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WELL-POSEDNESS AND DISSIPATIVITY FOR A
MODEL OF BACTERIOPHAGE AND BACTERIA
IN A FLOW REACTOR

HAL L. SMITH

ABSTRACT. The Levin-Stewart model of bacteriophage
predation of bacteria in a chemostat is modified for a flow reac-
tor in which bacteria are motile, phage diffuse, and advection
brings fresh nutrient and removes medium, cells and phage.
A fixed latent period for phage results in a system of delayed
reaction-diffusion equations with non-local nonlinearities. We
show that the model generates a well-posed dynamical system
which has a compact global attractor.

1. Introduction. Levin et al. [10] and Lenski and Levin [9] model
bacteriophage predation on a bacterial host which in turn consumes a
limiting nutrient in a chemostat by the system

S'(t) = D(S° — S(t)) — £(S(t))B(t)
B'(t) = (f(S(t)) — D) B(t) — kB(t)P(t)
(t) = kB(t)P(t) — DI(t) —e P"kB(t — 7)P(t — 7)
() EB(t)P(t) + Be PTkB(t — 7)P(t — 7).
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S is the resource supporting bacterial growth, B is uninfected bacteria,
I is phage-infected bacteria and P is phage, short for bacteriophage. S°
is input nutrient concentration supplied to bacteria, D is the dilution
rate of the chemostat and f(S) is the specific growth rate of bacteria
at resource level S. The specific growth rate f is typically taken to be

of Monod type:
msS
S =
1(S) a+ S

where m,a > 0. However, we need only assume that f: Ry — R, is
C' and

(2) f0)=0,  fi(8)>0,  f(o0) < oo
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Phage attach to the cell surface of a bacterium and inject their DNA
into it. This causes the bacterium to begin to synthesize viral DNA and
viral proteins in order to make new virus. After a time 7, called the
latent period, this is complete and the bacterium lyses open releasing
the new virus. Latent periods vary by bacterial type but are usually in
the half hour to hour range. Denote by 3 the average number of progeny
released when an infected cell lyses. The factor e P7 in the equations
accounts for the fraction of infected bacteria that survive being washed
out of the chemostat during the latent period. More generally, the
probability of phage, nutrient, or bacteria avoiding washout in a time
period of length ¢ is e~ P?.

Several important assumptions are made in formulating the model:
(1) nutrient uptake by infected cells is negligible, (2) infected cells
do not grow and divide, (3) phage binding to infected cells can be
neglected, and (4) deactivation of phage can be neglected. We have
scaled out the yield constant, a positive number multiplying f(5) in
the equation for S.

Nonnegative initial data for B and P must be prescribed on [—T, 0]
but only S(0) need be prescribed.

The interesting dynamics generated by system (1) have been investi-
gated recently in [2, 16, 18].

Our interest in the present paper is to study the behavior of the
analogous phage-bacteria model in a tubular flow reactor where spa-
tial effects become important. The flow reactor has often figured in
ecological modeling [1, 3, 8, 14, 15| because it is one of the simplest
spatially non-homogeneous environments featuring advection and dif-
fusion. The flow reactor consists of the portion 0 < z < L of a tube
with axis of symmetry along the z-axis through which liquid medium
flows with constant velocity in the direction of increasing z. The fluid
upstream of & = 0 brings nutrient at constant concentration into the
reactor; unused nutrient and any contents of the reactor are carried
out of the reactor at z = L by the flow. We assume that bacteria and
virus in the flow reactor undergo random diffusion as well as advecting
with the flow. Bacterial chemotaxis is neglected in the current model,
although we aim to consider it in the future.

For a flow reactor of length L, with flow velocity v, and diffusion
coefficients d;, i = 0,1,2,3 for the constituents, the model equations
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take the form:

(3) Sy = doSye — vS, — Bf(S)
By = dy By, — vB, + Bf(S) — kBP
P, = d3P,, — vP, — kBP

L
+k6/(; G(Tal‘ay)B(tha y)P(thvy) dy

with Danckwerts boundary conditions (see [1, 8]):

(4) doS,(t,0) — vS(t
dy B, (t,0) — vB(t,
ds P, (t,0) — vP(t

G(t,z,y) is the probability density that an infected bacterium is at
position x at time ¢t given that at time ¢ = 0 its position was y. It is
the Green’s function satisfying, as a function of (¢, z),

Gt = dZsz - UGwv G(Oaxay) = (5(37 - y)

with boundary conditions as above for P, but with dy in place of ds,
and where y € [0, L]; § denotes the Dirac “function.” See [4, 7] for the
connection between probability theory and Green’s functions. Here, da
is the motility coefficient for infected cells, denoted by I, which may
differ from un-infected cells denoted by B.

The integral term in the P equation:

L
k/ G(r,z,y)B(t —7,y)P(t —1,y) dy
0

gives the amount of infected cells which were infected at time ¢ — 7 at
various positions y € [0, L] but at time ¢ are at  where they lyse.

Initial data must be prescribed:
S5(0,z) = S*(z)
(5) B(eax) = B*(a,l‘), (0,1‘) € [77-7 0] X [OaL]
P(6,z) = P*(0,z)
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Infected cell density is given by

T L
6)  I(tx)= / / Gla, 2, )kB(t — a,y)P(t — a,y) dyda

where it is understood that equations (5) extend functions B and P
for negative values of their argument. The integral captures all cells
infected after time ¢t — 7 but before time ¢ which are still in the reactor
at time ¢. I satisfies

(7) I, = dyI,y — vI, + kBP

L
_k/ G(Taxay)B(t_Tay)P(t_Tay)dy
0
0 = do I, (t,0) — vI(t,0) = I(t,L).

Equations like (3) containing non-local terms were introduced by
Marcati and Posio [11] in a vector-disease model and by Gourley and
Britton [5] and Thieme and Zhao [19] for predator-prey models.

We show that the system (3)—(5) can be formulated as a delay

differential equation in the Banach space C([0, L], R4+)x C([0, L], Ry) x
C((0, L], Ry ):

% — AoR(t) + £(S° — R(£))B()
(8) % = A1B(t) + f(S° - R(t))B(t) — kB(t) P(t)
% = A3P(t) — kB(t)P(t) + Bg(kB(t — 7)P(t — 7))

where R = S° — § takes values in [0, 5°] and satisfies homogeneous
boundary conditions. The A; denote appropriate differential operators
with domain incorporating homogeneous boundary conditions from (4),
and where g : C([0,L],Ry) — C([0,L],R}) is the compact, positive
operator given by integration against Green’s function G. Technically,
the formulation (8) requires the restriction of initial data S* to take
values not exceeding S°, which is reasonable since this set is positively
invariant and attracting by standard parabolic comparison arguments.
The abstract formulation (8) leads to well-posedness results and implies
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that the system generates a nonlinear semiflow on a suitable space. In
addition, we show that solutions are uniformly ultimately bounded and
that the dynamical system has a compact global attractor of bounded
sets. These results will lay the foundation for future work focusing
on persistence of bacteria and bacteriophage and on the existence of
coexistence equilibria.

2. Preliminaries. Given d > 0, the eigenvalue problem

)\qﬁ:dqf)"quﬁ'

(9) 0 = d¢'(0) — v$(0) = ¢'(L)

is of critical importance here. The self-adjoint form of the differential
equation
(def(v/d)zqﬁl)l — )\ef(v/d)z(ﬁ

reveals the weight function e~ (*/#% in the orthogonality relations.
Eigenvalues of (9), {An}n>1, ordered from largest to smallest, are
negative and A\, — —oo. When it is important to specify a value
of d, we include it in our notation as A, (d). Corresponding normalized
eigenfunctions are denoted by {¢,(z)}:

L
/ P2 (x)e” W/ Drdr =1, n >1
0

Without loss of generality, we can take ¢1(z) > 0, 0 < x < L. The
corresponding principal eigenvalue can be expressed as

(10) AL = —%)\*(d/Lv)

where A* : (0,00) — (1, 00) is strictly decreasing with A*(0+) = oo and
A*(00) = 1. See [1].

The parabolic initial boundary value problem
Ui =dUzy —vU;, t>0,0<zx<L

(11) 0=dU,(t,0) —vU(t,0) = Uy(t,L), t>0
U0,z) =Up(z), 0<z<L
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has the formal solution

L
Ut.o) = [ Gt )Ua(w) dy

0

in terms of the Green’s function

(12) G(t,z,y) = em (/A Z e)‘"tqﬁn(:v)¢n(y).

n>1

The following result is classical (see [14]). If ¢ € C([0,L],R), we
write ¢ > 0 if ¢(z) > 0 for all z, § > 0if ¢ > 0 and ¢(z) > 0 for
some z, and ¢ > 0 if ¢(z) > 0 for all z. All norms in this paper are
supremum norms.

Proposition 2.1. Define

T()¢)(x) = / G(t,z,9)d(y) dy, @ € [0,1], £ > 0.

Then {T'(t)}+>0, with T(0) = I the identity operator, defines a strongly
continuous semigroup of bounded linear operators on C([0,L],R).
There exists M > 0 such that

(13) IT(t)oll < MeM*|oll, t>0, ¢ €C([0,L],R)

and T(t) is a contraction:

(14) IT@®)Voll < [Toll, ¢ =0.

T(t) is a compact operator for each t > 0 and it is strongly positive,
that is,

(15) $p>0, t>0=T(t)p>0.

Indeed, G(t,z,y) > 0 fort > 0, z,y € [0,L]. The unique solution of
(11) is given by U(t,z) = [T(¢)Up](x).
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3. The solution semiflow.

3.1. Existence, continuation, and continuous dependence of
solutions on initial data. In this section, we focus on well-posedness
issues for the initial value problem (3)—(5).

Let X = C([-7,0] x [0,L],R) be the Banach space of continuous
real-valued functions on [—7,0] x [0, L] with the supremum norm and
Y = C([0, L], R) the Banach space of continuous real-valued functions
on [0, L] with supremum norm. We use || e || for both norms, the
context signaling the appropriate interpretation. X can be identified
with C'([-7,0],Y). We denote by X and Y, the cone of nonnegative
functions in X and Y, respectively. Then our state space is Z, =
Y, x X, x X, the nonnegative cone in the Banach space Z =Y x X2,
the latter given the norm ||(S, B, P)|| = max{||S||, || B||, | P||}. Iff ¢ >0
and B : [-7,0) x [0,L] — R is continuous and 0 < t < o, then we
define B; € X by

Bi(0,z) = B(t+0,z), 6¢€[-7,0], z<€]0,L].

We use the same notation for a continuous map B : [-7,0) — Y. This
notation should not conflict with our earlier use of subscripts for partial
derivatives as we will not use the latter in the remainder of this section.

Let A denote the differential operator defined by Ay = dvy" — vy’
with domain D = {¢ € C?[0,L] : dy'(0) — v1(0) = 0 = ¢/(L)} and let
A; denote A with d = d;. Let T;(t) : Y — Y be the strongly continuous
semigroup generated by the closure of A; in C(]0, L], R) described in
Proposition 2.1. Each T;(t) is compact for ¢ > 0 and positive in the
sense that T;(¢)Y; C Y;.

Setting R = S°—S, which takes values in [0, S°], we formulate (3)—(4)
as the delay differential equation in the Banach space (Y} )3 given by:

% = AgR() + £(5° ~ R(1)B()
(16) Cfi_f — AL B(t) + £(S° — R(t))B(t) — kB(t)P(t)
4P

= AyP(t) ~ kB()P(0) + Bg(kB(t — 7)P(t — 7))
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where g : C([0,L],Ry) — C([0,L],R;) is the compact, positive
operator given by integration against Green’s function G:

L
sO)@) = [ Gr2,0)U ) dy = (1:(1)V)(0)
0
In addition, initial conditions are given by

R(0)=R*=8°-9*
(17) B(e) = B*(e)a AS [77-’ 0]

where (S*, B*, P*) € Z, and it is assumed that 0 < $* < S°. Thus, we
will seek solutions of (16)—(17) which take values in the convex subset

C={(R,B,P) € (Yy)*: R < S}
If we write u = (R, B, P), then (16)—(17) takes the form

du
i Au+ F(ug), ug=u"

where A = (Ao, A1, A3) and F = (F1, F», F3) and F; : C — Y is defined
by:

Fo(R, B, P)(z) = B(0,2)§(S° ~ R(x))

Fi(R, B, P)(z) = B(0,z)f(S° — R(x)) — kB(0,2)P(0,z)

F3(R, B, P)(z) = —kB(0,z)P(0, z)
+kBg(B(—1,-)P(-T,-))(z)

where

C={(R,B,P)eZ, :R<S"}.

It is convenient to use the notation (R, B, P) both for a vector in C
and for a vector in C where, hopefully, the context will provide the
appropriate meaning. It is easy to see that F : C — Y3 is continuous.
Indeed for each L > 0 there exists K (L) > 0 such that

1F(z) - F)l < K(D)||z=2[, zzel, |2,z < L.
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The mild formulation of (16)—(17) consists of finding continuous func-
tions R : [0,0) — Yy, with R(¢) < S° and B,P : [-1,0) = Y,
satisfying the integral equations

R(t) = To(t)R*(0) + /Ot To(t — s)Fo(R(s), Bs, Ps) ds
(18) B(t):Tl(t)B*(O)+/tT1(t—s)Fl(R(s),BS,PS)ds, t>0
0

t
P®=R®F®+/YW*®H@®BMQ%
0
together with By = B* and Py = P*.

Theorem 3.1. For each (R*, B*, P*) € C, there exists a unique non-
continuable solution (R(t), B(t), P(t)) € C of the initial value problem
(18) defined for 0 < t < o for some o € (0,00). If 0 < o0, then
IBell + | P|| = o0 ast S o.

Proof. We use Theorem 2 in [12, reproduced as Theorem 1.2
in Chapter 8 of [20] and Corollary 4 in [12]. In the notation of
Corollary 4, K = C and the affine evolution operator S(t, s) defined by
S(t,s) = (To(t — 8), T1(t — 5), T5(t — s)) is linear and S(¢,s) : C — C
by Proposition 2.1, see especially (14). It suffices to establish the
subtangential condition:

1
(19) lim 5 d(B(0) + hFy(R, B, P); Y1) =0, (R.B,P)€C

where B(0) = B(0,-) and d(M;Y}) = inf{||M — N|| : N € Y, }, and
the analogous subtangential conditions for R and P. We have

[B(0) + hF1(R, B, P)](z) = B(0,z)[1 +h (f(S° - R(x)) — kP(0,z))].

(
Since B(0,z) > 0 and 1 + h(f(S° — R(z)) — kP(0,z)) > 1/2 for
all z € [0,L], if h > 0 is sufficiently small, we see that d(B(0) +
hFy(R,B,P);Yy) = 0 for sufficiently small A > 0. Therefore, (19)
holds.

We may express f(S) = Sg(S) where g : [0,00) — [0,00) is
continuous. We abuse notation by defining [0, S°] to be the subset
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of Y taking values in the interval. The subtangential condition for R
involves

[R+ hEFy(R, B, P)|(z) = R(z) + hf(S° — R(x))B(0, z)
= 5"~ (R(z) — S°)(1 — hy(S(2)B(0,2)).
Obviously, [R + hFy(R, B, P)](z) > 0, and the final expression shows
that it is smaller that S° for small h. Thus, d(R+hFy(R, B, P); [0, S°]) =

0 for sufficiently small h > 0, which implies the required subtangential
condition.

Finally, since B, P > 0 and 1% is a positive operator
[P(O) + hFB(Ra B, P)](l‘) = P(U,I) o hk‘P(O,l‘)B(O,l‘)
+ hkB[T2(7)B(=T,-)P(-T,)](2)
> P(0,z)[1 — hkB(0, z)],
we have that d(P(0) + hF5(S,B,P);Y;) = 0 for sufficiently small
h > 0. Therefore the required subtangential conditions are satisfied.

The existence result and blow-up condition now follow from Theorem 2
and Corollary 4 in [12]. o

Proposition 3.1. In Theorem 3.1, 0 = co.

Proof. If o < o0, then ||B:|| + || P|| — o0 as t /* o by Theorem 3.1.
We will show this cannot happen.

B(t) < Ty(t)B*(0) + £(5) / Ty(t - 5)B(s) ds.

Since the norm on Y is monotone,

IB@)I < IT1() B*(0)]| + f(SO)/Ot IT1(¢ = s)B(s)l| ds

< IIB*(O)HH(SO)/0 1B(s)| ds

where we used that 77 is a contraoction semigroup. Gronwall’s inequality
implies that ||B(t)|| < ||B*||ef5t. Now,

P(t) < T3(t)P*(0) + kﬂ/o T5(t — s)To(7)Bs(—7)Ps(—7) ds.



A MODEL OF BACTERIOPHAGE AND BACTERIA 607

Arguing as above
IP@)I < IT5(t)P*(0)]

t
+k5/ Ts(t — $)To () By (=) Ps(—1)| ds
0 t
< || P* k B|||| Ps|| ds.
< |1Pl+ ﬂ/o 1B, 1P| ds

This implies that

t
1P| < IIP*||+k,8/0 [1Bs ||| Ps| ds-

Gronwall’s inequality implies that

t
(20) 1P < [P exp <k6 / ||Bs||ds)-

These estimates show that || B|| 4 || P;|| remains bounded on any finite
interval. O

Our next result gives continuous dependence of solutions on initial
data and describes their smoothness properties.

Proposition 3.2. FEquation (18) generates a continuous semiflow
®:[0,00) X C — C given by

®(t,(S*, B*, P*)) = (S° — R(t), By, P,).

Moreover, solutions u(t) = (R(t), B(t), P(t)) of (18) satisfy (16) for
t>rT.

Proof. Define the nonlinear solution semiflow associated with (18)
¥ :[0,00) xC — C by

U(t,(R*, B*, P*)) = (R(t), B, P), t> 0.

By [13] or by [20, Theorem 2.6, Chapter 2|, ¥ is a continuous semiflow
onC. As S = S°—R, ®: [0,00) xC — C defined by ®(t, (S*, B*, P*)) =
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(S — R(t), Bt, P;) where S* = S° — R* gives the solution semiflow for
(3).

By [13] or [20, Theorem 2.6, Chapter 2|, due to the analyticity
of the semigroups T; and smoothness of F = (Fp, Fy, F3), solutions
u(t) = (R(t), B(t), P(t)) of (18) satisfy (16) for ¢t > 0 if u* is suitably
restricted (see item (3) of Theorem 2.6), and for ¢ > 7 otherwise. O

3.2. L!'-bounds on solutions. For i = 0,1,2,3, let e;(z) =
e~ (W/d)e and ¢1; denote the normalized principal eigenvector and Aq;
the corresponding principal eigenvalue of (9) with d = d;.

Set
s(t) = /0 * S(t, 2)no(@)e0(z) da
0= [ B aon @ @) de
it) = /0 * 1t 2)o1s(@)ea() de
)= [ Pl do

Then s is a measure of the total nutrient in the tube while b,i,p give
totals for uninfected,infected cells, and virus, respectively. Multiplying
(3) and (7) by appropriate e;¢1; and integrating gives

L
s = v5%10(0) + Aros / B(8)éroco da
0

L L

b’ = )\11[) +/ Bf(S)¢1161d.’E - k/ BP¢1161 dx
0 0
L L L

i = A12% + k/ BP¢1262d$ — k/ / GBde¢1262 dz

0 0 0

L L L
p, = )\13]) — ]{?/ BP¢13€3d.’13 + kﬁ/ / GBde¢13€3 d.’l?,
0 0 0

where we have dropped arguments in the last integrals for brevity. Let
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¢; >0,7=0,1,2,3 to be determined. Then

(cos + c1b + c2i + c3p)’
= covS°p0(0) + (A1ocos + Ar1cib + Aacai + Ai3csp)

L
+/ Bf(S)(c1¢11€1 — coproeo) dz
0
L
+ k/ BP(CQ¢1262 — 01(151161 — 03¢713€3) dl‘
0

L oL
+ k/ / GBP dy(Bcapizes — capizes) dx.
o Jo

In reverse order, choose c3, ¢, c1, cp as follows

c3 =1, capi2ez > c3BPizes,

cipii1el + capizes > cadizes, copioeo > ciPrier.

Then w(t) = cos+c1b+cai+c3p is an L'-measure of the total contents
of the bio-reactor and it satisfies

w' < couSYepo(0) — Aw,

where
(22) —A = max A\y;.
Therefore,
0
(23) w(t) < w(0)e A + %(l —e A

The reader may object to the use of (3) and (7) rather than its mild
formulation (18) in obtaining (23). In fact, the same result can be
obtained using (18). One simply takes the appropriate inner product
of both sides with the functions ¢;; and then makes use of the self-
adjointness

(Ti(t) Fy, b15) = (Fi, Ty(t) pri) = e (Fy, bus),

where (f,g) = fOL fge; dz.
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Because e;¢y; > 0 are continuous, (23) trivially implies the following
result.

Proposition 3.3. There exist constants C1,C2 > 0 such that
L
V() = / (S(t,z) + B(t,z) + I(t,z) + P(t,z)) dz, t>0
0

satisfies

(24) V(t) <OV (0)e M4+ Co(1 —e ™), t>0

for every solution of (18), where A is defined by (22).

3.3. Global attractor. We begin by showing that bounded sets of
initial data have bounded forward orbits and that there is a uniform
asymptotic bound on solutions.

Proposition 3.4. There is a continuous function K : [0,00) —
[0,00) and U > 0 such that for every solution of (3)

IS + 1Bl + 1Pl < KIS + 1B*[| + [|1P*[)), ¢ =0

and
liinsup(lls(t)ll + | Bell + [ 2]|) < U.
— 00

Proof. We leverage the L' bounds obtained in the previous section
to obtain L°° bounds. We follow closely the arguments given in
Proposition 8.9 in [17]. Since S(t) < S° we need only focus on B
and P. In fact, the argument for B is so similar to those given in
Proposition 8.9 for the dependent variables S and u considered there,
because we may ignore the term —kBP, that we do not repeat them
here. Therefore, there exists a constant B depending only on ||B*||
such that B(t,z) < B for t > —71, 0 <2 < L. We show how to obtain
an L*-bound for P. Let G* = max G(7,x,y) where the maximum is
taken over (z,y) € [0,L]?. Estimate (23) implies the existence of Q,
depending on the L! norms of S*, B*(0,-), P*(0,-), such that

L
/ P(tay)dySQa tZ*T-
0
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We start from the equation for P given in (18). Using that

L
F5(S(s), Bs, Ps)(z) < kﬁG*B/ P(s—1,y)dy
0
<kBG*BQ, s>0,0<z<L,

and taking advantage of the positivity of T3, we have that
_ t
P(t) < T3(t)P*(0) + kﬂG*BQ/ T5(s)1lds,
0

where 1 denotes the constant function equal to one. Thus,
1P(8)]] < M) P*(0) ]| + kBG* BQ(—M /M (ds)),

where we use that || T3(t)|| < Me*(%)t, The right side gives a uniform

bound on ||P(t)|| which depends only on ||[P*(0)||, B, @ and various
constants.

Since Ay (ds) < 0,

~ M
limsup ||P(t)|| < kBG*BQ ——F—.
s |P(0)] < 5G*BQ

A similar bound for limsup,_, . ||B(t)|| is given in [17, Proposition
8.9]. o

Proposition 3.4 leads directly to the following result.

Theorem 3.2. Every orbit {(S(t), By, P;) : t > 0} has compact clo-
sure in Z. Furthermore, there exists a compact, connected, invariant
attractor for ® which attracts bounded sets in Z .

Proof. This argument is now routine. See Theorem 2.7 in [3]
and Theorem 2.1 in [19]. Proposition 3.4 implies that semiflow ® is
point dissipative and that bounded sets have bounded orbits. The
compactness of the semiflow ®, see [13] and Theorem 2.6 of Chapter 2
[20], implies that it is asymptotically smooth so the result follows from
Theorem 3.4.8 in [6]. O
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