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MAPS PRESERVING UNITARY SIMILARITY ON B(H)

SHUANPING DU, JINCHUAN HOU AND ZHAOFANG BAI

ABSTRACT. Let H be an infinite dimensional complex
Hilbert space and denote B(H) the Banach algebra of all
bounded linear operators acting on H. It is proved that a
surjective map ® on B(H) satisfying that, for any T, S, R €
B(H) and A € C, T +AS X R & &(T) + A\®(S) ~ &(R) is
either a unitary isomorphism or a unitary anti-isomorphism
multiplied by a scalar.

1. Introduction and statement of the main result. Linear
maps preserving similarity have been treated recently in a series of
papers. This topic belongs to a broad field of linear preserver problems
(see [1, 6, 12]). The linear maps preserving similarity on matrix
algebras were characterized completely in [7, 12, 13]. Similarity
preserving linear maps on infinite dimensional operator spaces were
studied by Ji, Du, Petek, Semrl and the present authors (see [2, 9-11,
15, 19]). Besides linear maps, the additive maps (even the nonlinear
maps) were studied and the similarity preserving property was replaced
by a weaker assumption of asymptotic similarity preserving (see [3-5,
8]).

Hiai, Li and Tsing studied not only similarity preserving linear maps
but also unitary similarity preserving ones on finite dimensional spaces.
The linear maps preserving unitary similarity in both directions on
infinite dimensional operator spaces were discussed in [16]. It is clear

that if @ is linear map on B(H) preserving unitary similarity in both
directions, then, for any T, S, R € B(H) and A € C, we have

(1.1) T+ AS ~ R <= &(T) + A\®(S) ~ &(R).

The aim of this note is to show that, for a surjective map ® (no linearity
is assumed) on B(H), the relation (1.1) alone is enough to determine
the structure of the map ®.
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In this paper, H will be a complex infinite dimensional Hilbert space
with inner product (-,-), and B(H) denotes the Banach algebra of all
bounded linear operators acting on H. Let A, B € B(H). A ~ B means
that A is unitary similar to B, that is, there is a unitary operator U on
H such that B = UAU*. S,(A) denotes the unitary similarity orbit of
A, i.e., the set of all operators that are unitary similar to A. A subset
M of B(H) is said to be unitary similarity invariant if S,(4) C M
for every A € M; if, in addition, M is a linear subspace, it is called a
unitary similarity invariant linear subspace. A map ® on B(H) is said
to be unitary similarity preserving if T ~ S implies that ®(T) ~ ®(S);
® is said to be unitary similarity preserving in both directions if 7' ~ §
if and only if ®(7) ~ &(S). Denote by F(H) the set of all finite
rank operators on B(H) and by Fo(H) the subspace of all finite rank
operators X with tr (X) = 0, where tr (X) denotes the trace of X. We
use the notation = ® y for a operator of rank not greater than 1 defined
by z — (z,y)x. It is well known that z ® y is a rank one nilpotent if
and only if both z and y are nonzero and (z,y) = 0. Note that the
rank one nilpotent operators x ® y and e ® f are unitary similar if and
only if [lz|[ly[l = [le[ll[f]]-

Our main result is stated as follows.

Main theorem. Let H be a complex infinite dimensional Hilbert
space, and let ® : B(H) — B(H) be a surjective map. If, for any
T,S,R e B(H) and A € C,

T+ AS X R« ®(T) + \&(S) ~ ®(R),

then one of the following holds:

(1) there exist a non-zero constant ¢ and a unitary operator U such
that ®(T) = cUTU* for all T € B(H);

(2) there exist a non-zero constant ¢ and a conjugate unitary operator

U such that ®(T) = cUT*U* for all T € B(H).

2. Proof of the main result. Before the proof of the main result
is given, some lemmas are needed.

Our first lemma is an improvement of [16, Lemma 1] and a shorter
proof is given here.
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Lemma 2.1. If M is a non-trivial unitary similarity invariant
subspace of B(H) with M # CI, then M D Fo(H). Here CI = {\I |
A e C}l.

Proof. Since M 1is a unitary similarity invariant subspace, it is
enough to show that M contains a rank one nilpotent operator. Let
P be a projection and A € M; then U = P +i(I — P) is a unitary
operator and the commutator [P, A] = (U*AU — UAU*)/(2i). So we
have [P, A] € M. Since every operator of B(H) is a linear combination
of projections, we see that [B, A] € M for all B € B(H). As M # CI,
there exist an operator A € M and a vector z € H such that Az and
x are linearly independent. Then, for a fixed nonzero vector yy € H,
B=AzQy —z® A*yp = [A,2 ® yo] € M. Pick zo,z € H such
that (xo,y0) = (zo, A*yo) = (z,2) = 0, (Az,z) = 1. By a simple
computation, the rank one nilpotent operator zo ® yo = [z ® 2, B] €

M. o
The following lemma can be found in [16].

Lemma 2.2. An operator N € Fo(H) is a rank one nilpotent if and
only if

(i) N X aN for all |a| =1, and
(ii) for every M € Sy(N), the following implication holds true:

IfN+M ~ N for somey # 0, then for every B3, |3| = 1, there exists
a nonzero & such that N + M ~ 6N.

The next lemma is crucial for our purpose and was proved in [5],
where the real case and finite dimensional case were also considered.

Lemma 2.3. Let X be a complex infinite dimensional Banach space,
and let N1(X) be the set of all rank one nilpotent operators in B(X).
Suppose that ® : N1(X) — Ni(X) is a bijective transformation with
the property that

T+8SeN(X)<= o(T)+ 2(S) € M1 (X)
for all T,S € N1(X). Then there exists an invertible bounded linear
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operator or conjugate linear operator A : X — X such that
®(T) = A\pATA™" for all T € N1 (X),

where Ar is a scalar depending on T'; or there exists an invertible
bounded linear operator or conjugate linear operator A : X* — X such
that

®(T) = A\pAT*A™ Y for all T € N1 (X),

where Ap s a scalar depending on T'.

Proof of Main theorem. We finish the proof by checking several
claims.

Claim 1. ®(0) =0 and ® is injective.

For any operator T' € B(H), by the assumption of the main theorem,
T-T~0= &) ®(T)~ &0), and so ®(0) = 0. If ®(T) = &(S),
then ®(T) — ®(S) ~ 0= ®(0) and T — S ~ 0. Thus T = S, as desired.

Claim 2. ®(Fy(H)) = Fo(H).

Firstly, we prove that ®~!(F ( )) is a unitary similarity invariant
subspace. For any 7,5 € &~ !(Fy(H)) and a € C, ®(T),®(S) €
Fo(H) implies ®(T) + ®(S), a®(T ) € Fo(H). By the assumption,
T+ S,aT € ®~1(Fy(H)), that is, ®~1(Fo(H)) is a linear subspace.
For any operator T' € ®!(Fy(H)) and R € S,,(T), using the property
of &, we have ®(R) ~ ®(T) € Fy(H). Since Fo(H) is a unitary
similarity invariant subspace, we get ®(R) € Fo(H). Hence, R €

“1(Fo(H)) and thus ®~'(Fy(H)) is a unitary similarity invariant
subspace. Clearly, ®~!(Fo(H)) # CI. By Lemma 2.1, ®~(Fo(H)) 2
Fo(H), i.e., ®(Fo(H)) C Fo(H). The reverse inclusion holds because
® and ® ! have the same property.

Claim 3. & preserves the rank one nilpotent operator in both
directions and T+S € N1(H) < ®(T)+®(S) € N1(H), where N1(H)
denotes the collection of all rank one nilpotent operators in B(H).

Let N € Ni(H). By Claim 2, we have ®(N) € Fy(H). For a € C
with |a| = 1, N X aN implies ®(N) ~ a®(N). Thus &(N) is nilpotent.
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Suppose M € S,(®(N)) and ®(N) + M ~ y®(N) for some nonzero
complex number . By the assumption, there exists an R € S,(N)
such that N + R ~ & !(y®(N)) ~ yN. By Lemma 2.2, for any
complex number S with |3| = 1, there exists a non-zero complex
number § satisfying N + B3R ~ §N and consequently ®(N) + S®(R) ~
®(6N) ~ §&(N). By Lemma 2.2 again, we know that ®(N) € N1 (H).
Suppose T + S € Ni(H). Then ®(T) + ®(S) ~ &(T + S) € Ny (H).
Since the map ®~! has the same property, ® must preserve rank one
nilpotent operator in both directions and T'+ S € N;(H) if and only
if ®(T) + ®(S) € N, (H).

Claim 4. One of the following statements holds:

(i) There ezists a unitary or conjugate unitary operator U such that
®(T) = \pUTU* for all T € N1(H), where A is a non-zero complex
number depending on T’

(ii) There exists a unitary or conjugate unitary operator U such that
®(T) = A\pUT*U* for all T € N1(H), where Ar is a non-zero complex
number depending on T.

In fact, by Claim 3 and Lemma 2.3, one of the following must be true:

(a) There exists a bounded linear or conjugate linear invertible
operator A such that ®(T) = \pATA~! for all T € N7 (H) with Az a
non-zero complex number depending on T

(b) There exists a bounded linear or conjugate linear invertible
operator A such that ®(T) = ApAT*A~! for all T € Ni(H) with
Ar a non-zero complex number depending on 7.

Assume that (a) holds. For any unit vector z in H, let P = z ® z.
We have

z2@zP(P)[-2z®z) =2 (®(P)'z — (®(P)"z,z)x),
(I-z22)®(P)z@z = (®(P)zr— (®(P)z,z)r) ® .
Let y = ®(P)*z — (®(P)*z,z)z, 2 = ®(P)z — (®(P)z,z)x. Then
(x,y) = (@, z) = 0. For any complex number 8 # 1 with modulus one,
it is easily seen that W = Sz @z + (I —z ®x) is a unitary operator and

We(P)W* = ®(P)+ (8—1)z®y+ (B8 —1)z®z. By the hypothesis of
the main theorem, we have P~ P+ ® (B -1z @y + (B —1)z®x).

This further yields that there exists a unitary operator V such that P ~
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VPV* + (5 1)eayA (B — l)ac ®y)A—|—5 Z®ZA H(B—1)z@zA).
So 8(g—1)zeyA (B — 1)z ® y)A + 0F1 Z®EA HB-1z®z)A is
self-adjoint and thus Az € [(A~1)*((8 — 1)y), (A71)*((8 — 1)z)]. Now
(Az, (A~H*((B—1)y)) = 0 implies that Az € [(A~)*((B—1)x)]. Hence
A* = cA~! for some scalar c. Since AA* = cI, we see that ¢ > 0. Let

= (1/4/c)A. Then U is a unitary or conjugate unitary operator and
®(T) = \pUTU* for all T € Ni(H), i.e., (i) holds. Similarly, if (b)
holds, then (ii) must be true.

Define ¥ : B(H) — B(H) by ¥(T) = U*®(T)U if ® takes form (i)
in Claim 4, by ¥(T) = U*®(T)*U if ® takes form (ii) in Claim 4.
Obviously the bijection ¥ satisfies that, for any 7,5, R € B(H) and
AeC,

(2.1) T+ AS A R <<= U(T)+7(\)¥(S) ~ ¥(R),

where 7(\) = X or 7(\) = \. It is also evident that ¥(T) = AT for
all T e Ni(H).

Claim 5. Let vectors z,y, f,g € H be such that {z,y} and {f, g}
are linearly independent sets with (z,f) = (y,g) = 0. Then, there
exist complex numbers «;,B;, i = 1,2, such that ¥(z @ f +y® g) =
(1z + B1y) ® f + (c2z + B2y) ® g.

Because

V(e f+y®g) Yz f)~ U (y®yg),

there exist vectors wy, vy with (wy,v1) = 0 such that
VR f+y®Yg) = Aefr® f+ws Qvy.

Similarly,
V(e f+y®9)=Ayogy ®9g+ws @ vy

holds for some vectors ws,vs € H with (ws,v9) = 0. Thus we have
Ae@fTR f—Ayogy®g = wa®@vs —wi ®v;. Note that x and y as well as f
and g are linearly independent, so wy,ws € [z,y], v1,v2 € [f, g], where
[, y] denotes the linear space spanned by z,y. Write w; = y12 + Y2y
and vy = 61 f + 02g; then ¥(z® f +y® g) = Mgz ® f + (12 +72y) ®
(01f +029) = (Maws +7101)2 +72019) @ [ + (11022 + 71202y) @ g. Let
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a1 = Azgf + 7101, B1 = 7201, a2 = 7102 and Bz = 728, The desired
conclusion follows.

Claim 6. For every projection P (i.e. P = P* = P?), there exist
Ap,pp € C such that V(P) = ApP + ppl.

For any unit vector z, let y = U(P)*z — (V(P)*z,z)x and z =
U(P)x — (¥(P)x,z)x. Then, for any complex number 3 # 1 with
modulus one, using the methods as in Claim 4, it is easily seen that
P~ P+U~Y(F), where F = (f—1)z®y+(f—1)2®z. This implies that
U—L(F) is self-adjoint. Therefore, 6(5_1)w®y(ﬂf1)x®y+5(ﬁ_1)z®z(,§,
1)z ® z is also self-adjoint. Here dp = Ay~ ' for T € Ni(H). Thus
z=pyand ¥ 1((B—1)2®z) = §(5_1)rey(B—1)y®z. By Claim 5, there

exist o, Bi,i = 1,2 satisfying P ~ P+ (oqz+F1y) @z + (asz + Foy) ®y.

In the following, we will prove y = 0 whenever z is in the range of P
or the kernel of P. Assume, on the contrary, that y # 0. Then

) ar azlyl 0
OHF) = | Bullyll Ballyl* 0
0 0 0

according the space decomposition H = [z] ® [y/|lyl]] @ [z,y/||yl]*-
Note that ¥=1(F) is self-adjoint and ¥~ (F) € Fo(H). So

1 o Billyl 0
vUE) = | Bl en 0],
0 0 0

a1 € R. Now, it is easy to see that

Y S Sp-1)eey(B =Dyl 0
UHF) ~ | 8- naey(B— Dyl 0 0

Let v = d(3—1)a0y (8 — 1)||y||; then

o

u

THF)? = (o + 1B lyl?) bl

OO =
o = O
o O O
2
OO =
o = O
[an)
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This implies

(2.2) of + |Ba[*lyll* = 1yI*.

Because

ar  Bifyll=v 0

Ballyll —ay 0] =v"F)-¥ H((B-Dzy) c Ni(H),
0 0 0
we have
(2.3) Billyll(Bullyll = 7) = —af.

Obviously, ¥(P) ~ ¥(P) + F implies that P ~ P + ¥~1(F) and
(P+ U~ HF)2 =P+ U Y(F).

If z € Rog(P) (Rng(P) denotes the range of P), then P =
0 0

1
<0 Py Pp3 | according to the space decomposition H = [z] @ [y/||y||] @
0 P32 Ps3

[z, y/lyll]*- So
l+a;  Bullyl 0
P+ U Y (F)=| Billyl Piz—oa1 Pas
0 Psy Py

according to the same space decomposition. Comparing (P+¥~!(F))?

with P+ ¥~ !(F) in the (1,1)-entry, we get

(2.4) Bil*yll* + af = —as.

Combining (2.2) with (2.4) gives

(2.5) a1 =~y

which reduces relation (2.4) into

(2.6) Bul*lyll* = yI* = 11"

Combining (2.5) and (2.6) with (2.3) gives v = 0 or Si|ly|| = 7. If

Billyll = %, (2.6) also induces v = 0. Thus V=1((B - 1)z ® y) =
vz ® (y/||lyll) = 0, a contradiction.
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00 o0

If © € ker (P) = Rng (I — P), then P = (0 Q22 st) according to
0 Q32 Q33

the space decomposition H = [z] @ [y/||y||] ® [z,y/||y||]]*- This further

yields o
o Bullyll 0
P+ \I’_I(F) = ,31||y|| Q22 —01 Q23
0 Q32 Q33

Comparing (P +¥~1(F))? with P+ ¥U~!(F) in the (1,1)-entry, we also
have

(2.7) B yll* + af = .

It follows from (2.7) and (2.2) that oy = |y/% this will lead to a
contradiction either way.

Thus y = 0 and ¥(P)z = (¥(P)z,z)z whenever x € Rng(P) U
ker(P). Thus there exist scalars A and p such that ¥(P) = AP+ u(I —
P). Now the conclusion of Claim 6 is obvious.

Claim 7. There exists a non-zero complex number \g such that
U (I) = Ml and VU (P) = M\P for every rank one projection P € B(H).
It is easy to see that ¥(I) = Aol for some nonzero complex number
Ao by Claim 6. Let P = z®u, ||z|| = 1. Since H is infinite dimensional,

there exists a sub-projection @ of I — P such that Q +z @z ~ Q ~
(I — Q). By the assumption, ¥(Q) ~ ¥(I) — ¥(Q). It follows from

Claim 6 that 0
v - (5 )

and

wn—wm—(Mg& Mﬂm)

according to the space decomposition H = Q(H) & (I — Q)(H).

Thus we must have & + 77 = X\o. Since Q +z ® z ~ @, we have
U(Q) + ¥(z ®z) ~ ¥(Q). Using Claim 6 again, we can rewrite

& 000
v@)=10 m 0
0 0 m
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and
nz 0 0
U(zez)=| 0 & O
0 0 ns

according to the space decomposition Q(H)@® P(H)® (I —Q — P)(H).

By the above matrix representation, in order to complete the proof of

Claim 7, we need only to show that 73 = 0 and &5 = Ap. Assume
&2 0 0

that ¥(Q +z® x) = <0 & 0 ) Since Q+z®z~ 1 —(Q+z® ),
0 0 n2

just like the proof of & + n1 = Ag, we can get & + 12 = Ag. From

V(Q+2z0z)~ Q)+ T (z®2),ie.,

& 0 0 . &1 +ms 0 0
(2.8) 0 & 0|~ 0 m + &3 0 ,
0 0 mno 0 0 m +ns

we know that one of the following three equations holds: & + 73 =
m+&s & +ns=m+nsand m + & =m +n3. &+ 03 =m0+,
then & = n1, ¥(Q) = m I, a contradiction. Similarly, n; + &3 =n1 + 13
will lead to a contradiction, too. So we have & + 13 = 11 + £3. It also
follows from (2.7) that either

(2.9) {51+773=771+53=§2
m +n3 = N2

or

oo {ormnresn
m+ns =&

If (2.10) holds, then & +n; + 213 =&+ 2. As & +n1 = &2+ 12 = Ao,
m 0 0
we see that n3 = 0. So &1 =n2, 1 = &2 and ¥(Q+2®x) = ( 0m 0 >
0 0¢&
Now, it follows from Q+z®z — Q ~ z®x that ¥(Q+zr®z) — ¥(Q) ~
U(z®z),ie.,

m—§& 0 0 0
0 0 0 ~ 10
0 0 51—’!71 0

o™ o
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a contradiction. Therefore, (2.9) must be true. Using &;1+1n; = {a+12 =
Ao, we also have 93 = 0 and so & = &2, M1 = n2. It is easy to see that
& = (Mo +&)/2 and n2 = (Ao — &€3)/2. Thus

Ao+&s 0
v(Q) = ( (2) Aogg;; > )

according to the space decomposition H = Q(H) & (I — Q)(H).
Choose two sub-projections @1, Q2 of @ such that @1 + Q2 = @ and
Q1 ~ Q2 ~ (I —Q1)~ (I —Q2). Then ¥(Q;) + ¥(Q2) ~ ¥(Q) since
Q1+ Q2 ~ Q. It follows that

)\0—;53@1—1-AO;£3(I—Q1)+)\0—2’—63@24—)\0;&’(1—@2)
£A0;£3Q+)\0;€3(I_Q),

ie., &0Q + (o — &) ~ £Q + [(Ao — €3)/2]I. Hence we must have
Ao = &3.

Claim 8. V¥ preserves rank one operators in both directions.

Since ¥ and ¥~! have the same properties, we need only to check
that ¥ maps rank one operators to rank one operators. Let z,y € H
be nonzero vectors. Note that ¥(z ® y) ~ ||z||¥((z/||z||) ® y). Thus

we may assume ||z|| = 1. By Claim 4 and Claim 7, we need only
to treat with the case that & and y are linearly independent and
(z,y) # 0. So y = (y,z)x + z for some nonzero z € [z]' and

V(z®Ry) =¥z, y)r@r+2r®2). By (2.1), 20y ~ (z,9)zQr+1r® 2
implies ¥(z ® y) ~ 7({(z,y))¥(z ® z) + ¥(z ® 2). Using Claim 4 and
Claim 7 again, we have

U(z®z) =Mz 2,

U(z® 2) = Apg.Z ® 2,

and s0 ¥(z ®y) ~ 7((z,y)) Aot ® T + \pg.r ® 2. Hence ¥(z ®7y) is a
rank one operator.

Claim 9. There exists nonzero scalar ¢ such that V(F) = cF for
every F' € F(H), where F(H) denotes the collection of all finite rank
operators in B(H).
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For every T,S € B(H), if rank (T — S) = 1, using ¥(T) — ®(S) ~
U(T — S) and Claim 8, we have rank (¥(7') — ¥(S)) = 1. Since ¥
and ¥~! have the same property, we see that rank (' — S) = 1 <
rank (¥(T') — ¥(S)) = 1. The next easy observation is that ¥ preserves
all rank distances, that is,

rank (T — S) = rank (¥(T) — ¥(S)), T,S € F(H).

Indeed, it is easy to see that if rank (T'—.S) = m implies the existence of
operators T' = T,,T4,...Tyy—1, T, = S such that rank (7; — T;-1) =1,
i = 1,...,m. It follows that rank( (T;) — ¥(T;-1)) = 1. By the
triangle inequality, we have rank (¥(7) — ¥(S)) < m = rank (T — 5).
Considering U1 instead of ¥, we get the reverse inequality. Thus
U : F(H) — F(H) is a bijective map preserving adjacency in both
directions. By [17, Theorems 1.5 and 1.6] and ¥(0) = 0, there
exists an ring automorphism ¢ : C — C and o-linear bijective maps
A, B : H — H such that either

Y(zQy)=Axz® By foralz,yc H
or

Y(z®y)=By® Az forall z,y € H.

Note that U(T) = ApT for every rank one nilpotent operator 7. Thus
both A and B are scalar operators. Hence, there is a scalar ¢ so that
¥(z ®y) = cx @y holds for all z,y € H. Furthermore, using [17,
Theorems 1.5 and 1.6], we see that ¥ is additive on F(H) and therefore
U(F') = cF holds for every F € F(H).

Claim 10. For every finite rank operator F', the main theorem holds.
By Claim 9 and the definition of ¥, one of the following is true:

(i) there exist a constant ¢ and a unitary operator U such that
®(F) =cUFU* for every F € F(H);

(ii) there exist a constant ¢ and a conjugate unitary operator U such
that ®(F) = cUF*U* for every F € F(H);

(iii) there exist a constant ¢ and a conjugate unitary operator U such
that ®(F) = cUFU* for every F € F(H);
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(iv) there exist a constant ¢ and a unitary operator U such that
®(F) = cUF*U* for every F € F(H).

We need to check that neither case (iii) nor case (iv) holds. Otherwise,
for every F € F(H) and A € C, ®(AF) = A®(F). On the other
hand, by our assumption on ® we have ®(AF) ~ A®(F). Thus

A®(F) ~ A®(F) for every finite rank operator ®(F) and every complex
number A, which is impossible.

By Claim 10, in the following, we may, without loss of generality,
assume that ®(F) = F for every F' € F(H). To finish the proof, we
need to show that ®(7") = T holds for every T € B(H).

Claim 11. For every unitary operator U € B(H), there ezists a
complex number éy such that ®(U) =U + oy l.

Let = be a unit vector. Denote y = ®(U)*z — (®(U)*z,x)z and
z=®(U)z—(®(U)z,z)z. Then, according to the space decomposition
H = [z] @ [z]*, we have

Ui Uiz Wi z®y

U_<U21 U22>’ q)(U)_<z®m W22>'
Firstly, we check that Us; = 0 if and only if z = 0. Indeed for any
complex number B with modulus one, we have ®(U) ~ ®(U) + F,
where F = (8 — 1)z ®y + (8 — 1)2 ® z. This implies that U ~ U + F
and hence U + F is a unitary operator. It follows from UU* = I and
Uy = 0 that U22U52 = I[z]L Thus, (U+ F)(U—‘,—F)* = I implies that
|8 —1[?||z]|*2® 24 UzaUsy = I|;).. This details that z = 0. Since ® and
®~! has the same property, z = 0 implies Uz; = 0. In order to complete
the proof of Claim 11, we need only prove that (®(U) —U)z € [z] holds
for every unit vector x € H. If z = 0, then Us; = 0. In this case we have
o(U)z = (®(U)z,z)x and Uz = (Uz,z)z. Thus (®(U) —U)zx € [z]. If
z # 0, then

(2.11) B-1DUnz@z+B-1)20Ungz+|B-17202=0,

since UU* = (U + F)(U + F)* = I. So there exists some scalar § such
that Upyx = 0z, which reducing relation (2.11) into

(B-=1)68+(B-1)0+|8-1)2®z=0.
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Hence,

B-13+(B-1)5+[8-1*=0
holds for every 8 € C with || = 1. Picking 8 =i, we get

(2.12) 2Re ((i — 1)8) + |i — 1] = 0.
Choosing 8 = —i, we get
(2.13) 2Re ((—i —1)8) +| —i —1|> = 0.

Combining (2.12) and (2.13) gives § = 1, i.e., Unyz = Uz — (Uz, )z =
z = ®(U)z — (2(U)z,z)x. So we still have (®(U) — U)x € [z], as
desired.

Claim 12. ®(T) =T for every T € B(H).

Firstly, we will prove ®(S) = S+dsI for every self-adjoint operator .S,
where dg is a scalar depending on S. Let S be a self-adjoint operator;
then S can be written in the form S = n(U + V), where U,V are
unitary operators and 7 is a scalar. Thus ®(S) ~ 7n(®(U) + &(V)) =
U + 6yl +V + 0yI) = S + 0sI. Therefore, there exists unitary
operator Wy such that ®(S) = WsSW§ + dsI. Choosing arbitrarily a
finite rank self-adjoint operator F', we have

S+F+ 65l ~®(S+F)~®(S)+ ®(F) = WsSWE+ F + 6s1.

So 0e(S + 0ptsl) = 0e(WsSW§ + 6sI), where o.(-) denotes the
essential spectrum of operator. This further yields dpys = dsI, and
hence F + S ~ F + WsSWS. Let us check that S = WgSW{. For
any vector u € H, define analytic functions ¢, and ¢, by ¢,(A) =
<(>‘ - S)ilua’U’) and '(/}u()‘) = <(>‘ - 5)71W§U,W§U>, |)‘| > H‘S’Ha
respectively. If § # WgSW{, there exist up and real number Ag
such that @u,(Ao) # ©Yue(Xo). Assume that ¢, (Ao) # 0, and let
a = (1/¢us(X0)). Then o € R and aug @ ug is self-adjoint. It is
obvious that Ag € o(S + aug ® up) while Ay ¢ o(WsSW{ + aup ® ug),
which contradicting to the fact that S+ aug®ug ~ WsSW 3+ aup@up.
Therefore, we must have ®(S) = S + ds1.

For every T € B(H), we can write 1" in the form 7" = S + iS; with
Sy, Sy self-adjoint. Clearly, ®(T) ~ ®(S;)+i®(Sy) = T+drI. So there
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exists a unitary operator Wr such that ®(T") = W TWr+drI. For any
rank one operator z®y € B(H), we have ®(z@y+T1) ~ ®(zRy)+®(T),
that is,

@y +T + bpgyir] ~ 2@y + WiTWr + o7l

This implies that 0.(T + dpeyrrl) = oo(W; ' TWy + §7I). Hence,
Orgy+r = 07l and c @y + T Nrey+ W;lTWT holds for all rank

one operator £ ® y. Now a similar argument as that in the previous
paragraph shows that T = W;TWr and hence ®(T) =T + or1.

It remains to check that d7 = 0 for every T'. For any T, S € B(H) and
a € C, S+aT ~ (S + aT) implies that ®(S) + a®(T) ~ (S + oT),
that is, S + 6sI + o + adrl ~ S + aT + dstarI. Comparing the
spectra, it is easy to see that dg o7 = ds + adr, ie., § is a linear
functional on B(H). Let N be a square-zero operator; then N ~ BN
holds for every complex number 8 with modulus one. Thus we have
N +6nI ~ BN + BSn1 as § is linear. It follows that x5 = By and
hence § = 0. Note that every operator on H can be written as a sum
of at most five square zero operators [14, Theorem 2]. So we must have
61 = 0 for every operator T, finishing the proof. |
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