k = r(e+e) 6 r(e)+ r(e) = k.

Corollary 6.8.
r(ei + ej) = r(ei) + r(ej).

Proof. From Corollary 6.7, we have that r(e1) + r(e1) = k, so that
we can apply the above arguments to r(e1) = k− r(e1) to deduce that
r(
∑s

2 ei) =
∑s

2 r(ei); hence, Corollary 6.8 holds.

Theorem 6.6 follows now from the proof of Corollary 6.8.

Corollary 6.9. If we let B1, . . . ,Bs be the ideals Op[t]e1, . . . ,Op[t]es
in Op[t], and let B∗

j = Bj − {0}, then

B∗
1 × · · · ×B∗

s = Gp[t],

where Gp[t] is the group of units of Op[t]. If p does not ramify, the Bj

are finite fields.

Proof. This follows from Theorem 6.5, Theorem 6.6, the fact that
the ranks of nonzero elements of Op[t] are positive integers and that
an element of Op[t] is a unit if and only if its norm is not zero (see
[18]).

Corollary 6.10.

|Gp[t]| = |B∗
1| · · · |B∗

s | = (pr1 − 1) · · · (prs − 1),

where pri is the order of Bi and ri is the rank of ei.

Corollary 6.11. If p splits, the period cp[t1, . . . , tk] = lcm {cp(min−
poly (ei))}s1.
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Lemma. If e is an idempotent in an ideal of Op[t], then the Hp-
orbit of e consists of the powers of eA, a multiplicative cyclic group.
In particular, the order of eA divides cp[t].

Proof. All of this follows easily from the fact that (eA)n = enAn =
eAn, that eAcp = e, and that the length of any orbit divides the
period.

The following result gives a remarkable connection between the p-
periodicity of a linear recursion and the splitting properties of primes
in associated rational number fields.

Theorem 6.7. p divides cp[t] if and only if p ramifies.

Proof. First, we assume that p | cp[t] and that p does not ramify; but
then, by Theorem 6.5, Op[t] is semi-simple, and, so by Corollary 6.10,
p | (pri − 1) for some i. A contradiction. In particular, if p does not
ramify, |Gp[t]| and p are relatively prime. To prove the converse, we
observe that, if p ramifies, then each of the direct factors in Op[t] is a
nontrivial local ring, say Bj, where Bj = Ij/I

m
j . If B∗

j is the group of
units in Bj, then there is an idempotent ej in Ij and ej +m is a unit
in the local ring Bj, that is, is in B∗

j , whenever m ∈ Imj , i.e., whenever
m ∈ J. Moreover, there is a bijective correspondence between such
ms in Ij and the elements in the orbit of ej, so that by the Lemma, p
divides cp. Thus, p divides |Hp[t]| and, hence, the order of Gp[t].

Remark. The well-known fact that a rational prime p ramifies with
respect to a cyclotomic extension over CP (n) only if p divides n now
follows immediately from Theorems 2.1, 4.1 (iv) and 6.7.

Remark. Note that our notation cp[t] for period of Ap determined
by the core polynomial [t1, . . . , tk], for p = 1 or p prime, could as well
be written cp(Op[t]), where, of course, Op[e] = O if p = 1. (Here
it really doesn’t matter whether the core is irreducible or not, that is,
whether O is a number field, or merely a commutative ring.) Since each
maximal ideal in Op[t] is determined by and determines its minimal
polynomial, which in turn determines the periods of the p-factors of
the core polynomial of O, the notation cp(I) can be used to denote the
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period of Ap determined by a factor of the original core polynomial.
We use this notation in the statement of the next theorem.

Theorem 6.8. Suppose that the semi-local ring Op[t] has maxi-
mal ideals I1, . . . , Is, that is, suppose that the core polynomial has s
irreducible factors, denoting the radical of Op[t] by J. Then

(1)
|Gp(Op[t])| = |B1∗ | · · · · · |B∗

s | · |J|,

(2)
cp(Op[t]) = lcm {cp(I1), . . . , cp(Is)} · |J|,

where B∗
j = Ij/J, j = 1, . . . , s and p = 1 or p is prime.

Proof. Consider the exact sequence

J ½ Op[t] ³
Op[t]

J

where J is the radical of the ring. Since Op[t]/J is semi-simple, by
Corollary 6.11, cp(Op[t]/J) = lcm {cp(minpoly (Bj∗))}s1. If Op[t]
splits, that is, if the radical is 0, then we are done. In any case, by
Corollary 6.10, |Gp(Op[t]/J)| = |B∗

1| × · · · × |B∗
s | × |J|. It is clear that

units in Op[t] are mapped homomorphically onto the units of Op[t]/J
and, since u → u+ J,u ∈ Gp, part (1) of the theorem follows.

As for part (2) of the theorem, we have by Corollary 6.11 that
cp(Op[t]/J) = lcm {|B∗

1|, . . . , |B∗
s |} = lcm {(pr11 − 1), . . . , (prs1 − 1)} =

lcm {cp(Ij)}, that is, the least common multiple of the periods of the
irreducible factors of the core polynomial of Op[t]/J. But this number
is just the order of the period group (Hp+J)/J in O/J, which accounts
for the factor |J| in part (2) of the theorem.

Theorem 6.8 now enables us to prove:

Corollary 6.12. Suppose the core polynomial (reducible or not) fac-
tors (mod p) into s irreducible factors. Then the p-core polynomial is
the least common multiple of the periods of the irreducible factors times
the order of the radical of the semi-simple ring Op[t]. Furthermore, J
is nontrivial exactly when p divides the period. In terms of algebraic
number fields, this is just the case when p ramifies, i.e., when p divides
the discriminant of the field.
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Figure 3 with p = 3 and [t] = [4,−5, 2], illustrates the situation in
the case of a nontrivial radical:

[4,−5, 2] = X3
− 4X2 + 5X − 2 = (X − 1)2(X − 2)

R3 = [4,−5, 2]

G3 = H3 ∪ −H3

H3 = gp < A3 >

gp < 1 >

I1 =< X − 1 > I2 =< X − 2 >

(−1, 1, 0)
(0,−1, 1)
(1,−1, 0)
(0, 1,−1)
(1, 1, 1)

(−1,−1,−1)

(1, 1, 0)
(0, 1, 1)

(−1, 1,−1)
(−1,−1, 0)
(0,−1,−1)
(1,−1, 1)

(−1, 0, 1)
(1, 0,−1)
(0, 0, 0)

FIGURE 3.

Note that (0,−1,−1) is a unit in I2 and that I2−J is a multiplicative
group in which this unit acts as the identity. In this example |G3| = 12
and the period subgroup is gp〈A〉 = H3 has order 6, |H3| = 6.

In the case of number fields, it is a trivial fact that only finitely
many primes ramify. There are examples, however, when, for every p,
p divides the period; for instance, the following is such a case. Consider
the core polynomial [2,−1]. The 2-linear sequence {Fn[2,−1]} for this
core is just {1, 2, 3, . . . , n, . . . }. It is easy to see that c(Op[t]) = p for
every p.
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