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CROSSED PRODUCTS OF
NONCOMMUTATIVE CW-COMPLEXES
BY FINITE GROUPS

ERICH MCALISTER

ABSTRACT. In this paper we will construct a new class
of examples of the so-called noncommutative C'W-complexes
(NCCW-complexes). We show that if G is a finite group
acting on a NCCW-complex A, by a natural class of auto-
morphisms, then the crossed product A, X G is an NCCW-
complex. As a result, we find that whenever G is a finite
group of diffeomorphisms acting on a smooth manifold M,
then the resulting crossed product C(M) X G has the struc-
ture of an NCCW-complex. Partial results are given in the
case of twisted crossed products.

1. Introduction. The goal of this paper is to give a systematic
study of crossed products of the form A x G, where G is a finite
group and A can be decomposed in a way analogous to the cellular
decomposition of a topological CW-complex as first defined in [1]. The
results given provide the general framework for the computations of
certain K-theories carried out in [7].

Motivations for this study come variously from [9, 11, 12]. First,
crossed products resulting from the action of finite groups on simplicial
complexes were studied at some length by Yang in [12]. The primary
goal of this author was to compute the K-theory of group C*-algebras
of planar crystallographic groups. These algebras were realized as sub-
homogeneous algebras over simplicial complexes where dimension drops
occur only on lower dimensional skeleta. While this realization did al-
low for computation of K,(C*(G)) for all 17 planar crystallographic
groups, nontrivial analysis was required in the computations.

The motivation for studying these crossed products from the point
of view of noncommutative C'W-complexes can be summarized by
the characterization of noncommutative C'W-complexes as “algebras
of matrix-valued functions over topological spaces homeomorphic to
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CW-complexes...” [9]. The pullback constructions of [9] allow us
to decompose the crossed products of [12] in a way that more fully
utilizes the simplicial decomposition of the underlying space. Then it
is possible to use the algebraic-topological approach to computing the
K-theory of a pullback given in [11], thus giving a very algorithmic
way of computing K, groups.

2. Preliminaries. In this section we will recall some definitions
from [1, 2, 9], as well as some important facts. We will begin by
setting some notation, borrowed directly from Pedersen’s paper [9]. If
A is a C*-algebra, then

I"A = C([0,1]",A), IjA =Co((0,1)",A), S"A=C(S",A)
where we identify the n-sphere S™ with the boundary of [0, 1]"*1.

Definition 2.1. A zero dimensional noncommutative CW -complez
(NCCW-complex) is any finite dimensional C*-algebra Ay. In general
we recursively define an n-dimensional NCCW -complex to be any C*-
algebra A, appearing in a diagram

0 I'F, A, — ™ A, ———0
0 I'F I"'F, —% S"'F, — 0

where the rows are extensions and the righthand square is a pullback.
A, _; denotes an (n — 1)-dimensional NCCW-complex, F,, is some
finite dimensional C'*-algebra, § is the boundary restriction map, and
¢ is an arbitrary morphism.

The map ¢, is will henceforth be referred to as the connecting
morphism. The maps f, and 7, are the projections onto the first and
second coordinates, respectively, in the realization of A, as a restricted
direct sum

A, =I"F, @ A, .

Sn-1F,
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Any NCCW -complex A,, of dimension n > 1 will be assumed to have
lower dimensional complexes Ay with & < n such that Ay _; is the
image under the projection 7, appearing in the diagram making Ay a
k-dimensional NCCW -complex.

Example 2.2. Recall from [3] that a space X is a finite, n-dimen-
sional CW-complex if there is a filtration X C X' C ... C X" =X
such that X© is a finite discrete space and, for k = 1,... ,n, X* arises
in the pushout diagram

Xk: Xk—l

| "
e G

Ak

Here )\ denotes some finite index set, I¥ = [0, 1]*, the horizontal maps
are the obvious inclusions, and 7 is an arbitrary continuous map. By
dualizing this diagram we obtain a pullback

C(x*) ——o(x* )

Ikc)\k =5 Skc)\k

This makes C'(X) into a NCCW-complex that happens to be commu-
tative.

The fact that, in the definition of an NCCW-complex, there is
no restriction made on the connecting morphism is worthy of some
remarks. In the previous example, it is possible that the k-skeleton
is equal to the (k — 1)-skeleton. This occurs when the index set
A is empty. In the general situation this corresponds to the finite
dimensional C*-algebra F}, appearing in the diagram with I¥F}, being
equal to zero. In this case, we could also write Ay as a (k — 1)-
dimensional NCCW-complex. Occasionally, we will need to assume
this does not happen, so we will make the following definition:
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Definition 2.3. Suppose n > 1 and A, is an n-dimensional
NCCW-complex with lower dimensional complexes Ag, -+ A, 1. A,
is called strongly n-dimensional if all the connecting morphisms @y :
A,_; — SF'F, are nonzero. A CW-complex X is strongly n-
dimensional if C'(X) is a strongly n-dimensional NCCW -complex when
it is decomposed as in the previous example.

If A is a strongly one-dimensional NCCW -complex, then the finite
dimensional algebras Ay and F; must be unital. Then A; is unital if
and only if ¢; is a unital morphism. In general, if A, is a strongly
n-dimensional NCCW -complex, A, is unital if and only if A,_; is
unital and the connecting morphism ¢,, is unital. This is due to the
fact that the only unit in I"F,, for the ideal I} F,, C I"F,, is the unit
1 € I"F,,. It follows that all the lower dimensional complexes A and
their corresponding connecting morphisms ¢y, are unital. In practice,
all our NCCW -complexes will be unital, so we will assume they are
from now on. This is really a very small restriction to make (see [9,
subsection 11.2]). Moreover, we will assume that nonzero morphisms
between nonzero finite dimensional C*-algebras are unital.

Another possibility in a commutative CW-complex is that some parts
of a given C'W-complex appear to have lower dimension than the rest
of the complex. For instance, take the disjoint union of a closed disk
and a closed interval. In the noncommutative case this corresponds to
a connecting morphism not being injective. So from [9] we recall the
following definition.

Definition 2.4. An n-dimensional NCCW -complex is called proper
if all the connecting morphisms appearing in its construction are
injective. This occurs if and only if the ideals IfF) are essential in
Ag.

Definition 2.5. Suppose A,, is an n-dimensional NC'CW -complex.
Define the canonical ideals in A, to be the decreasing family of closed
ideals

An:_[()DIlD"'DIn#O

by setting Iy equal to the kernel of the composition

T Tn—1 T
An — An—l — e —k> Ak:—l-
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So we have I,, = I?F,,, A,,/I;.41 = Ay, and I1,/I}41 = IEFy,. For the
purpose of consistency, we will let I, = 0 for k > n.

Example 2.6. To make the previous definition more concrete, let X
be a finite, n-dimensional CW-complex containing cells of each dimen-
sion < n. Then, as in the previous example, we have a decomposition
of C(X) as an n-dimensional NCCW-complex, with Ay = C(XF)
where X* denotes the k-skeleton of X. Then Iy = Co(X \ X*~1) and
I [Tjpq & IBLC)"“, where A\j denotes the number of open k-cells.

Remark 2.7. Suppose A, is strongly n-dimensional. Then there is
a particularly nice way of writing elements of the algebra and of the
canonical ideals. Suppose the lower dimensional complexes are of the
form Ay, = I*F,, ®gr-1x, Ag_1, then we may write A,, as an iterated
restricted direct sum

A,=T"F, P I"'F..x P - G?Ao.
Fl

Sn—an S"72Fn71
Then we may regard elements of A, as (n + 1)-tuples (an,...,a0),
where a; € I*Fy for k > 0 and ap € Ay, such that §(ay) =
or((ag_1,...,a9)) in S¥71F; for 1 < k < n. Then the canonical

ideals have the form
Ik} = {(a’naa’nflv .. 7a'k707 e ,0) c An D ag c II(;Fk}

Then the quotients become very transparent.

The following, from [9], generalizes the notion of a cellular map of
CW-complexes. They will be used decisively in the next section to
make the action of a finite group on an NCCW-complex compatible
with the cellular decomposition.

Definition 2.8. Suppose

A =T1"F, @ I"'F, , @ @AO

Sn-1F, Sn—2F, _; F2
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and

B=1I"G,, @ I 'G,_1 EB ---EBBO

Sm-1G,, SM—2G 1 G?

are NCCW -complexes of dimensions n and m, with canonical ideals
{Ic}p_o and {Ji}}"q, respectively. For 0 < k <mn, let It,/Ix41 = IXFy
and J/Jk41 = I’gGk. A morphism « : A — B is called simplicial if

1. a(I}) C J. This guarantees the existence of an induced morphism
between the quotient algebras ay : I’(‘)’Fk — I’gGk.

2. There exists a morphism ¥, : Fy — G and a homeomorphism ¢,
of [0, 1]* such that &y = ¢} ® vy, where ¢} denotes the dualized version
of ¢f.

When A is an NCCW-complex and « is a simplicial automorphism
of A, it is assumed that « is simplicial for a fixed decomposition
of A. That is, the decomposition is the same when viewing A as
the domain or the codomain of «. If one considers the A = (0, 1]
decomposed as an NCCW -complex with one 1-cell and two 0-cells for
the domain of the identity morphism, and with two one-cells and three
0-cells for the codomain, then the identity is not simplicial. This is
obviously corrected by giving A the same, finer, decomposition of both
the domain and codomain.

3. Crossed products of NCCW-complexes.

Proposition 3.1. Suppose A, and B,, are strongly n-dimensional
(n > 1) NCCW -complezes, with decompositions as in Definition 2.8,
and a : A, — B, is a simplicial morphism. Then oy _1(a+I,) =
a(a) + J, defines a simplicial morphism a1 : A1 — B,y and o
1s the unique *-homomorphism making the following diagram commute:
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I,G, B, T B, 1
%wn / an_1
IoF, A, r n A, on
G, "G, Y —2— 871G,
In
1 ®Yn 1 ®Yn 1 ®Yn
IJF, I'F, 5 S"7'F,

where v, and o, are the respective connecting morphisms.

Proof. First we note that «, 1 is a well-defined morphism because
a(l,) C J,. To show that a,_1 is simplicial, put A,, B,, A,,_1, and
B, into their standard forms as in Remark 2.7 and let {I}}7Z; and
{J,’C}Z;é be the canonical ideals for A,,_; and B,,_1, respectively. Then
we have isomorphisms

IF = I /Ty = I/ 1n) )/ (Te1 /1) = I/ Ten = IgF,
and

Gk = J/Jiy1 = (Je/In)/ (1) Tn) = Ji/ Trt1 2 TG

When written down explicitly using the decomposition in Remark 2.7
the isomorphisms given above are both the identity id* ® id. This
implies that the induced morphism &, _1 ; = (id* ®id) o o, o (id* ® id),
and thus «,_ is simplicial.

To show that this diagram commutes, we first note that the front
and back commute by assumption. Obviously the leftmost square
commutes, and the bottom commutes because any homeomorphism
of I" must preserve the boundary. The top right square commutes
by the definition of c,, 1. The top left square commutes because o
is simplicial. To show that the middle square commutes, consider the
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approximate identity for {a;} = {h ® id} € I} G,, where {ht} is an
approximate identity for C;(0, 1)™ such that hy = 1 on sets of the form
[(1/k),1 — (1/k)]". Since ¢y, is a homeomorphism, k), = () "' (hs) €
I§F,. Let {a}} = {h}, ®id}. Now suppose (f,a) € A,,. We know that
the middle square commutes on the ideals I§F,, and I§ G,,. So we have
that ¢* @ ¥y, o fn((a),0)(f,a)) = gn o a((a},0)(f,a)) for all k. Now, for
each x € (0,1)" we can find a k so that ar(x)f(x) = f(x). Then we
have that

@Y o fu((f,0))(x) =" @ ¢ 0 ful(ar, 0)(f, a))(x)
= gn 0 a((ay, 0)(f, a))(x)
= gn o a((f,a))(x).

This holds true for all x in a dense subset of [0, 1]™, so the middle square
commutes.

We show that the rightmost square commutes by a diagram chase.
Indeed, for a € A,, we have

an(an_l(a + In)) = U'n(an—l(ﬂ- (a)))

So the right square commutes. The uniqueness of « follows from the
universal property of B as a pullback. O

Now we are prepared to prove the main results on crossed products of
NCCW -complexes with the assumption that the action is simplicial.

Proposition 3.2. Suppose A,, is a strongly n-dimensional NCCW -
complex and G is a locally compact group. If (A,,G,a) is a C*-
dynamical system with oy simplicial for all g € G, then there are C*-
dynamical systems (A,,_1,G,a, 1), (I"F,,G,a), and (S"'F,,G,qa)
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such that the diagram

0 IF, A, — A, 1 ——0
H Jf’n J‘Pn
- 5

0 IIF, I'F, S"'F, ——0

is G-equivariant.

Proof. We define, for g € G, (atn—1)g = (0tg)n—1, @4 to be the induced
morphism (¢}, ®y,),, and @ 0(f) = d(ay f). Because o is simplicial for
all g, it follows from Theorem 3.1 that these define dynamical systems
for which the pullback is equivariant. a

Theorem 3.3 ([9, 6.3]). Given a pullback of C*-algebras

D—%2 B

T

A—9% .C

and C*-dynamical systems (A,G,a), (B,G,B), and (C,G,v) such
that § and ¢ are G-equivariant morphisms then there is a unique C*-
dynamical system (D, G, ) such that D, G =2 AxoG®cx, ¢ BxpG.

Corollary 3.4. Suppose A,, is a strongly n-dimensional NCCW -
complez, G is a locally compact group, and that (A,,G,a) is a C*-
dynamical system, with oy simplicial for all g € G. Then with the
actions defined as in Proposition 3.2, we have

A, %o G (I'F, x~G) @ (Ap_1 Xg, , G).
(87 =1F, xzG)

Proof. This is a straightforward application of Proposition 3.2 and
Theorem 3.3. O

Before we define a class of C*-dynamical systems that have NCCW-
complexes as crossed products we need the following useful lemma.
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Recall that, if @ and 8 are actions of a group G on C'*-algebras A and
B, respectively, then a® (3 is the action on A®B defined on elementary
tensors by (a ® £)4(a ® b) = aga @ Bgb.

Lemma 3.5. Suppose A is a unital C*-algebra, and (B, G, ) is a
C*-dynamical system with B unital and G locally compact. Then, with
¢ denoting the trivial action of G on A, (A®B) X,ga G is naturally
isomorphic to A®(B %, G).

Proof. First we show that both of the above C*-algebras have the
same universal property. Let (m,U, H) be a covariant representation
of (A®B,G,t®a). Then as 7 is a nondegenerate representation of
A ® B, there is a unique pair of representations (7, m) of A and B,
respectively, such that for all a € A and b € B

m(a ®b) = m1(a)me(b) = ma(b)my(a).

Note that 7o is unital since it is nondegenerate. Then the covariance
condition implies that

m((1®a)s(a®1B)) = Usmi(a)US = m1(a).

So w1 commutes with both w5 and U, and thus commutes with the rep-
resentation m3 X4 U of B x4 G. So from (m, U, ") we obtained a com-
muting pair (71, T2 X, U), which gives a representation of A®(B x,G).
This correspondence is one-to-one since the correspondence between 7
and (m,m2) was one-to-one.

Conversely, take (7}, 75 %, U’) to be a commuting pair that gives a
nondegenerate representation of A ® (B X, G). If h) is an approximate
unit for C.(G, B), then we have for each a € A and b € B

71 (a)m3(8) = lign ] (@) (8) (e o U") ()
= lim 7} (a) (} %0 U") (B1)
= lim(r} 0 U)(bha)} (@)
= 7 (b)7! (a).

Similarly, we can show that 7] commutes with U’ by taking translates
of hy. So, if we let 7’ denote the representation of A ® B coming
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from (7}, 7}), then we have obtained a unique covariant representation
(7", U,H) of (A ®B,G,t®a). So the two C*-algebras have the same
universal property and are isomorphic.

To show that the isomorphism is natural we must make the isomor-
phism explicit somehow. The isomorphism given by matching the uni-
versal properties is nothing more than identifying the universal repre-
sentations of these two C*-algebras. Since every C*is naturally isomor-
phic to its universal representation, we are finished. ]

Definition 3.6. A noncommutative G-CW -complex (NCGCW -
complex) is a C*-dynamical system (A,,, G, «) where A,, is a strongly
n-dimensional NCCW-complex, G is a locally compact group, and for
all g € G, oy is a simplicial morphism so that the induced morphism
(o) has the form id* ® (i),

Theorem 3.7. Suppose G is a finite group and (A,,G,a) is
a NCGCW -complex. Then the crossed product A, X, G is an n-
dimensional NCCW -complez.

Proof. We will proceed by induction on n. Clearly, when n = 0, we
have our result as the crossed product is again finite dimensional. Then,
with the notation as in Proposition 3.2, we have that A,_1 X, , G is
an (n — 1)-dimensional NCCW-complex, by the induction hypothesis.
So, with the notation as in Proposition 3.2 and Corollary 3.4, we must
show that the crossed products I"F,, X~ G and S"'F,, x5 G are of
the form I"F! and S" !'F!, respectively, for some finite dimensional
C*-algebra F/ . This is true by a simple application of Lemma 3.5. By
the naturality of the isomorphism in Lemma 3.5, the induced morphism
§' : I"F!, — S"~1F/ is indeed the boundary restriction morphism. O

Theorem 3.8. Suppose X is a finite, CW -complez, with skeletal
filtration X° C X1 C --- C X" = X and G is a finite group. Moreover,
assume G acts on X in such a way that the following conditions hold:

1. Whenever e is a k-cell of X, so is g-e for 0 < k < n and all
g€ q.

2. Ifg-e=e, then g|. = id,
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(in particular X is a G-CW -complezr). Then C(X) x G is a strongly
n-dimensional NCCW -complez.

Proof. Let QF denote the collection of all open k-cells in X. Since G
acts on QF by permutations, QF is partitioned by the orbits under the
action of G. Let QF = {e1,... e, } be a cross section of the G action
on QF. Then we see that, for each closed k-cell in e € X, there is a
unique k-cell e; € QF such that e = g-e; for some g € G. Also, for each
e € QF there is a continuous surjection v, : [0,1]* — & Then we have
a surjection g- 1., : [0,1]¥ — €. Also, by condition (2), if h € G is such
that h - 3, ([0, 1]F) =%, then h - too, = g - b, since (g~ )|, = id,,
implies that h = gs for some s in the stabilizer of e; under the action

of G.

Let I, denote the number of k-cells for each k, and let Fj, = C!*. For
each f € C(X*) and k-cell e € QF, f|z € C(€), and there is an injection
(9-%e;)* : C(€) — C([0,1]%) such that (g-ve;)*(fle)(x) = f(g- e, (%))
for all f € C(X™). Now define ¥y, : C(X*) — I¥Fy, by (Vi (f)(x))e =
(9 ve,;)*(flz)(x), where e = g - e; and e; € Q. Since the maps g - v,
take copies of 9]0, 1]¥ to X*~1, there is a well-defined map ~;, such that
the diagram

O(XF) —— o(xk

Lk

I'F, — 2 SF1F,

commutes. Since X is (as a set) the disjoint union of X*~! and
X'“\Xk_1 we can see that ker \flk Nkerm, = 0. Also we see that
Uy (ker(my)) = ker(d) and 7. L (6(IFFy)) = m,(C(X*)). Then, by
Proposition 3.1 in [9], this diagram is a pullback. It now follows
from the universal property of pullbacks that C(X*) is isomorphic to
a strongly k-dimensional NCCW -complex for each k.

Let a be the action of G on C(X) given by (anf)(y) = f(h ! y).
Now, since the action of G on X is cellular, it is easy to see that the
canonical ideals of C(X) are preserved by the action of a. Then note
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that, for f € Co(X¥\X*!) and h € G,

(T (anf)(x))e = (g ve,)* (anflz)(x)
= anf(g-Pe;(x))
F(h7tg e, (x))
= (h7'g - ¥e;)* (fIn-12) (%)
= (U (f)(%))n-1e-

Thus, the induced action @y of G on I’ng is of the form Id ® P}, where
h — Py, is an action of G by permutations on the summands of Fy. So
C(X) has an action « of G such that (C'(X), G, a) is an n-dimensional
NCGCW -complex. ]

To see that this type of action occurs frequently in practice we display
the following:

Theorem 3.9. Let M be a compact smooth manifold of dimension n,
with or without boundary. Let G be a finite group acting on M
by diffeomorphisms. Then the crossed product C(M) x G is an n-
dimensional NCCW -complez.

Proof. Part one of the first theorem in [4] states that there exists
a simplicial complex S, of dimension n, with a simplicial action of G
on S, and a G equivariant triangulation h : S — M. Since M is
compact, S must have finitely many simplices in each dimension. Then
we may realize S as a finite n-dimensional C'W-complex whose k-cells
are the k-simplices. Then we have C(S) x G = C(M) x G. Since the
action of G on § is simplicial, the action satisfies the first hypothesis
in Theorem 3.8. So we just need to show that the action can be made
to satisfy the second.

Suppose f is a simplicial homeomorphism of S and ¢ is a zero simplex
fixed by f. Then, clearly, f|, = Id,. Now suppose 7 is a k-simplex
of S which is fixed by f. We assume by induction that, for each lower
dimensional simplex p of 7 left fixed by f, f|, =Id,. Let 7’ be a fixed
k-simplex in the barycentric subdivision of 7. Then 7’ is the set of
convex combinations of the barycenter of 7 and a (k — 1)-simplex left



1944 ERICH MCALISTER

fixed by f. Since f fixes the barycenter and acts as the identity on the
(k — 1)-simplex, f must act as the identity on 7’.

Now we must apply the preceding paragraph to each element of G.
Since S is finite dimensional and G is finite this means we must only
take a finite number of barycentric subdivisions of S to satisfy the
second hypothesis of Theorem 3.8. Barycentric subdivisions do not
change the crossed product, so we are done. ]

4. Twisted crossed products. A question related to Morita
equivalence is whether or not twisted crossed products of NCCW-
complexes are again NCCW -complexes. The answer turns out to be
less satisfying than in the untwisted case: we have examples where
the twisted crossed product is an NCCW-complex, but the techniques
of proof from the untwisted case will not work for a general theorem.
However, we do obtain a decomposition of some sort.

Recall from [8] that two twisted actions (a,u) and (8,w) of G on
A are called exterior equivalent if there exists a Borel map v : G —
UM(A) such that

1. Bs = Ad v, o ay,
2. w(s,t) = vsas(vy)u(s, t)vk,.
Our point in defining exterior equivalence is that if two dynamical

systems are exterior equivalent, then their crossed products are Morita
equivalent, which is well characterized by to the following:

Theorem 4.1 [10]. If A and B are unital C*-algebras that are
Morita equivalent, then A is isomorphic to a full corner of the algebra
of n x n matrices over B for suitable n and B is isomorphic to a full
corner of the algebra of m x m matrices over A for suitable m.

Theorem 4.2 ([8, 3.4]). Let (A,G,a,u) be a separable twisted
dynamical system. There is a strongly continuous action B of G on
A @ K(L?(G)) that is exterior equivalent to the action (o ®1d,u®1d).

While the explicit formula for the exterior equivalence in the previous
theorem is not important for us, the following fact, from [5] will prove
to be very useful.
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Proposition 4.3. Let (C(X),G,a,u) be a twisted C*-dynamical
system with G finite of order n. If I is an ideal in C(X) such that
a(I) C I, then B(My(I)) C M,(I) where B denotes the stabilized action
defined above.

Lemma 4.4. Suppose A, B and C are C*-algebras, and let D =
A ®c B be the pullback over the morphisms ¢; : A — C and
w2 : B = C. Ifp € D is a projection, let p; and py denote the
projections onto the first and second coordinates, respectively, of p, and
let po be their image in C. Then pDp = p1 Apy @p,cp, P2BD2-

Proof. Suppose (piap1,p2bps) € pDp. Then ¢1(a) = ¢2(b) and so
pow1(a)po = pow2(b)po, and we have (piapi,p2bp2) € pP1Ap1 Spocpy
p2Bp2. On the other hand, if (piapi,p2bp2) € p1Ap1 Sp,cp, P2BP2,
then we have (piapi,p2bp2) = (p1p1apip1,p2p2bpep2) € pDp. So
pDp = p1Apy @pocp, P2Bp2. D

Now we are ready to give the decomposition for twisted crossed
products of NCCW -complexes.

Theorem 4.5. Suppose Ay is a proper k-dimensional NCCW -
complex and G is a finite group of order n. Suppose (A, G,a,u) is a
twisted C*-dynamical system such that ay(I;) = I; for all the canonical
tdeals I;. Then there exists a sequence of pullbacks

A X, G =By @Ci,
D;

where )
Bi ~m Mn(IZF,) ><1§ G,

C; ~m My (Ap—1) xg,_, G, and
Di ~m Mn(SiilFi) XJE G.

Proof. By using Lemma 4.4 we just need to show that we have
pullbacks of untwisted crossed products

M (Ai) %3G = (M (I'Fy) x56) D (M (Ai1)xp,_,G)
(Mn(S*Fi)xp,_, G)
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where 3 denotes the stabilized action given above. Following the proof
of Proposition 3.1, existence of dynamical systems (M, (A;_1),G,Bi-1)
and (M, (S*~'F;), G, B) such that the connecting morphism is equivari-
ant will follow from the existence of a dynamical system (M, (I'F;), G, E)
such that the projection f; : M, (A;) — M, (I'F;) is equivariant since
B(M,(IEF;)) = M, (I4F;). Then using Theorem 3.3 we will obtain the
pullback of crossed products. The canonical ideals {M,(I})} of the
lower dimensional complex will also be preserved by 5;—1 because they
are nothing more than quotients of the canonical ideals of the higher
dimensional complex. So if we obtain the result when ¢ = k, the rest
will follow.

Since A,, is proper so is M, (A}). Then M, (IfF}) is an essential
ideal in M,,(Ay) and M,,(I*F}) and the projection f, is injective. So
we have inclusions

M, (I§Fy) C My (Ag) € M, (I°Fy) C M(M, (IfFy)).

By [6, Proposition 7.1.7], we know that for each g € G, (3, extends to
a unique automorphism of M (M, (IfFy)). Then, by [2, Lemma 2.1],
By is the restriction of this extension to My, (Af). Let /3 denote the
restriction of this action on M, (I*Fj). Then we have our dynamical
system such that fj is equivariant. Since the projection 7 and the
boundary restriction ¢ are equivariant we are done. O
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