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MORE QUINTIC SURFACES WITH 75 LINES
JINJING XIE

ABSTRACT. It is well known that the Fermat quintic
surface has 75 lines, which is the only known quintic surface
with this property. In this note, we study lines in the non-
singular surfaces cut out of the Dwork pencil of 3-folds in P*
by the symmetric hyperplane. All the singular surfaces in the
pencil are found and the types of singularities are determined.
After that, all non-singular quintic surfaces containing lines
outside the base locus of the pencil are determined. Finally,
we count the number of the lines on these surfaces, and show
there are four surfaces in the pencil, which contain the same
number of lines as the Fermat quintic surface does, but are not
isomorphic to the Fermat quintic surface. Hence, no surface
in this pencil is isomorphic to the Fermat quintic surface.

1. Introduction. Let p : X — C be the well-known family of
Calabi-Yau three-folds, whose fiber X; over t € C is given in P by the
equation F; = 0, where

5 5, .5 5, .5
Fy(20, 21,22, 23, 24) = 2o + 27 + 25 + 25 + z; — Btzpz1222324.

The above family is known as the Dwork pencil of quintics. This
paper studies the Dwork pencil of quintics cut out by the symmetric
hyperplane s; := z9+21+22+23+24 = 0 in P* and finds special surfaces
(singular or non-singular but containing lines outside the base locus) in
the cut pencil. We still call it the Dwork pencil for convenience. Denote
by X; the surface X; N {s1 = 0} of the pencil. We show the base locus
of the pencil always contains 15 lines. For a line on X; outside the base
locus, we call it an additional line. Denote by E; the set of additional
lines on a surface X;; this paper shows E; # @ if and only if ¢ = 0,
t =2 or t = 27 where 7 is a root of 7* + 7 + 1 = 0. We proved that
the surface X5, contains 75 lines and is not isomorphic to the quintic
Fermat surfaces. Actually, letting #E; be the number of lines in Fj,
we have #Ey = 20, #F> = 40 and #FE>, = 60 (Theorem 1.2), i.e., the
number of total lines on these surfaces are 35, 55 and 75.
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The general algebraic surface F,, in P? of degree n contains no line,
if n > 4. It was Segre who first studied the problem about the
special non-singular surface of degree n > 4, which contains some
lines. He gave the upper bound (n — 2)(11n — 6) for the maximum
number of lines lying on a non-singular surface F,, of degree n > 4
by considering the degree of the flecnodal curve on the surface (see
[4, 5]) and proved that the number is 64 (less than the bound 76) for
n = 4 by considering the geometry of the quartic surface. In the other
direction, Caporaso, Harris and Mazur’s work [2] gives the lower bound
for this number: for degree n = 4,6,8,12,20 the corresponding lower
bounds are 64,180, 256, 864, 1600; for other n > 4 the lower bound is
3n? by considering a special surface F(z,y, z,t) = ¢(x,y) —¥(z,t). The
Fermat surface is of that type. To find a sharper bound for the number
of lines on a smooth quintic surface, people are interested in looking for
new surfaces containing lines. In [1], Boissiére and Sarti use polyhedral
groups to construct examples. However, there is no new surface of fifth
degree there.

We say a polynomial is totally symmetric if it is invariant under each
coordinate permutation. Let s; be z§ + 2% + 25 + 24 + 2} which is
totally symmetric. It was Barth’s idea to find a special quintic surface
in the pencil defined by two equations sas3 + Ass = 0 and s; = 0.
von Straten also used a similar pencil to construct a hypersurface with
many nodes in P* (see [6]). To get a full investigation of the pencil of
symmetric surfaces in P3, refer to [3]. We will see the pencil defined
by s283 + Ass = 0 is the same as the Dwork pencil of three-folds in P
cut by the symmetric hyperplane s; = 0.

We give main results in the following two theorems.

Theorem 1.1. Any additional line on Xy is a permutation of
1-100 0
(0 0 wlw?
11w —w 0
(1 w? -1 0 -w

) and any additional line on Xo is a permutation of

2> where w is a cubic root of 1. Any additional line

1-1 7 —7 0

on Xo. is a permutation of (1 - 10 77_) where T is a root of

4+7r+1=0.

Theorem 1.2. Let E; be the set of additional lines on the mon-
singular surface X;. Then FEy # @ if and only if t = 0,2 or 27.
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The numbers of the additional lines are #Ey = 20, #FE2 = 40 and
#E5, = 60. Furthermore, none of the surfaces Xy, Xo and Xor is
isomorphic to the quintic Fermat surface.

This article is organized as follows. In Section 2, we collect some
concepts such as coordinate plane, base line, additional line, B-line and
base line pair. Some useful properties are proved there. In Section 3,
we check out all the singular surfaces in the Dwork pencil using the
standard procedure. Section 4 is the main part of the paper. We first
prove that a general additional line is a B-line, then by considering
the action on the base line pairs, we show that the symmetric group Ss
action on the set of additional lines is transitive. Theorem 1.1 is proved
there. Finally, in Section 5 we complete the proof of Theorem 1.2.

2. Preliminaries. The symbols denoting lines and planes are
given in subsection 2.2. Then we show that the base locus contains
15 lines. In subsection 2.4, we classify the base line pair into skew pair,
normal pair and other base line pairs. The transitivity of the skew
normal pair (Proposition 4.9) under S5 action and the property that a
skew pair is normalizable (Theorem 4.10) are important to the proof
of Theorem 1.1.

2.1. P3-embedded variety and Dwork pencil of quintic
surfaces. Denote by C the complex number field; let P* denote
the four-dimensional complex projective space. Denote by s, the
polynomial 2z + 27 + 27 + 2§ + 27. We consider P? as the embedded
symmetric hyperplane s; = 0 of P%. Let I be a set of homogeneous
polynomials in Clzo, 21, 22, 23, 24]; denote by (I) the ideal generated by
I in the coordinate ring C|zo, 21, 22, 23, 24]/(s1) of P3. A variety defined
by an ideal (I) in C|zo, 21, 22, 23, 24)/(s1) is called a P3-embedded
variety.

In particular, the lines, planes and surfaces in P? are induced from
planes, hyperplanes and the three-folds in P*. The Dwork pencil is
induced by the Dwork pencil of three-folds.

From now on, the surface X, is defined as a P3-embedded variety by
the polynomial F; = s5 — b5tzpz1222324. When t = 1, the corresponding
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surface X is
Fi(20, 21, 22, 23, 24) = 85 — D2021222324 = 55253

in C|zo, 21, 22, 23, 24]/(s1). Hence the pencil contains s2s3 = 0 and is
equivalent to the pencil sas3 + tss = 0.

2.2. Coordinate plane, base line, residue conic, additional
line and B-line. The five coordinate hyperplanes with equation z; = 0
of P* induce five planes H; in P3. We still call them the coordinate
planes.

Let {i,4,k,1,m} ={0,1,2,3,4} be the set of indices. The base locus
consists of the intersection of X with five coordinate planes. For the
coordinate plane H;, the intersection is given by the following

85| z=0 = 75(zk—}-zl)(zk+zm)(zl+zm)(zz+zl2+z72n+zk,zl+zkzm+zlzm).

In this factorization, the linear components are called the base lines on
H; and the quadratic component is called the residue conic C; on H;.

There are three base lines on H;, and 3 X 5 = 15 base lines in total.

Denote ij the set of polynomials ij = {2k, zi+2;}, where i, j, k are
distinct indices in {0,1,2,3,4}. For {¢,j'} = {0,1,2,3,4} — {3, j, k},
the two sets ij and Bf,j, generate the same ideal (Bf]> = (Bi"ij,),
which defines a base line.

An additional line is a line on a surface X; outside the base locus.
We denote by F; the set of additional lines of X;. Because the base
line triangle and the residue conic are the complete intersection of the

surface Xp and a coordinate plane, an additional line intersects the
coordinate plane either on a base line or on a residue conic.

A B-line is an additional line that intersects at least two distinct base
lines.

A line in s; = 0 is of course a line in P4, hence in the Grassmannian
G(2,5), so we can use that notation for a line L

To T1 T2 T3 T4
Yo Y1 Y2 Y3 Y4

L =
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A line L of G(2,5) lies in P3 if Y x; = 0 and Y y; = 0. Moreover,
for a B-line, each row already has a zero entry, then the other entries
are of opposite signs in pairs.

2.3. The symmetric group S5 operation. A permutation o of
the symmetric group S5 induces an isomorphism of P* as:

(o w1 w2 @31 Xa) > (To-1(0) : To1(1): To-1(2) * Ta-1(3) * To—1(4));
for a polynomial F'(zg, 21, 22, 23, 24), the pull back is

o* (F) = F(Za'_l(O)’ Zo—1(1)s Ro—1(2)1 Ro—1(3)» ZU_1(4))
because any o maps s; to s1, it induces an isomorphism on Clzy, 21, 22,
23, 24)/(s1); hence the variety defined by F(zo, 21, 22,23,24) = 0 is
mapped to the variety defined by F(2,(0), 20(1)s Zo(2)s 20(3) Z0(4)) = 0
both in P® and P%. In particular, it maps the set ij to the set

BZ((f))U(J.), and maps the ideal (Bf;) to the ideal <BZ((Z)G(].)>. It also

maps a B-line to a B-line.

For the above representation of L in G(2,5), we have

UL:<$01(0) %'0—1(1) 330.71(2) :UU71(3) 3701(4))'
Ys-100) Yo-1(1) Yo-1(2) Yo-1(3) Yo-1(4)

2.4. Base line pair, associated set of a base line pair, skew
pair, normal pair, equivalence and normalization. Let a; and b;
be indices satisfying the following,

{a03a13a27a37a4} = {b07b17b27b37b4} - {07 1727374}'

Then we call the unordered pair (Bg> B,I)’gbl) a base line pair. We de-

apal’
note by (ngal,Blb’gbl)t the set of B-lines intersecting both (Bg2, ) and
<BII))§b1> in the surface Xy, which can be empty. The set (Bg2, , B,I)’gbl)t

is called the associated set of the base line pair (Bg2, , ngbl) over .

By definition, a permutation o which maps a base line pair (B2

apay?
Bgﬁbl) to the image pair (BZ((:(?))J(GI), BZ((ZE))U(,JI)) induces a bijection be-

tween two associated sets (ngal,ngbl)t and (BZ((:(?))U(GI), BZ((Zj))a(bl))t

for the same surface X;.
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Proposition 2.1. Two base lines are coplanar if and only if they
both lie on a coordinate plane H;, or both lie on a plane defined by the
equation: z; + z; =0 for some i # j € {0,1,2,3,4}.

Proof. Without loss of generality, choose a base line (Bg;) on Hy,
which intersects a base line on another coordinate plane Hy or Hj
or Hy or Hs. If the intersection point P lies on H3 or Hs, then
P=(1:-1:0:0:0) lies only on (B3;) and (B2,), hence on the same
plane zg+2; = 0. If P lies on Hy or Hy then P=(0:0:1: —1:0) lies
only on (Bj;) and (Bjs). Because (Bj,) = (Bjs), then (B3s), (Bas)
and (BY;) are on the same plane 2o + 23 =0. O

A skew pair is a base line pair whose base lines are not coplanar.

. . . a ba T
A normal pair is a base line pair (Bg?, ,B,>, ) whose indices set

{a05 ai, az;, bOa bla bZ} is equa‘l to {07 la 27 3’ 4}
Two base line pairs are equivalent if they contain same base lines, i.e.,

b . . al b/
as 2 2 2
(B&2,,, Byy, ) is equivalent to (Ba{)a’l’Bb{)b’l

b 7 b!
{<Bg§a1>v <Bb§b1>} = {<BZ§a'1>a <Bb§b'1>}'
We say a base line pair can be normalized if it is equivalent to a

normal pair. Actually a skew pair can always be normalized (Theorem
4.10).

) if the two sets are equal:

3. Singular surfaces in the Dwork pencil. The ¢-th partial
differential of F; at point P is

OF, . 5
b= 52f — Btzpz1 ... %5 ... 24 = — (20 — t2p21222324).

0z; Zi
Let 6Ft(P) denote (8Ft(P)0 : 6Ft(P)1 : 8Ft(P)2 H 6Ft(P)3 : 6Ft(P)4)

A singular point P = (2 : z1 : @3 : x3 : x4) of the surface X;
satisfies 0F;(P) = (0 : 0 : 0 : 0 : 0) or the partials are proportional
to (1 :1:1:1:1),ie, 0F(P); = 0 for ¢ = 0,1,2,3,4 or
OF(P); = OF,(P); for any i # j € {0,1,2,3,4}.

The surface X; is defined by sgs3 = 0, hence the singular locus is
the double curve so = s3 = 0. The surface X, defined by s5 = 0 is
non-singular because the only prime ideal over (2§ — z{, 2 — 23, 25 — 25,

23 — 24, s1) is (20, 21, 22, 23, 24).

8Ft(P)l =
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3.1. Singular points on H;. If P lies on a base line, because of
the symmetries, we can assume P = (1:—1:a: —a:0), then we have
the 0F;(P) as a homogeneous coordinate with non-zero entries:

OF (P)=(1:1:a*:a*: —ta?);

hence, a* =1 and ¢t = —a? = £1. When ¢t = 1 we have P on the double
curve s3 = s3 = 0 of X;. When ¢t = —1 we have a singularity P as
(1:=1:1:-1:0) up to permutation.

If P lies on a residue conic, for example Cy, assume P = (1 :z :y:
—(1+z+y):0),satisfies 22 +y> + 1 +z +y +xy =0,

OF(P)=(1:a*:y*: 1+ z+y)*  tay(l +z+y))

if z = 1, then (2+y)* = 1, so we have y = —1, which causes P not to be
on the residue conic Cy; if £ = v/—1 then y = —v/—1 and ¢ = 1, which
causes a concurrent point of base line, residue conic and the double
curve sy = s3 = 0 of X;.

3.2. Singular points in general. We assume z; # 0 for
i=0,1,2,3,4 If 0F,(P) = (0:0:0:0:0) we have 2§ = z} =

r3 = x3 = x5 which is not on s; = 0.

If OF;(P)=(1:1:1:1:1), any z; has to be a root of the following
quintic equation.

S —z+tec= 0, c = —txyr1T2T3x4

P has five distinct coordinates, the set {zg, z1, 2, 3, 24} consists
of the five roots of the above equation; hence ¢ = —zgxiz22324 and we
get t = 1, the singularity lies on the double curve of Xj.

P has four distinct coordinates, we assume g, 1, T2, Z3 to be the
distinct roots of the above equation; then the fifth root is tx4, hence
To+ 1+ 29 + 23 +try =0. But Pison s; =0 then t = 1.

P has three distinct coordinates, if P = (z:z:y:y: —2(z+vy))
we have

xt + 2txy?(z +y) = y* + 2tx’y(z +y) = 16(z + y)* — tz?y”.
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This gives no solution for three distinct coordinates. If P = (z: z: x:
y: —(3z 4+ y)) we have
et +ta?y(3z +y) = y* + e’ 3z +y) = Bz +y)* — tay,

giving only one solution containing three distinct coordinates (up to
permutation)

t=3, P=(2:2:2:-3+vV-7:-3—-v-T)

P has two distinct coordinates, there are two possibilities up
to permutation. If P = (1 :1:1:1: —4) we have t = 51 and if
P=(2:2:2:-3:—-3) we have t = —13/12.

3.3. Conclusions concerning singular points. The above results
can be organized as this table (originally by Barth).

t number of singularities | coordinates up to permutation Type

1 [e's] sg=s83=0 non-isolated

3 20 (2:2:2: =3 +/=T7:=3—/-T7) node

51 5 (1:1:1:1:-4) node
—13/12 10 (2:2:2:-3:-3) node

-1 15 (1:1:-1:-1:0) cusp

The only new information are the types of the surface singulari-
ties, which can be determined in the standard way: Let f(z,y,2) =
Fi(l,z,y,z,—(1+ 2z +y+ 2)) = 0 be the affine equation of the surface
X;. Then we can get the analytic germ at the singular point. For
example, on X5;, we have f(z + 1,y + 1,2 + 1) be the analytic germ
whose tangent cone is an irreducible quadratic form —375 22 +250yz —
375y% + 250 22z + 250 zy — 375 2%; hence the point (1:1:1:1: —4)
is of A; type on Xs5;. So are the surfaces X3 and X_;3/12. For X_j,
the tangent cone degenerates into 5(y — z + z)(—y + z + z). After
the coordinate change X = y—2+2,Y = —y+ 2+ x,Z = z, the
tangent cone is XY and the cubic part is 10 Z3 + 5 2Y?2 4+ 15 72X —
(15/2)YZX + (25/4) XY? + (25/2) ZX? + (15/4) X3 intersecting X
and Y transversally, so the singularities must be of Ay type.

4. Additional lines on X;. We now prove Theorem 1.1 and the first
part of Theorem 1.2 here. In P3, a general line in the Grassmannian
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G(2,5) needs six indeterminate parameters, while a B-line needs only
two parameters to determine itself. We first prove every additional line
belongs to a base line pair in subsection 4.1. In subsection 4.2, we get
the additional lines on X (Proposition 4.6) and show that for X, (¢ # 0)
every additional line belongs to a skew pair. In subsection 4.3, we
discuss the group action. Although the transitivity of the additional
lines is not easy to be achieved directly, we can prove the transitivity of
the skew normal pairs (Proposition 4.9). We also show a skew pair is
normalizable (Theorem 4.10) and hence prove Theorem 4.11. By this
theorem, we need only to compute in the skew normal pair: (Bg, B):-
In subsection 4.4, the computation shows the additional lines in the pair
can be transformed into each other by permutations and the matrix
forms in Theorem 1.1 are determined. Moreover, it shows that only
t = 2 and t = 27 give non-empty (B§,, Bi,):, which becomes the first
part of Theorem 1.2.

4.1. Every additional line is a B-line. Recall the definition in
subsection 2.2: a B-line is an additional line which intersects at least
two distinct base lines. Hence we only need to prove that an additional
line must intersect at least two different base lines.

Lemma 4.1. The ideal of the residue conic Cy; on the coordinate
plane H; is generated by any one of the equations 2? + z? + z,% + 225 +
zizk + zjz = 0 in the coordinate ring Clzo, 21, 22, 23, 24)/(s1), where
i,j, k are distinct indices in {0,1,2,3,4} — {I}.

Proof. Let z;, zj, 2, 21, 2m be the five coordinates; by z; = 0 we have
zr = —(2i + zj + 2m) and 2, = —(2; + 2 + 2). Then

zf + z]2 + z,z + 225 + zizk + 252k
=2} + 7 + 22 + 2k (26 + 2 + 25)
=22+ 2]2 + 2z + (2i + 2 + 2m) Zm
= zf + ij + zfn + 2i2j + 2iZm + ZjZm;

therefore, we can choose any three indices in {0,1,2,3,4} — {l}. o

Corollary 4.2. If C; and C; are two distinct residue conics, then
C;C; =2.
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Proof. By Lemma 4.1, we have C; N C; = {(20,21, 22, 23, 24) |51 =
0,2 = z; = O,z,% + 212 + z?n + zxzi + 2k2m + 212m = 0} where
{i,7,k,l,m} ={0,1,2,3,4}; hence, C;C; = 2. O

Proposition 4.3. If the surface is non-singular, an additional line
of the surface intersects at most three residue conics.

Proof. Let L be an additional line on a non-singular surface X; of the
pencil, K the canonical divisor and Cy, C7, Cs, C3, Cy4 the residue conics
on X;. Let n = L(Cy+C1+Cy+C3+Cy)and D= L+ 5+, C;. By
the adjunction formula, we have C? + C; K = —2, implying C? = —4.
And L? = —3 by the same reason. Now

4 4
D*=L*+) C7+2L) Ci+2 > CC;
i=0 i=0 0<i<j<4
= —3-20+2n+40 =17+ 2n.

Let H be a hyperplane divisor; then

7 H? HD\ (5 11
“\HD D? ) \11 2n+17)°
Suppose that n > 4; then det(Z) = 5(2n + 17) — 121 > 125 — 121 = 4,
a contradiction to the Hodge index theorem. ]

We illustrated in Figure 1 the configurations of the additional lines,
base lines and the residue conics on the five coordinate planes (of course
the five planes intersect each other in the projective space, but we
didn’t draw that explicitly because our main concern is the intersection
between the lines and conics). Then the following is the result of this
subsection.

Theorem 4.4. An additional line is a B-line, and the set E; of
additional lines on surface Xy is actually the set of B-lines on X;.

4.2. For t # 0, any B-line belongs to the associated set of
a skew pair. First we assert that a B-line intersects a skew pair on
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B-line /

FIGURE 1. An additional line intersects five coordinate planes.

base lines

X; for t # 0, then discuss the B-lines on Xy. The third lemma is
technical. It describes the form of a skew pair, which is useful in the
next subsection.

Lemma 4.5. There is no B-line on any coordinate plane H;. When
t # 0, there is no B-line on the plane defined by equation z; + z; = 0.

Proof. The complete intersection of H; and X; is a triangle and a
residue conic, containing no B-lines. For the remainder, we consider
the intersection of the plane zg + z; = 0 with X;, substitute z; = —zo
and z4 = —(22 + 23); we have

Fy = —52023(20 + 23)(t23 + 25 + 2223 + 23)

being a conic and three base lines BZ,, By, and B, which meet at the
point (1: =1:0:0:0). O
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By Proposition 2.1, if the associated set (B2, , Bg;bl)t for a base line
pair (ngaNBll:)ibl) is non-empty on some surface X, where ¢ # 0, the

two base lines are skew.

Proposition 4.6. The complete intersection of the surface Xy and

the plane z; + z; = 0 consist of five lines, and any additional line is a
1-1000 )

permutation of (0 0 w1w?

Proof. From the proof of Lemma 4.5, there are two B-lines intersect-
ing coplanar base lines on the plane z; + z; = 0. They can be written
as the following up to permutation

where w is a primitive cubic root of 1. O

Lemma 4.7. For a skew pair (B%2 ngbl), the indices satisfy (i)

apal?
the two superscripts can’t be equal,

(ii) the sets of subscripts can’t be equal,

(iil) the set of subscripts of one entry can’t be the others’ three indices’
complement with respect to {0...4}.

Proof. For (i), if the two superscripts are the same, then the two base
lines lie on the same coordinate plane z,, = 0. For (ii), if the sets of
subscripts are equal: {ag, a1} = {bo, b1}; then the two base lines lie on
the same plane z,, 4+ 24, = 0. For (iii), if {ao, a1} is the complement of
{bo, b1, b2}, then (B2, ) = (B%2, ), which is impossible by (i). O

aoai

4.3. Normalization of a skew pair.

Proposition 4.8. A normal pair which is skew must be (Bg2,,, By, ),
where

{(10,(11,(12,(13,(14} = {07 17 27 37 4}
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Proof. If the skew pair (B22 Bbz

apai? boby

{a07a17a2} U {b07b17b2} = {07 1a27374} = {ao’alaa27a’3aa’4};

) is normal, we have

hence, there is only one duplicated index

#({ao, a1, a2} N {bo, b1, b2}) = 1.

We prove the duplicated index merely appears as the subscripts. By (i)
in Lemma 4.7, The duplicated indices can’t both appear as superscripts.
If the duplicated indices consist of one superscript and one subscript,
we assume ag = by, then by the definition of normal, {by,b;} = {as,as}
a contradiction to (iii) of Lemma 4.7. o

For a normal pair (B32, ,Bg%,.), all of its equivalent pairs are the
following
(ngalngfaz)v (Bg§a4ﬂBg§a3)7 (Bg§a4’Bg;1a2)7

which are not normal; hence, it is the unique normal pair in its
equivalent class of base line pairs.

Proposition 4.9. Any two skew normal pairs can be mapped to each
other by a permutation in Ss; hence, S5 is transitive on all the skew
normal pairs.

Proof. By Proposition 4.8, we can assume the two normal pairs are
(Ba2,,, Bgt,,) and (Bll:gbl,ngba) where the indices satisfy
{a07 a, az, as, a4} = {bO) b17 b27 b37 b4} = {O’ 17 27 37 4}7
then the permutation o defined by o(a;) = b; maps (B3?, , By, ) to
b b
(Bbsbl s Bpobs )- o

Theorem 4.10. A skew pair can be normalized to a normal pair.

Proof. Let a; and b; be the indices which satisfy the following
condition

{a07a17a27a37a4} = {b07b17b27b37b4} = {07 1727374}'
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If there is a skew pair (Bg§a1’Bll:§b1) which is not normalizable, by

definition of normalization, the indices satisfy the following
{ao, ai, 0,2} U {b07 bla b2} 7é {07 ]-7 2; 37 4}7

and because (B2, ) = (B2?,,), we have

{az,a4,a2} U {bo,b1,b2} # {0, 1,2,3,4}.

By (i) of Lemma 4.7, by is not equal to as; without loss of generality,
we can assume by = ag. Then

{a3aa4aa2} U {bo,bl,ao} = {0,0,0,2,0,3,@4,1)0,1)1} 7é {07 1a27374};

hence a; € {bs, by}, which induces {as, a4, ag }U{bs, bs, ap }={0, 1, 2, 3,4},
a contradiction. ]

Theorem 4.11. The set E; of additional lines on the surface X,
where t # 0, satisfies the following

E, = U U(BglaBgz)t
oc€Ss

for Ey,

Eo = U U(B§17B32)0UE7
oc€Ss

where E is the set of B-lines on plane z; + z; = 0 in Proposition 4.6.
The set E contains 20 B-lines.

Proof. For E; where t # 0, use transitivity of the skew normal pairs.

For Ey, by Proposition 4.6, there are 2 B-lines on the plane z;+2; = 0,
and there are 10 such planes, hence 20 B-lines in F. |

4.4. Non-empty associated sets (Bg;, B3,);- Let L be a B-line
in (Bg,, B3,): as follows:

1 -1 A -A O
1 B -1 0 -B)/°
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The point of L whose coordinates are (1+z,—1+2B,A—z,—A, —2B)
lies on X; if z is any one root of the polynomial

%Ft(l +2,-1+2B,A—2,—A,—2B)
= ¢t(B, A)Z4 + ’l/)t(B, A)Z3 + ¢t(A, B)Z2 + ¢t(A, B)Z
where ¢;(z,y) and ¢;(z,y) are the following polynomials:

di(z,y) = 1—a*+y+ta’y,  du(x,y) = 2(z®—y+1)+toy(z—1-zy).

If t = 0, the four polynomials ¢q(z,y), do(y, ), Yo(z,y) and ¥o(y, )
have no common root. Let ¢ be non-zero. By eliminating ¢, we have
two surfaces ¢:(z,y) = 0 and ¢¢(y,z) = 0 intersecting at the space
curve whose coordinates (¢, z,y) satisfy the following equations.

zt—y—1

t= ;o ()@Y +ay@@® +y?) +r+y+1) =0,

z3y

and two surfaces 9¢(z,y) = 0 and 9¢(y,z) = 0 intersect at the space

curve

2(y® —2” +1) 2.2 2, .2
=—7, z—y)(zy +zy(lz”+y°)+x+y+1)=0.
zy(zy +1—y) ( ) ( ) )

Let x = y; we have two solutions, one is x = y = 7, t = 27 where 7 is
a root of 78 + 7 + 1 = 0, while the other is z =y = (1 £ v/5)/2,t = 1
which lies on the singular surface X;.

Now, always assume 7 to be a root of 7*+7+1 = 0. Use the following
MAPLE instructions:

phi=(z,y)—>1-a' +y+txa®xy;
psii= (z,y)— >2* (2> -2 + 1) +txzxyx(z—1—z*7y);
solve({phi(z,y), phi(y, z), psi(z,y), psi(y, z)});

It gives the following solutions (we omit the solution on X; and the
solutions representing the base locus):

l. 2 =w, y = w? and t = 2 where w is a primitive cubic root of 1.
2. zis aroot of z* — 23 +1 =0, y = —z%; hence,
zt—y—-1 z*+2f-1 22° < l>

t = = =
22y N 25
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Observe that —1/7 is a root of z* — z® + 1 = 0; we have t = 27,
r=-1/7and y = 1/73.

3. zisaroot of z*+(z+1)3 = 0,y = —(z+1)3+22% -1 = z* +22° - 1;
then

Observe that —7 /(1 + 7) is a root of z* + (x + 1)® = 0; we have

T3—T2—37’—2_ 1 -4+ 734372+ 27
(r+1)3 Toor (r+1)3

y:

1
=
r

hence t =27,z = —7/(1+7) = —7/(-7%) =1/ and y = -1 /7.

There are 5 non-singular surfaces X; with a non-empty associated
set (Bgy, B3y)t, for t = 2 and for t = 27. This proves the first part of
Theorem 1.2.

For X3, the two lines in (Bg;, B3,)2 satisfy the following

1 -1 w —-w 0 — (1,2)(3,4) 1 -1 w? —w? 0

1 w2 -1 0 —w?) WYl w -1 0 —w)’
For X,, the three lines in (B, B3,)2- are the following:

1 -1 = -7 0
Lo= (1 T -1 0 —r>
L1:<1 -1 -1/r 1/ 0 >

1 1 -1 0 -1/

I, 1 -1 1/ -1/ 0
2T\ 17 -1 0o 1/r)"

We check (1,0,3,4)Lo and (1,0,4,2)Lg to see if they are equal to Ly
and Lo; first observe
-1 0 T 1 -7
(1’0’3,4)‘L0_<T - -1 1 0 )
-1 7 0 -7 1
T -1 —7 0 1

(1,0,4,2)-L0_<
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Plane: zp+ 2, =0

The B-line connecting two
triangles, actually Bg, and
B

FIGURE 2. B-line connects two base line triangles.

then it is easy to verify

T 7'4

™ 7
(1,0,3,4)- Ly = s 0 Ly, (1,0,4,2) - Ly = 0 7 Lo,

which means Ly, L; and Lo differ by a permutation in S5. For the image
of Ly, see Figure 2. From Theorem 4.11 and the above statements,
Theorem 1.1 is proved.

5. Number of B-lines and configuration. From now on, let us
always assume 7 to be a root of 7 + 7 + 1 = 0. We will complete the
proof of Theorem 1.2 in this section. By Section 4, the only non-singular
surfaces containing B-lines are Xy, X5 and X5,. For the surface X,
its associated set of a skew pair is always empty; hence, it contains
only B-lines on the plane z; + z; = 0, by Theorem 4.11. Then we know
#Ey = 20. Next we will count the number of lines on Xy and Xo,.
The trick is to use an injective mapping m from a B-line to a set of
fundamental planes to determine the stabilizer under the S5 action.
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To prove there is no isomorphism between any of our surfaces and the
quintic Fermat surface, we only need to show the line configurations
on our surfaces are different from that on the quintic Fermat surface,
since the isomorphism between two quintic surfaces in P3 must be a
linear one which preserves the line configurations.

5.1. Counting the number of lines. We construct the map-
ping 7 in subsection 5.1.1 and prove it commutes with a permutation
(Theorem 5.6). Then the stabilizers of the set of additional lines are
determined respectively in subsections 5.1.2 and 5.1.3. Consequently,
the numbers of lines are determined (Proposition 5.10 and Proposi-
tion 5.13).

5.1.1. Fundamental planes and the injective mapping. For
the surface X; where t = 2 or ¢t = 27, we call a plane D a fundamental
plane for X; if D contains at least one base line and one B-line of X;.
Denote by G, the set of fundamental planes for surface Xj;.

Denote by MZE the pencil of planes containing the base line <ij>,
denote by M;(n) the polynomial z;+z;+nzy; then (M (n)) is a plane in
the pencil. For {7, j'} = {0,1,2,3,4}—{i, j, k}, we have (B};) = (B} .);
hence, Mi’; and Mi’?j, are the same pencil. By zi + 2 = —(2;+2; + 2),

k _ k . .
we have (M;%(n)) = (M;i;,(1 —n)) being the same ideal.

Proposition 5.1. Let D be a fundamental plane in the set Gy; then
D belongs to a unique pencil MZ‘;

Proof. If D belongs to two different pencils Mi’;- and Mi’?;-,, then
D contains a B-line L, which intersects both (Bf;) and <Bf,;,) By

Lemma 4.5, (ij, Bik,’j,) is skew, contradicting the fact that they are on

the same plane D. a

By this lemma, we know that a fundamental plane of G; is equal to
(M (n)) for a suitable 7.

Proposition 5.2. Let L be a B-line. We define a map m which maps
a B-line to a subset of G as the following:
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m: L+ {D | D is spanned by a base line and L}.

Then 7 1is injective and Gy = Upecg, m(L) where Ey is the B-line set of
X;.

Proof. L = Nm(L) is unique if 7(L) contains more than two planes.
What remains to be proven is that 7(L) contains at least two funda-
mental planes. By definition, the B-line L intersects at least two base
lines which are not coplanar. These two planes spanned by L and the
two base lines are both contained in 7(L). O

We have shown in Section 2 that, for o a permutation of Ss,
the induced morphism maps a hypersurface defined by the equation
F(zo0, 21,22, 23,24) = 0 to the hypersurface defined by F'(z,(0),20(1)>

za(2),za(3),z0(4)) = 0. In particular, it maps the set ij to BZ((S)U(J.),

and the polynomial M;(n) to the polynomial M;((i,;l(j)(n). Further-

more, it is also an isomorphism on C|zo, 21, 22, 23, 24]/(s1); hence it

maps the base line (ij) to the base <BZ((ik))a(j)), the pencil Mi’% to the

. o(k o(k
pencil MU((Z.)L(].), and the plane <M,I§(77)> to the plane <M0'((i)27(j)(n)>'

Lemma 5.3. A permutation of S5 maps a fundamental plane to a
fundamental plane, so the symmetric group Ss acts on the set Gy.

Proof. A permutation o € S5 maps a base line to a base line and a
B-line to a B-line; hence it maps a fundamental plane in G; to another
fundamental plane in G;. So the operation on Gy is closed. u]

Lemma 5.4. © commutes with o, i.e., w(o(L)) = o(n(L)).

Proof. Because ¢ preserves the intersection of two lines, each side is
equal to the set of the fundamental planes spanned by o(L) and the
base lines which intersect o(L). O

Corollary 5.5. If S5 is transitive on E;, each B-line intersects
ezactly the same number of base lines.

Proof. For two B-lines L and Ly, choose o € S5 satisfying L; = o(L).
Then we have #m(Ly) = #7(0(L)) = #o(w(L)) = #x(L). o
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The following is the key to finding the stabilizer of a B-line.

Theorem 5.6. Let o be a permutation in Ss. Then o(L) = L if and
only if o(w(L)) = w(L).

Proof. By Lemma 5.4, we have o(n(L)) = w(o(L)) =
o(L) = L. Conversely, since o(w(L)) = w(c(L)), we have o(L)
the injectivity of 7. o

(L), i
:Lby

5.1.2. StabF,, and #F>,. We want to use the injectivity of the
mapping 7. First we give the representation of the image of w(L) for a
general B-line.

Proposition 5.7. For the B-line L = (1 ;1 _Tl 707 _OT

have m(L) = {(Mg, (1 + (1/7))), (Mg, (1 + (1/7))), (M34(7))}-

) on Xor, we

Proof. We can directly verify {(Mg (1 + (1/7))), (M3 (1 + (1/7))),
(M3,(7))} c m(L). For the other inclusion, we only need to prove
L doesn’t intersect other base lines. The intersection point of L
and the coordinate plane Hy is (1 +1 :0 : 72 =1 : —72 : —7),
which is on the residue conic C, not on a base line. Also we have
LNHy=(r+1:72-1:0: —7:-72) € C3 not on a base line. O

By Corollary 5.5, each B-line on X5, intersects three base lines.

Lemma 5.8. G2, can be decomposed into two subsets U,V with
UNV =g, where

1
U= {<ij’ (1 + —>> | 4,7,k are distinct mdices}
T
V = {{M}(7)) | 4,4,k are distinct indices} .
Moreover, U and V are both closed and transitive under the operation

0fS5.

Proof. From Proposition 5.7, a fundamental plane in G, is (Mi’;(l +
(1/7))) or (M[(7)); hence, G2, C UrL C U U V. By definition, U
and V are transitive and closed under the action of Ss. It remains to



MORE QUINTIC SURFACES WITH 75 LINES 2083

prove U NV = &. If not, by transitivity, there is a fundamental plane
(M;Z"]O( )) € V equal to (Mg (1+ (1/7))) € U. The intersection locus
of the two fundamental planes is the nullspace of the following matrix

1 ifi=1ip,i=jo
>Where a; =< 7 ifi=kg

(1 1 0 0 1+4+(1/7)
0 ifq ¢ {i07j07k0}7

ap a1 a2 as aq

the two fundamental planes coincide if the above matrix drops its
rank, which is impossible. So the two planes can’t coincide, hence
UnNnV=g. o

Theorem 5.9. StabFEs, is generated by (1,2)(3,4).

Proof. By transitivity of the set of Fo., the stabilizer of E5, is the
stabilizer of L where L is the B-line in Proposition 5.7. By Theorem 5.6,
we look for the permutation o which maps 7(L) to (L) itself.

(L) = {<M5‘1 (1 + %>> (M, (1 + %>> <M§4(T)>}.

By Lemma 5.8, we have o((M3,(7))) = (M3,(7)); hence, o(0) = 0.
Now we have M? o(3)o (@) (T) = M2,(7). If (3) = 3 and o(4) = 4, then

o((Mg(1+ (1/7)))) = (Mg, 1)( +(1/7))); hence o(1) = 1 and o is
the identity. If o interchanges 3 and 4, we have o((Mg; (1 + (1/7)))) =
(Mgg(l)(l + (1/7))) € w(L); hence, o(1) = 2 and then o = (1, 2)(3,4).
So the stabilizer of L is generated by (1,2)(3,4). o

Proposition 5.10. #FE,, = 60, and the number of all lines on the
surface Xo, s 75.

5.1.3. StabE; and #FE,. Choose the B-line L = (1 —yw w0 )

w2 -1 0 —w?
on X5, where w is a primitive cubic root of 1. Similar to the case of
Xs,, we first compute the image 7(L) as follows.
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Proposition 5.11. 7(L) = {Dy, DQ,D?,}, where D; is the following:

Proof. A computation shows L, C7 and Cs are concurrent at the
point (w:0:0:1:w?) which is not on a base line. O

Theorem 5.12. The stabilizer of L is generated by (0,3,4).

Proof. Let o be a permutation such that o(L) = L.
Case L. o(D3) = Ds; then o(0) = 0.

1. If 0(1) =1 and o(3) = 3, then o(D2) = D3; hence 0(2) =2. So o
is the identity.

2. If o interchanges 1 and 3, then o(D2) = (M(}U(Z)(—w» ¢ w(L), a
contradiction.

Case II. 0(D3) = D5; then o(0) = 3.

1. If o(1) =1 and 0(3) = 4, then o(D3) = Dy; hence 0(2) =2. So o
is (0, 3,4).

2. If 0(1) =4 and o(3) = 1, then o(D2) = (M;U(Z)(—w» ¢ w(L), a
contradiction.

Case IIl. o(D3) = Dy; then o(0) = 4.

1. If 0(1) =1 and o(3) = 0, then o(D3) = Ds; hence o(2) = 2. So o
is (0,4, 3).

2. If o(1) = 0 and ¢(3) = 1, then o(D>) = <Mia(2)(—w)> ¢ m(L), a

contradiction.
Thus the stabilizer of the B-line L is generated by (0, 3,4). O

Proposition 5.13. #F; = 40 and there are 55 lines on X,.

5.2. Comparison with the Fermat quintic surface. We
recall some algebraic geometry in subsection 5.2.1, which assert the
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L (0,1)(2,3)L (0,1)L (2,3)L

/ Base line Bj, \

(1:=1:7:=7:0 (1:=1:=7:7:0)

FIGURE 3. Fundamental plane (Mg, (1 + (1/7))), B-line L = (M{;(1 + (1/7)) U
Mg, (1+ (1/7))).

isomorphism between two quintic surfaces in P? is linear. In subsection
5.2.2, we find a plane containing five lines on X5, which are not
concurrent, while in subsection 5.2.3, we show that the coplanar lines
on the quintic Fermat surface are always concurrent, hence the quintic
Fermat surfaces are not isomorphic to any of our surfaces.

5.2.1. Invariance of line configuration. First note the following
important property of the isomorphism between two quintic surfaces in
P3.

Proposition 5.14. An isomorphism of two quintic surfaces in P>
can be extended to a linear isomorphism of P3.

Proof. Let f : X — Y be the isomorphism of two quintic surfaces
X and Y. Then f induces a homomorphism on the linear system of
canonical divisors Kx — Ky. Now Kx = Ky = O(1), hence f is the
linear isomorphism. ]

Now if the quintic surface X is isomorphic to Y, then the configu-
ration of the lines on X is the same as the configuration of the lines
on Y because the isomorphism is linear by Proposition 5.14. Hence X
and Y must have the same configuration of the lines. Obviously, the
two surfaces Xy and X are different from the Fermat quintic surface
because they contain less than 75 lines.
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5.2.2. Split fundamental plane of X,,. We assert that at
least one plane intersects Xo, in five lines, which are not concurrent.
Actually we prove the following stronger proposition.

Proposition 5.15. Let U be the component of Gor defined in
Lemma 5.8. A fundamental plane in U intersects Xo, in five lines,
which are not concurrent.

Proof. By Lemma 5.8, U is transitive, we can choose an arbitrary
element (Mg, (1+ (1/7))). By Bézout’s theorem, it intersects the
surface at most five times. Let L be the line in Proposition 5.7.
The plane already contains Bj; and L, and direct computation shows
(0,1)(2,3)L, (0,1)L and (2,3)L are also on the same plane, and there
are only two triple points as follows; (1 : =1 : 7 : —7 : 0) =
B4 NnLN(0,1)(2,3)L,and (1: —1: —7:7:0) = B4 N(0,1)LN(2,3)L.
See Figure 3. u]

5.2.3. Split plane on the Fermat quintic surface. In this
subsection, let P® be the ordinary complex projective space with
coordinate ring C|zg, 21, 22, 23]

For the Fermat quintic surface, we mean the hypersurface in P3
defined by z§ + 2 + 25 + 25 = 0 (or the surface isomorphic to it).
Denote by L;; := z; = z; = 0 the line in P3. These lines are not on
the Fermat surface, but they set up the skeleton for all the 75 lines on
the Fermat surface. On the coordinate plane zy = 0, there are three L-
types lines Loy, Loz, Loz (see Figure 4), which intersect at the following
points; LOlﬁLOQ = (0 :0:0: 1), LOlﬁLog = (0 :0:1: 0) and
Lo2 N Loz = (0:1:0:0). Observe the line Loz is the intersection of
the planes zg = 0 and z3 = 0 and for other two L-lines on z3 = 0, we
have: L13NLyz = (0:0:1:0)and LogNLos = (0:1:0:0). Moreover,
by Li2N(23=0)=(1:0:0:0), Li12N(20=0)=(0:0:0:1) and
LisNLy3=(1:0:0:0), we get a tetrahedron (see Figure 5). Each
line L;; intersects the Fermat surface on 5 points PZ;- fork=0,1,2,3,4.
The line L;; can be organized as 3 skew pairs (whose unions of indices
are {0,1,2,3}):

(Lo1, La3), (Lo3, L12), (Lo2, L13).
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(0:0:0:1) (0:1:0:0)
FIGURE 4. The triangle of L-type lines.
(1:0:0:0) The dash-dotted lines
The coplanar five lines i‘jffi lines on fermat

which are concurrent

—————————————————— (0:1:0:0)

Points cut by fermat — %
surface and Ly,

(0:0:1:0)
FIGURE 5. Skeleton tetrahedron of the lines on the Fermat surface.

A line is on the Fermat quintic surface if it connects two points Pilj-
and Pi’?]-,, which lies on a skew pair of lines (L;;, Lij-) {4,5,7,5'} =
{0,1,2,3}.
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These lines are 5 x 5 x 3 = 75 in total.

If two lines L, and Lo on the Fermat quintic surface are coplanar at
a plane D, we have the following cases:

1. Ly and L, intersect the same skew pairs; hence, L; and Lo
intersects at a point PZIE Then D is the plane passing L;/;» and Pi’g-,
which contains five lines through P;;-.

2. They intersect different skew pairs. But there are only 3 skew
pairs; hence, the plane D has at most 3 lines which intersect different
skew pairs. If D contains five lines, there are 2 lines intersect the same
skew pair and fall back to Case 1.

From the discussion, five coplanar lines on the Fermat quintic surface
are always concurrent at one point. But for X5, the fundamental
planes in U contain five lines which are not concurrent; hence, Xo,
is not isomorphic to the Fermat quintic surface. Combining this with
the results of Proposition 5.10 and Proposition 5.13 we have proved
Theorem 1.2.
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