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VALUE DISTRIBUTION OF
DIFFERENCES OF MEROMORPHIC FUNCTIONS

J.K. LANGLEY

ABSTRACT. Let f be a function transcendental and mero-
morphic in the plane. Results are proved concerning the ex-
istence of zeros of the nth forward difference A™f and the
divided difference A™f/f.

1. Introduction. Let the function f be transcendental and
meromorphic in the plane. The forward differences A™f are defined
by [25, page52]

Af(z) = f(z+1) - f(2),
(1.1) A™f(2) = A" (2 + 1) = A" f(2),
n=12,....

This paper continues the investigations of [4] into the zeros of the
forward differences A™f as defined in (1.1) and the divided differences
A"™f/f. The work in [4] reflects in part the considerable attention
given recently to meromorphic solutions in the plane of difference and
functional equations [1, 5, 8, 9, 13, 17|, but the results from [4] may
also be viewed as discrete analogues of the following sharp theorem [6,
16|, which uses notation from [10].

Theorem 1.1 [6, 16]. Let f be transcendental and meromorphic in

the plane with
lim inf I f)

r—00 r

=0.

Then f' has infinitely many zeros.

The following result was proved in [4] using Wiman-Valiron theory
[11].
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Theorem 1.2 [4]. Let n € N, and let f be a transcendental entire
function of order p < 1/2, and set

_Af(2)
f(z)
If G,, is transcendental, then G, has infinitely many zeros. In particu-

lar if f has order less than min{(1/n), (1/2)}, then Gy, is transcendental
and has infinitely many zeros.

(1.2) Gn(2)

Note that if f is an entire function of order less than 1/2 for which G,,
fails to be transcendental for some n > 2 then f satisfies a homogeneous
linear difference equation with rational coefficients and the growth of
such solutions was determined in [17]. For the first divided difference
Theorem 1.2 was extended slightly beyond p = 1/2 in [4].

Theorem 1.3 [4]. There exists 6o € (0,1/2) with the following
property. Let f be a transcendental entire function with order p(f) <
1/2+ 6y. Then

(1.3) G(z) = Gi(z) = Asz S) _fz +f1()z)— £(2)

has infinitely many zeros.

The constant §y in Theorem 1.3 is extremely small, but it was
conjectured in [4] that the conclusion of Theorem 1.3 holds for all
entire f with p(f) < 1. The first result of the present paper extends
Theorem 1.3 beyond order 1/2 for higher divided differences, and
broadens the applicability of Theorem 1.2 to meromorphic functions
with few poles, even for order 1/2.

Theorem 1.4. Letn € N. Let f be transcendental and meromorphic
of order p < 1 in the plane and assume that G, as defined by (1.2) is
transcendental.

(i) If G, has lower order u < o < 1/2, which holds in particular if
p <1/2, then

§(0,G,) <l—cosma or 6&(oo,f)< g.
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(il) If p = 1/2, then either G, has infinitely many zeros or
d(o0, f) < 1.

(iii) If f is entire and p < 1/2+4 8y, then G,, has infinitely many zeros:
here g is a small positive absolute constant.

For meromorphic functions in general the following theorem was
proved in [4] and addressed a question which represents a natural
discrete analogue of Theorem 1.1: if f is transcendental with p(f) <1
must Af have infinitely many zeros?

Theorem 1.5 [4]. Let f be a function transcendental and meromor-
phic in the plane of lower order A\(f) < 1. Let ¢ € C\ {0} be such
that at most finitely many poles z;, z, of f satisfy z; — zi, = c. Then
9(z) = f(z+¢) — f(2) has infinitely many zeros.

Clearly all but countably many ¢ € C satisfy the hypotheses of
Theorem 1.5, but the following construction from [4] showed that
Theorem 1.5 fails without the hypothesis on ¢, even for lower order 0,
and that if the answer to the above question for meromorphic functions
is affirmative, then in contrast to Theorem 1.1 it depends on order and
not lower order.

Theorem 1.6 [4]. Let ¢(r) be a positive non-decreasing function
defined on [1,00) which satisfies lim,_,o, ¢(r) = co. Then there exists
a function f transcendental and meromorphic in the plane such that
9(z) = Af(z) has only one zero and

T(r, f)

lim sup ———= < oo,
r—00 r
i inf L )
r—oo ¢(r)logr

imsup L 29)
rooo @(r)logr

)
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The final theorem from [4] showed that for transcendental meromor-
phic functions satisfying the very strong growth restriction T'(r, f) =
O(logr)? as r — oo, either the first difference or the first divided dif-
ference has infinitely many zeros. The proof of this result depended on
asymptotic properties of such functions with deficient poles [2], but this
reliance is dispensed with in the following substantial improvement.

Theorem 1.7. Let f be a transcendental meromorphic function in
the plane, of order less than 1/6, and define G by (1.3). Then at least
one of G and Af has infinitely many zeros.

2. Preliminaries for Theorem 1.4. A key role for Theorem
1.4 (iii) will be played by the following result of Miles and Rossi [23].

Lemma 2.1 [28]. Let f be a transcendental entire function of order
p(f) < p<oo. Let 0 <y <1, and forr >0 let

re“’f’(re“’)
f(re®)

Let M > 3. Then there exists a set Qp C [1,00) of lower logarithmic
density

(2.1) U, = {9 € 10,27 :

> n(r1/1) .

1 dt 3
2.2 logdens Qs = lim inf ( / —> >1-—,
(22) M r—oo \log7 Jii 1jnQ, ¢ M
such that
1—7v 2
2. ” Ty )
(2.3) m(U,) > (7M(p+1)> for reQum

in which m(U,) denotes the Lebesgue measure of U,.

The next lemma is a version of the celebrated cosmA theorem [12,
Chapter 6.

Lemma 2.2 [7]. Suppose that g is transcendental and meromorphic
in the plane, of lower order p < o < 1, and define L(r, g) = min{|g(z)| :
|z| =r} and
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e

Yi={r>1:logL(r,g) > y(cosma+d(c0,g9)—1)T(r,9)}, v = g

Then Yy has upper logarithmic density at least 1 — /o

Lemma 2.3 [4]. Let H be a transcendental entire function of order
p1 < co. Forlarge r > 0, define r0(r) to be the length of the longest arc
of the circle S(0,r) of center 0 and radius r on which |H(z)| > 1, with
0(r) =2m if |H(2)| > 1 on all of S(0,r), that is, L(r, H) > 1. Then at
least one of the following is true:

(a) there exists a set F' C [1,00) of positive upper logarithmic density
such that L(r,H) > 1 forr € F}

(b) for each T € (0,1) the set

(2.4) EF,={r>1:0(r)>27x(1—-7)}
satisfies
1-2p(1—1)
(2.5) logdens F, > ————————~.
— T

If H has lower order less than 1/2, which of course is true if p; < 1/2,
then case (a) always holds [3]. Moreover, if p; = 1/2 then 6(r) — 2«
on a set of positive upper logarithmic density. We outline the standard
argument for this assertion, which is obvious if case (a) applies, so
assume that H satisfies case (b). Then the right-hand side of (2.5) is
1, and so for each n € N the set

P,={r>1:2r—6(r) > 1/n}

has logarithmic density 0 using (2.4). Hence we may choose a sequence
(sn) increasing to infinity such that

/ dt _logr
— S =2
[L,r]nP, t n

for r > s,. Let P be the union of the sets P, N [y, Snt1). Then
6(r) — 27 as r tends to infinity outside P. For large r choose n with
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Sn <1 < Spy1. Then

/ ﬂ </ ﬂ < logr
e t " Jignp, T 0

and so P has logarithmic density 0. o

Lemma 2.4 [4] Letn € N. Let f be transcendental and meromorphic
of order less than 1 in the plane. Then there exists a set Xy C [1,00)
of finite logarithmic measure such that

_Af) )
i " fG)

(2.6) Gn(z) =o0(l) asz— oo with |z] ¢ X.

The proof of the following lemma is related to that of Theorem 4 in
[18], but the present approach is somewhat simpler.

Lemma 2.5. Let f be transcendental and meromorphic in the plane,
and let n € N. Let ¢ > 0, and let E be an unbounded subset of [1,00)
with the following property. For each r € E there exists a compact arc
Q,. of the circle S(0,7), of angular measure at least ¢, such that

3 2n (n) _
(2.7) et M(Q, S/ F) =0, where

M(€r,g) = max{lg(2)] : = € 2, ).

Let ¢(r) be a positive function tending to infinity with ¢(r) = o(logr)
as r tends to infinity. Then for all sufficiently large r € E we have

2f'(2)
72)

for all z € Q, outside a set of discs having sum of radii at most

(n—1)r/¢(r).

(2.8)

< ng(r)

Proof. There is nothing to prove if n = 1 so assume that n > 2. Let
r € E be large and choose z, € 2, with

(2'9) |f(zr)‘ =M, :M(erf)
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Now Taylor’s formula gives a polynomial P depending on r and of
degree at most n — 1 such that, for z € .,

10 =pPE+ [ g

z—t)n 2

'"(2) =P EZD" 7 ) (1) at.
£ =P+ [ T

It follows from (2.7) and (2.9) that

|P(2-)] = M, and
If(z) — P(2)| +|f'(2) — P'(2)| <7 "M, for z € Q,.
We can write P(z) = Pi(z)P2(z) where P; is the product of the terms
z — c; over all zeros ¢; of P with |c;| < 27, and is 1 if there are no such
¢;j. Correspondingly, P» is a polynomial with all its zeros, if any, lying
in |z| > 2r. Denoting by C positive constants which are independent
of r this gives
(2.11)
M(Q., Py/Ps) < C/r, M*=M(Q,,P;) < Cmin{|P2(2)| : z € Q,}.
Also (2.10) yields
(2.12) M, < M(Q,,P) < M*-M(Q,,P) < M*(3r)¢,
where d > 0 is the degree of P;.

(2.10)

Let z € Q, lie outside the union of the discs of center c; and radius
r/¢(r). Then (2.11) and (2.12) give

rd Mqd M,
S PG = IREPG 2 gy > ot
which on combination with (2.10) and (2.11) leads to
2f'(2) ZP'(Z)+0(P(Z)|)‘

f(2) P(z)(1+0(1))

)

)
zP/(z ))+0(1)
)

|P1(2)] =

1
= 1

(14 o

P(z)
2P| (z
Pi(2)
z2Py(z2)
Py(2)
+o(1) <((n—1)+o0(1)¢(r). O

<(1+o0(1)

—

+ (14 0(1))
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3. Deficiencies and the logarithmic derivative. We need the
following lemma, which is a combination of [15, Lemma 4] (see also
[14]) and Lemma 9 from [18].

Lemma 3.1. Let f be transcendental and meromorphic of finite
order in the plane, and set

d 1

(1) A = (T ) = o

27
/ n(r,c®, £) dé.
0

For each large r, let L, be any measurable subset of [0,27) such that
the Lebesgue measure of L, tends to 0 as r — oco. Then there exists a
subset Ey of [1,400) of logarithmic density 1 such that, as r — oo in
E07

(3.2) /L T

Suppose next that

Teie fl (,reie)
ke ("o

>d0 = o(h(r)).

(3.3) §(o00,f)>1—0, 0<o<l, K>1, cK<1.

Then there exists a subset Ey of (1,400), having lower logarithmic
density 1 — 1/K, such that for r in E; we have

retf f/ (reie)
e (e )|

(34) (1= Ko)h(r) < I(r) = — /0w

T or

Note that (3.1) is of course the classical Cartan formula [10, page 8]
and that h(r) tends to infinity since f is transcendental. O

4. Proof of Theorem 1.4. Let f be a transcendental meromorphic
function in the plane of order p < 1, let n € N and let G,, be defined
by (1.2), and assume that G, is transcendental. Lemma 2.4 gives a set
Xo C [1,00) of finite logarithmic measure such that (2.6) holds. Let
the positive function ¢(r) tend to infinity on [1,00), and satisfy
(4.1)

¢(r) = o(logr), ¢(r) = o(h(r)), ¢(r) = o(n(r, f) +n(r,1/f)),
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where h(r) is defined by (3.1). This is certainly possible since f is
transcendental of order less than 1. For each large r, set

reief/(rew)

ey >0}

Let N be a large positive integer. For large » > 0 let r3(r) be the
length of the longest arc of the circle S(0,7) of center 0 and radius r
on which [2VNG,(2)] < 1, with B(r) = 27 if [2VG,(2)] < 1 on all of
S(0,7). We begin with the following lemma.

(4.2) Ve = {9 € [0, 2] :

Lemma 4.1. Suppose that B(r) — 2w on a set Y1 of upper
logarithmic density X € (0,1). Then 6(co, f) <1 —A.

Proof. It may be assumed that the intersection of Y; with the
exceptional set Xy of (2.6) is empty, since this does not reduce the
upper logarithmic density. Then by (2.6), (4.2), Lemma 2.5 and the
fact that IV is large, the Lebesgue measure of V,. satisfies m(V,.) = o(1)
on Y;. Let

L=V, ifreYy,, L, =2 ifr¢Y;.

It may be assumed further that Y7 C Fy, where Ej is as in Lemma 3.1,
again since this does not reduce the upper logarithmic density. Thus
Lemma 3.1 gives, using (4.1) and (4.2),

(4.3) /0 "

for large r € Y3.

ret? f'(re'?) ) + o(h(r)) = o(h(r
Re< e )‘dego«zs( )) + o(h(r)) = o(h(r))

Now assume that §(co,f) > 1 —0 > 1— A Then o > 0 and we
may choose K > 1 with 0 < 1/K < A. Hence (3.3) is satisfied and
Lemma 3.1 implies that (3.4) holds on a set E; of lower logarithmic
density at least 1 —1/K > 1— ), so that there must exist an arbitrarily
large » € Y1 N E;. But for these r inequalities (3.4) and (4.3)
give (1 — Ko)h(r) < o(h(r)), which is a contradiction. This proves
Lemma 4.1. u|

We first prove part (i) of Theorem 1.4, and to this end we assume
that G, has lower order p < o < 1/2. This certainly holds if p < 1/2,
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because in this case f may be written as a quotient of entire functions of
order less than 1/2 and a simple argument shows that the same is true
of G,,. Assume further that 6(0,G,) > 1—cosma. Then by Lemma 2.2
there exists a subset Y; of [1,00) having upper logarithmic density at
least 1 — p1/a such that

lim ¥ M(r,G,,) =0,
T™—>00
r€Y]

which of course gives 3(r) = 27 for large r in Y;. Thus Lemma 4.1
implies at once that §(oco, f) < u/a, which completes the proof of part
(i)

Parts (ii) and (iii) will now be proved together, so assume either that
p =1/2 and §(o0, f) = 1, or that f is entire of order p with p —1/2
small and positive, and in both cases that GG,, has finitely many zeros.
Then there exists a rational function Ry with at most a pole of order
N — 1 at infinity such that

(4.4) H(z) = QZLN (#(z) - Ro(z)>

is entire and transcendental, of order p; < p, and there exists r; > 0
such that

(4.5) ZNGL(2)] <1 for |z| >r1, |H(2)] > 1.

Let 6(r) be defined as in Lemma 2.3.

Suppose first that §(r) — 27 on a set Y, of upper logarithmic density
A € (0,1). This certainly holds under the hypotheses of part (ii), by the
remarks following Lemma 2.3 and also applies for part (iii) if H satisfies
case (a) of Lemma 2.3. Then by (4.5) the hypotheses of Lemma 4.1 are
satisfied, and so we have §(oo, f) < 1— X < 1, which is a contradiction.

It therefore remains only to prove part (iii) in the case where the
entire function H satisfies conclusion (b) of Lemma 2.3. Let M > 3
and choose positive v and 7 such that 7 is small and

(4.6) 0= (ﬁy — 217 >0
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but 7 is small. Since f is entire in this case we may apply Lemma 2.1.
This gives a subset Qs of [1,00) satisfying (2.2) and (2.3), and there
is no loss of generality in assuming that Qu N Xy = &, where X is
as in (2.6), as this assumption does not reduce the lower logarithmic
density.

Let F. be as in Lemma 2.3. Then for large r € F, \ X, we have
6(r) > 2m(1 — 7) and m(V;) < 277 + o(1), using (2.6), (4.2), (4.5),
Lemma 2.5 and the fact that N is large. By (2.1) and (4.1) we also
have m(U,) < 277 + o(1) for these r. Hence (2.3) and (4.6) show that
the intersection Qps N F is bounded, which by (2.2) and (2.5) forces

3T
M

T 3 3
2% —1>2 —1> -2 ) >+(1-2).
p—t=2m —1r< M>_T< M>

Since p < 1 and « is small, while 7 is small in (4.6), it follows that p

must satisfy
2
1/ 1 3
21> (—) (1-2) =qM).
p _271'(14M>( M> a(M)

As noted in [4] the right hand side ¢(M) in the last inequality has a
maximum relative to the interval (3,00) at M = 9/2, with ¢(9/2) =
1/23814x. This proves Theorem 1.4. O

1-20(1—7) <

and

5. Lemmas needed for Theorem 1.7. We need the following
lemma from [20]. The result is closely related to [19, Lemma 2.4] and
the method of proof is essentially the same.

Lemma 5.1 [20]. Let h be transcendental and meromorphic in the
plane, of order less than p < oo, and with finitely many poles. Let (z;)
be a sequence in {z € C: |z| > 2} such that z; — co without repetition,
and with exponent of convergence less than p. Let My, My € R be such
that

(51) p+ M <1, My < M;—4p.
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For m = 1,2, let H, be the union of the closures of the discs
B(zj, |2;|Mm).

Nezt, let Ry be large and positive, such that
(5.2)

h71({oc0}) € B(0,R1/2), M(Ry,h) = max{|h(z)|:|z| = R1} > €,

and

p

1
(5.3) log |h(z)| < for [2| > SRy,

z
2
as well as

1 My — Mo
(54) <§R1) > 4, Z 26|Zj‘P+(M2—M1)/2 <1.
|zj|>R1/2

Let wqy lie outside Hy, with
(55) |IUO‘ > Ry, ‘h(wo)‘ > T12, T, > M(Rl,h)Q,

and let Cy be the component of the set {z € C\ Hy : |h(2)| > T1} in
which wy lies. Then Cy is unbounded.

Note that (5.2), (5.3) and (5.4) hold for all sufficiently large R;.
Moreover, it follows from (5.1) and the fact that the sequence (z;) has
exponent of convergence less than p that the set of » > 1 for which
the circle S(0,r) meets Hy has finite logarithmic measure. Hence there
exist arbitrarily large wy ¢ H; satisfying (5.5). O

Lemma 5.2. Let f be a transcendental meromorphic function in the
plane, of order less than 1/6. Assume that G as defined by (1.3) has
finitely many zeros. Then there exist a non-zero complexr number b and
a set Ey C [1,00) of lower logarithmic density greater than 2/3, such
that f(z) ~ b for all large z with |z| € Ey.

Proof. Let N be a large positive integer and choose p with p(f) <
p < 1/6. Since G is transcendental [4, Lemma 2.1] and has finitely
many zeros and order less than p, it follows from the cosmp theorem
[12, Chapter 6] that there exists Ey C [1,00), with lower logarithmic
density greater than 2/3, such that
(5.6) lim  rVM(r,G) = 0.

r—o0,r€Ey
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Now define A by

(5.7) h(z) = ﬁ(z)

By Lemma 2 of [22] (see also [21, Lemma 4.1]) there exist arbitrarily
large T such that the length L(r, Ty, h) of the level curves |h(z)| = Ty
lying in B(0,r) satisfies

(5.8) L(r,Ty,h) = O(r?) asr — occ.

Here 77 may be chosen so that, for additional convenience, the level
curves |h(z)| = T1 do not pass through the origin and have no multiple
points. Hence these level curves may be parametrized locally in terms
of argh, and for any given w € C the stationary points of argz and
log |z — w| on these level curves form a discrete set. If this is not the
case, then either |h(z)| = T} on a ray passing through the origin, which
contradicts the choice of Ty, or |h(z)] = Ty on a circle of center w,
which is impossible since h is transcendental.

Next, let (z;) be the set of all distinct zeros and poles of f' with
r; = |2;| > 2, and choose o and My, M, satisfying

1 2
(5.9) p<0<6, M1:0'+§,M2:O'.

This choice may be made so that no circle S (zj,r;-’) is tangent to
a level curve |h(z)| = Ty. For m = 1,2, let H,, be the union of the
closures of the discs B(zj, |z;|™m). We assert that

fl (u) =0 or (\u —=z

and for large z ¢ Hs. To prove (5.10) let Ry be large and positive, and
let z € C\ Hp with |z| > 2R + 1. Then the series expansion for f"/f’
gives, for |u — z|] < 1,

" (u)
f'(u)

n(Ro, f') + n(Ro, 1/ f) N Z 1

<
lu| — Ro
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where the v; are simply the z; but with repetition according to multi-
plicity. Since z lies outside Hj this yields

w2 - vy - 12 1
for |v;| > Ry and so
n 4 !
f'(w) Ry v; |7
|vj[>Ro

as Ry — oo, using (5.9). This proves (5.10), from which it follows that

z+1 z+1
fz+1) - f(2) = / f(v)dv= / F(2) A +o0(1))dv ~ f'(2)

and

f'(2)
f(2)

for large z ¢ Hy. Next, (5.9) implies that there exists a set X; of
finite logarithmic measure with S(0,r) N H; = @ for » ¢ X;. In
particular, (5.11) holds for large z with |z| ¢ X;. It may be assumed
that X3 N Ey = @, and it follows at once from (5.6) and (5.11) that

f'(2)
f(z)

(5.11)

~ G(z)

(5.12)

|dz| = 0.

lim /
r—o0,r€Eg S(0,r)

The function h is transcendental of order less than p with finitely
many poles, and the sequence (z;) has exponent of convergence less
than p. Thus Lemma 5.1 may be applied to h, with M7, M5 given by
(5.9) and hence satisfying (5.1). Let Ry be large and positive, so large
that (5.2), (5.3) and (5.4) hold, which is possible by (5.9). Choose T}
and wo ¢ H; as in (5.5), and such that (5.8) also holds. Let Cj be the
component determined in Lemma 5.1: then Cy is unbounded.

Now choose a sequence (s,,) such that

(5.13) 28 < Sm+41 < S5, Sm € Ey,
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this being possible since Ej has lower logarithmic density greater than
2/3, and since S(0, s,,) does not meet Hy we may assume using (5.6)
and (5.7) that S(0, s,,) C Cp for all m. Now the part Y, of dCy lying
in s, < |z| < $m41 is contained in the union of the level set |h(z)| = Ty
and the circles S(z;,77). The number of such circles which meet Y,,, is
O($m+1)? and their radii have sum O(8,+1)?"7 = 0(Sm+1). Hence the
arc length of Yy, is O(sy41)? using (5.8).

We form a path ~,, in the closure of Cy joining S(0, $,,) to S(0, Sy41)
as follows. First take a radial segment A given by argz = 0, s, < |2| <
Sm+1, With 8 chosen so that this segment is never tangent to any level
curve |h(z]| = T1, which may be done by the remark following (5.8),
nor to any of the circles S (zj,rjq). By construction Y,, consists of a
union of closed curves lying in s, < |z| < $;,+1. Hence any arc of A
which lies outside the closure of Cy may be replaced by an arc of Y,,.
Using (5.7), (5.11), (5.13) and the fact that NV is large, we obtain

l

2
/ f(Z) |dz|§/ K \dz\
YmUS(0,8m) YmUS(0,8m) |Z‘ Ty

f(z)
_N _
= 0(872n+lsm ) = O(sml)‘
Hence from the union of the curves v, and circles S(0, s,,) a simple
curve v may be constructed which tends to infinity and satisfies, by

(5.13) again,
/ '(2)

dz| < oo.
)|
Thus there exists a non-zero complex number b such that f(z) — b as
z — 00 on v, which on combination with (5.12) gives the conclusion of
the lemma. O

It is perhaps worth remarking that the condition p(f) < 1/6 seems
unlikely to be sharp in Theorem 1.7 but is required in our method in
order to deduce Lemma 5.2 from Lemma 5.1. We need My > p(f) in
order to achieve (5.10) for large z outside Ha, so that in (5.1) the second
inequality forces 5p(f) < M; and the first inequality then requires

6p(f) < 1.

6. Proof of Theorem 1.7. Let f and G be as in the statement
of the theorem, and assume that G has finitely many zeros. Then it
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follows from Lemma 5.2 that there exist a non-zero complex number b
and a set Ey C [1,00) of lower logarithmic density greater than 2/3,
such that f(z) ~ b for all large z with |z| € Ey. Let

Af

f=0v
Then F must have infinitely many zeros, because otherwise Lemma 5.2
may also be applied to f — b to give a non-zero constant b; and a set
E; C [1,00), again of lower logarithmic density greater than 2/3, such
that f(z) — b ~ by for all large z with |z| € Fj, which is evidently
impossible.

F =

Let z be large and a zero of F. Then z is not a pole of f because
otherwise writing
f—b

G=F.1""
F7

shows that z is also a zero of (G, contrary to the assumption that G has
finitely many zeros. But Af = F - (f —b), and hence z is a zero of Af.
This proves Theorem 1.7. m]
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