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THE GEOMETRY OF
FILIFORM NILPOTENT LIE GROUPS

MEGAN M. KERR AND TRACY L. PAYNE

ABSTRACT. We study the geometry of a filiform nilpotent
Lie group endowed with a left-invariant metric. We describe
the connection and curvatures, and we investigate necessary
and sufficient conditions for subgroups to be totally geodesic
submanifolds. We also classify the one-parameter subgroups
which are geodesics.

1. Introduction. Nilpotent Lie groups endowed with left invari-
ant metrics (nilmanifolds) arise naturally in many areas of mathemat-
ics, including algebra, dynamics and control theory, and, in geometry,
they are studied in homogeneous geometry, spectral geometry, subrie-
mannian geometry and harmonic analysis. There has been extensive
study of the geometry of two-step nilmanifolds and their compact quo-
tients. In his foundational work [7, 8], Eberlein investigates nonsin-
gular two-step nilmanifolds, describing curvatures, geodesics, totally
geodesic submanifolds and density of closed geodesics in compact quo-
tients. By now the geometry of two-step nilmanifolds is well under-
stood (see [9, 10]), particularly groups with additional structure, such
as those of Heisenberg type (see [4]). The geometry of two-step nil-
manifolds provides the setting for many of the examples of isospectral,
nonisometric spaces (see [6, 12]).

The geometry of higher-step nilpotent Lie groups is as yet unexplored.
Gornet uses three-step nilmanifold geometry to construct examples
with some prescribed spectral properties [13, 14, 15]. Lauret analyzes
preferred (“minimal”) metrics on general nilmanifolds [18, 20, 21].
Soliton metrics on higher-step nilmanifolds have been studied in low
dimensions [24] and for several infinite families [19, 23]. It is time for
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a more thorough investigation of the geometric properties of generic
higher-step nilmanifolds. This paper is an initial foray into the higher-
step setting.

We consider the class of nilpotent Lie groups called filiform. An
n-dimensional nilpotent Lie group is filiform (threadlike) if the lower
central series of its corresponding Lie algebra is as long as possible,
having n — 2 nontrivial subalgebras. That is, an n-dimensional filiform
Lie algebra is (n — 1)-step. A special family within the class of filiform
nilpotent Lie groups is L,,. In L, one may choose a basis {X;} for the
Lie algebra such that the nontrivial Lie bracket relations are given by
[X1,X;] = Xiy1. Just as the groups of Heisenberg type can be viewed
as model spaces for two-step nilgeometry, the filiform nilmanifolds L.,
can be said to be model spaces for filiform nilgeometry. Notice L3 is
exactly the Heisenberg group. Thus, Heisenberg-type nilmanifolds are
one way to generalize the Heisenberg group, maintaining the number
of steps but enlarging the dimension of the top step, while the filiform
group L,, is another way to generalize, where this time the number of
steps increases as the dimension goes up.

The class of filiform nilpotent Lie groups has proved to be a rich
source of examples, and especially counterexamples, in algebra. They
play a key role in the study of characteristically nilpotent Lie algebras
[17]. They show promise for playing an equally important role in
geometry. For instance, the first example of a nilpotent Lie algebra
admitting no affine structure is filiform [3]. We believe that, in
geometry, filiform nilmanifolds will provide new examples and help
shape our intuition about nilmanifold and solvmanifold geometry.

For a general higher-step nilmanifold, understanding the geometry is
difficult; the connection and curvature are considerably more compli-
cated than in the two-step setting. In contrast, for filiform Lie groups,
the calculations are manageable, yet the class is still large. In fact,
despite much research on their algebraic properties, filiform Lie alge-
bras are not yet classified. Here we give a description of the geometry
of filiform nilmanifolds. Our results give insight into similarities and
differences between two-step and higher-step nilpotent geometry. This
should allow others to further explore existence and nonexistence ques-
tions in geometry.
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In Section 2 we define the classes C,, and L, of filiform nilpotent
Lie algebras with N-gradings. The set C, is relatively large: it
includes several basic continuous families of examples [16]. Thanks
to the grading, the computations that describe the geometry of the
nilmanifolds in C,, and £L,, are simplified.

In Sections 3 and 4, we compute the connection and curvatures for
nilmanifolds arising from Lie algebras in the classes C,, and L,, respec-
tively. To the best of our knowledge, this is the first detailed descrip-
tion of the basic geometry of nilmanifolds in the fundamental class £,,.
In Section 5, we classify geodesics that are one-parameter subgroups
for elements of C,. We also find a restrictive characteristic of those
higher-dimensional totally geodesic submanifolds that are subgroups.
In Section 6, we completely classify totally geodesic subalgebras of fil-
iform metric Lie algebras in the family £,,, showing that the only such
examples arise from flat abelian subgroups. We conclude in Section 7
with a comparison of filiform nilmanifold geometry: How do these “al-
most abelian” Lie groups compare geometrically to two-step nilpotent
Lie groups? And to abelian (flat) space?

2. Preliminaries.

2.1. Geometry of Lie groups. Let G be a simply connected
Lie group endowed with a left-invariant metric g. We may identify
the Riemannian manifold (G, g) with the metric Lie algebra (g, (-, ")),
where g = T, G is the Lie algebra of G, the tangent space at the identity.
We let (-,-) denote the inner product on g obtained by restricting our
metric g to T.G. Since the metric g is left-invariant, we identify the
connection and curvature operators on (G, g) with the corresponding
operators on the metric Lie algebra (g, (-,)).

Consider a Lie algebra (g, (-,-)) with an orthonormal basis {X;}?_;.
Here we describe the Levi-Civita connection, sectional curvature K,
and Ricci form ric (see [1, equations (2.1), (2.2), (2.3)]):

(2.1) VxY =1 (adxY —ad%Y — ad} X)

1
2

(2.2)
K(XAY) =|[VxY[? = (Vx X, VyY) — (Y, [V, X]], X) — [[[X,Y]]*.
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In the case that g is nilpotent,
(2.3)
ric (X,Y) = JZ X, X,],[Y, Xi]) 42 (X, X5, X[ X, X;],Y).

We break the connection into its skew-symmetric and symmetric
parts (cf. [5, 7.28]):

(2.4) VxY =1[X, Y]+ U(X,Y)
where U(X,Y) is the symmetric (2,1) tensor
<U(X7Y)aZ>:%<[ZaX]7Y> %<[Z Y] X>

For k = 1,...,n, we define the symmetric (2,0) tensor Uy to be the
kth component of U:

Up(X,Y)=(U(X,Y), Xk).

Notice (U(X, X), Z) = ([Z,X], X) and Uy (X, X) = ([Xs, X], X).

In the following lemma, we remind the reader of some basic properties
of the tensors U and Uy, for general metric Lie algebras (cf. [5]).

Lemma 2.1. Let (g, (-,-)) be a metric Lie algebra with orthonormal
basis {X;}1_,.

(i) If X and Y are in the centralizer of Xy, U(X,Y) = 0.
(ii) For 3(g) the center of g, Ul;g) = 0.

For any Riemannian manifold (M, g), a submanifold M’ is said to
be totally geodesic if, for any vector fields X,Y in X(M'), VxY is in
X(M"). Let (g,(-,-)) be a metric Lie algebra with its corresponding
simply connected Lie group with left-invariant metric (G, g). We say
a subalgebra m of g that is closed under V (i.e., for all X and Y
in m, VxY is in m) is a totally geodesic subalgebra of (g, (-,-)). The
totally geodesic submanifolds which are closed subgroups M of G are in
one-to-one correspondence with the subspaces m of g which are closed
under V. If a subspace m of g is closed under V, then via the torsion
formula for the connection, we know that m is also closed under the Lie
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bracket; thus, m is a subalgebra and M’ = exp(m) is a totally geodesic
submanifold. Conversely, if a subgroup M is totally geodesic, then its
Lie algebra m, viewed as a subalgebra of g, is closed under V.

In the following elementary lemma, we describe the totally geodesic
subalgebra property in terms of the tensor U.

Lemma 2.2. Let (g,(-,-)) be a metric Lie algebra and let m be a
subalgebra of g. Then the following are equivalent:

(i) m s totally geodesic;

(ii) U(X,Y) isinm for all X and Y in m;

(iii) U(X, X) is in m for all X in ny

(U(X,X),Z)=(X,[X,Z]) =0 for all X inm and for all Z in m™.

Proof. Since m is a subalgebra, equation (2.4) implies that m is closed
under V if and only if U(X,Y) is in m for all X and Y in m. Thus
(i) and (ii) are equivalent. Clearly (ii) implies (iii). To see that (iii)
implies (ii), we note that the vectors U(X + Y, X +Y),U(X, X) and
U(Y,Y) are all in m and U is symmetric, so U(X,Y) is also in m.
Finally we show the equivalence of (iii) and (iv). The vector U(X, X)
is in m for all X in m if and only if (X, [X, Z]) = 0 for all Z in m*,
because (U(X, X),Z) = (X,[X,Z]). @O

Remark 2.3. If m is one-dimensional, then m is totally geodesic if and
only if Ul = 0.

From Lemmas 2.1 and 2.2 we get the following nice result (obvious
but worth mentioning).

Proposition 2.4. Let (g,(-,-)) be a metric Lie algebra. If m is an
abelian subalgebra with Uly, = 0, then m is a totally geodesic subalgebra.
Furthermore, m is flat.

We will see in Theorems 5.1 and 6.3 that these are the only totally
geodesic subalgebras for filiform metric Lie algebras in the class £,,.
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2.2. Filiform nilpotent Lie algebras. For any Lie algebra g, the
lower central series of g is defined by g*) = [g, g] and g+ = [g, gU)].
If g¥) is eventually trivial for some integer k, we say the Lie algebra g
is nilpotent. Let k be the smallest integer so that g(¥) is trivial; then g
is said to be k-step nilpotent. A nilpotent Lie algebra which is k-step
and dimension k + 1 is filiform.

Algebraists view filiform Lie algebras as almost abelian, having few
nontrivial Lie brackets relative to dimension. Yet with their lower
central series as long as possible, filiform Lie algebras are also the
“least” nilpotent possible. The category of filiform Lie algebras is
large. In dimension as low as seven, there are continuous families of
nonisomorphic filiform Lie algebras. And though there has been a lot
of research on their algebraic properties, filiform Lie algebras are not
yet classified. Among filiform nilpotent Lie algebras, the algebra L,
(defined in Section 2) is the simplest. It has a codimension-one abelian
ideal; thus, it can be viewed as a high-step Lie algebra which is nearly
abelian. Any filiform Lie algebra of dimension n can be viewed as a
deformation of L,, via Lie algebra cohomology ([24], see also [22]).

We consider the family C,, of nilpotent metric Lie algebras (n, (-,-))
of dimension n, n > 3, whose nonvanishing Lie brackets are of the form

(2.5) (X, X;5] = cij Xit;

where B = {X;}!_, is an orthonormal basis for n. A Lie algebra in C,, is
filiform provided sufficiently many structure constants c; ; are nonzero.
In what follows, we will assume the Lie algebra n is nonabelian. Our
focus is on those metric Lie algebras in C, for which ¢, # 0 for
1 < k < n—1. We will denote this subfamily of filiform metric Lie
algebras by C/,. The Jacobi identity for an element of C,, is equivalent
to the following relation of the structure constants:

(26) Ci,j+kCjk + Cjk+iChk,i + Ck,i+jCij = 0 for all ¢,j7,k.

For convenience, we define c; ; and X; to be trivial if ¢ or j fails to be
in the set {1,2,...,n}.

As a special case, in each dimension 7, we have the filiform Lie algebra
L,,, defined by the Lie brackets

(X1, Xi] = Xiq1.
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We give L,, the natural metric (-,-) such that {X;} is an orthonormal
basis. Notice that L3 is the Heisenberg algebra of dimension three. We
let £,, denote the subfamily of C,, with [X1, X;] = ¢; X; 41 (where ¢; :=
¢1,;) and no other nontrivial brackets. Let L] denote the subfamily
of elements of £,, with cs,...,c,—1 nonzero. Each (n,(:,-)) in £} is
isomorphic to L, as an algebra; a change in the structure constants
is really a rescaling of lengths in each step. The subalgebra a =
span {Xs,...,X,} is a codimension-one abelian ideal in n orthogonal
to Xl-

2.3. Properties of graded nilpotent metric Lie algebras. Let
S be a subset of the real numbers. We say a Lie algebra g is S-graded
if there is a decomposition § = @acsga Where [ga, 93] C gatp for
all a,8 € S. Each element of C, is N-graded, with one-dimensional
subspaces g;. Given a graded metric Lie algebra g, we say it has an
adapted basis B = {X;} with respect to the grading if each basis vector
X; lies in some g,. Let (i) denote the index of the subspace containing
Xit Xi € ga(s)- When g is an element of C,,, we have an orthonormal
adapted basis B, and a(i) = ¢ for each 1.

Lemma 2.5. Suppose that n = @y, is an n-dimensional N-graded
nilpotent metric Lie algebra. Let {-,-) be the inner product on n, and
let B ={X;} be an orthonormal adapted basis. Then, for any X € B,

(i) Ug(Xk, X) = 0 for any X, and
(ii) U(Xp, X5) = 0.

Proof. We first prove (i): Ug(Xk,X;) = (U(Xg, Xi), Xk) =
%<[Xk,Xk],Xi> + %<[Xk,Xi],Xk> == %<[Xk,Xi],Xk>. While [Xk,Xi] is
in the a(i)+a(k) eigenspace, X}, is in the a(k) eigenspace. Since a(7) >
0, these spaces are distinct, hence orthogonal. Thus, Uy (X, X;) =0
foralli=1,...,n.

To prove (ii), we note that, for each i, U;(Xg, Xk) = ([ X;, X&), X&)
and [X;, Xi] is in the a(7) + (k) space, while X}, is in the a(k) space. O

3. Connection and curvatures in the family C,,. We now ex-
amine the geometric properties of metric Lie algebras in the family C,,.
Consider an arbitrary element (n,(-,-)) of C,, a higher-step nilpotent
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metric Lie algebra, with an adapted orthonormal basis B = {X;} for
n, so that nontrivial brackets are of the form [X;, X;] = ¢; jXiy;. We
will often use that

(31) ad}zXJ = Ci’j,in,i for all 1 S Z,_] S n.

We see that the geometry is not too complicated.

Theorem 3.1. Let (n,{(-,-)) be a metric Lie algebra in the family
Cpn. Let B={X;} be an adapted orthonormal basis. The connection is
given by

Vx,Xj = 5(cijXivj = cij-iXji = ¢jiXij)
and, for X =30 ;X andY =31y Xy,

n n
VxY =3 Z <Z (TiYk—iCik—i — TiYk+iCik — xi!h’-k:%-k,k)) X

k=1 Si=1
The connection has the following properties:
(i) For any i and j, Vx,X; has at most two nonzero terms.
(iii)
(iv) For k> 1 and X in [n,n], Up(X1,X) = (1/2)ck,1(Xk+1, X).

(il) Vx,X; =0 for any 1.
Vx, Xn-1 is a multiple of X1, and V x, X,, is a multiple of X,,_1.

Proof. The expression for Vx, X; comes from equations (2.1), (2.5)
and (3.1). The first three properties follow from the formula for
Vx,X;. For (iv), we note that Uy(X1,X) = (1/2)([ Xk, X1],X) +
(1/2)([ Xk, X], X1), whereas X; is orthogonal to [n,n]. o

We use the curvature convention R(X,Y)Z =VxVyZ—-VyVxZ—
Vix,y1Z, so that K(X AY) = (R(X,Y)Y, X). Aslong as (n,(:,")) is
nonabelian, we see the scalar curvature is always negative, and there
will necessarily be some positive sectional curvature.

Theorem 3.2. Let (n,(-,-)) be a metric Lie algebra in the family C,,.
Let B = {X;} be an adapted orthonormal basis. Then when i < j, the
sectional curvature is given by

(3.2) K(X;iANXj)=3(,_;, —3c})).

4,j—1 1,J
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Proof. This follows directly from equation (2.2), where we substitute
adx, X; from equation (2.5) and Vx,X; from Theorem 3.1. o

Theorem 3.3. Let (n,(-,-)) be a metric Lie algebra in the family
Cn. Let B={X;} be an adapted orthonormal basis. The Ricci form is
given by

ric (X3, X;) = % Z(Ci,i—k - 20?,k)
k=1
ric (X;, X;) =0if ¢ # j.

The scalar curvature sc s

Proof. One obtains the Ricci curvature from equation (2.3) and the
scalar curvature from the Ricci curvature. O

For any (n,(-,-)), a metric Lie algebra in the family C,, sectional
curvatures will be both positive and negative. Observe that if we
normalize sc = —1, we see from Theorem 3.2 that there exists (n, (-, -))
with coordinate planes whose sectional curvature K is arbitrarily close
to —1/2 and, similarly, there exists (v/, (-,-)') with coordinate planes
whose sectional curvature K is arbitrarily close to 3/2.

The full curvature tensor R is sparse; many of the quantities
(R(X;, X)Xk, X;) vanish.

Theorem 3.4. Let (n,(-,-)) be a metric Lie algebra in the family C,,.
Then the curvature tensor for (n,({-,-)) is given by
(3.3)

R(X;, X)X = 3 (AXivjek + BXjipi| + CXjigj| + DXivji))

where

A = cijCritj
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C%’j ifk =1
—Cj kCijtk—i — Cki—kCi—kjtk—i Yk<i<j+k
B = —¢jkCijtk—i + Cik—iCjk—i if k>
0 ifk=1—j
—Cji—jChyi—j—k ifk<i—j
—c?’j ifk=1j
Ci,kCji—j+k T Chj—kCi—kith—j Yk <Jj<it+k
C =9 CikCji—jtk — Cjk—jCik—j ifk>j
0 ifk=j—i
Ci,j—iChk,j—i—k ifk<j—i
20%,]. — Cz?,j—i ifk=1<j
20?,]. — C?,ifj ifk=1>]
=2, +¢3, ifk=j<i
—2¢; i+, ifk=j>1
D = { €i,jCitjk—i—j ifk>i+7
0 fhk=itj
2C4,jChyitj—k — Ci,j—kCh,j—k + Cji—kCk, i—k ifk<i,j
2¢;,5Ck itj—k — Cij—kCk j—k — Cik—iCk—i itj—k ifi<k<j
2¢4,jCkitj—k T Cji—kCh,imk T Cjk—jChk—j,iti—k if j <k<i
2Ci,Ckyitj—k — Ci,k—iCk—i itj—k T Cjk—jCh—jiti—k U 43 <k <i+j.

Proof. Using R(X,Y)Z = VxVyZ — VyVxZ — Vix y]Z and our
expressions for the bracket and connection, and simplifying using the
Jacobi identity as in equation (2.6), one can derive

R(X;, X)Xk = §[(€ojChiti) Xitjrn
+ (—Cj kCi,j+k—i + Ci,k—iCjk—i — Ch i—kCi—k,j—i+k)
X X _itjth
+CjijCikjeXi jk
+ (Cj,k—jck—j,i—i-j—k — Ck,j—kCij—k — Cik—iCk—i j—k+i
+ Chyi—kCjimk + 2Ci jChiiti—k) Xitj—k
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+ CijCitjk—i—j X —imjtk
+ (=Cjk—jCik—j T Chj—kCj—k,imj+k + CikCjithk—j)
X Xi ik + Ciok—ikCi—ii X —itj—k]-

The calculations are long; we will not reproduce them here. The reader
may easily check that this expression has the correct symmetries for a
curvature tensor, and it yields the same sectional curvatures as those
given in Theorem 3.2. u]

4. Connection and curvatures for £,. In this section we move
to the special case of a metric Lie algebra (n, (-,-)) in £,, the “model
space” of filiform nilpotent Lie algebras. Recall that, in this case, our
nonzero structure constants c; ; must have either ¢ = 1 or j = 1. In
this section, we will write c; for ¢ ; for all j. We note that ¢c; = ¢, = 0.
We begin by specializing Theorem 3.1, describing the connection V for
an element of £,,.

Theorem 4.1. For any (n,(-,-)) a metric Lie algebra in L, with
adapted orthonormal basis B = {X;}, the connection is given by

Vx,Xi=0 ifl1<i<n
leXi - _%(Ci—lXi—l — CiXi+1) Zf2 S ) S n
Vx, X1 =—%(ci1Xi 1+ ciXiq1) if2<i<n
VXin = Ul(Xian)Xl Zf2 <435 n, and
n—1
VxY =X, Y]+ ) Ui(X,Y)X;.
j=1

The tensors U and Uy have the following properties:

(i) For any X, Y in [n,n] and k > 1, U(X,Y) = U1(X,Y)X; and
U(X,Y)=0.

(ii) For any X in [n,n] and k > 1, Up(X, X1) = (1/2) ek (Xgt1, X).
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(iii) For any X =31 jz;X; andY =37, y; X; and k > 1,

n—1
_ 1
=3 E :CJ TiYj+1 + YiTit1),
Jj=2
n—1

1
Uk ( =—3 ) ci(T1yjr1+y1T41)-
Jj=2

The connection has the property that Vx, X2 is in span{X3}, Vx, X,
is in span {X,_1} and, for k > 2, Vx, Xy is in span {Xy_1, Xp41}-

Proof. The equations for the quantities Vx,X; come from Theo-
rem 3.1, letting ¢;; = ¢; and ¢;; = —¢; for 2 < ¢ <n—1 and letting all
other c; ; be zero. In the expression for VxY', the sum goes from 1 to
n — 1 since U,, = 0 by Lemma 2.1. The first property of U is a special
case of property (ii) in Theorem 2.1, and the second is a special case
of the third property in Theorem 3.1. The expression for U is found
using the definition of U. The last assertion is clear from the formulas
for Vx, X;. O

As a special case of Theorem 3.4, we get the curvature tensor for the
metric Lie algebras in the family £,.

Theorem 4.2. For any (n,(-,-)) a metric Lie algebra in L,, with
adapted orthonormal basis B = {X;}, the curvature tensor is given by

R(Xl, % Cj—2Cj— 1 _9+ (36 C‘?fl)Xj +CjC]'+1X]'+2]
]./4 (CJ 2Cj— 1)X1 ka:j*2>l
(1/4)( 2 1 =3e)X, ifk=5>1
R(X1, X (1/4) ) 1 if J
1/4 (C]CJ+1)X1 ka:j+2> 1
otherwise.
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When i,j,k # 1,

R(Xi,Xj)Xk
= [(=0k j+1¢icim1 — Ok j—1ci—1¢j—1) Xi1
+ (=0k,j—1Cj—1Ci — O jy1¢5¢i) Xig1
+ (Oki—1¢i—1¢j—1 + Ok it1cicj—1) Xj 1
+ (Ok,i—1¢i—1¢j + O i+1ci¢5) Xjy1]
—(1/4)(ci—1cj Xiz1 + cic; Xit1) ifk=j+1andj#i—2
(1/4)(ci—1ci—3Xi—3 — cici—2Xiy1) ifk=j+1andj=1i-2
(1/4)(=ci—1cit1Xi 1 +cicipeXiys) ifk=j—1andj=1i+2
=9 —(1/4)(ci—1cj1Xim1 +cicj1Xiq1) ifk=j—1landj#i+2

(1/4)(61'6]',1)(]',1 + CiCij+1) ifk=i+1landj#k=+1
(1/4)(Ci_10j_1X]’_1 + Ci—lchj—i-l) 7,fk' =1-—1 andj # k+1
0 otherwise.

We next find the sectional curvatures for elements of £,,.

Theorem 4.3. Let (n,(-,-)) be a metric Lie algebra in L, with
adapted orthonormal basis B = {X;}. The sectional curvature of the
plane spanned by X; and X; (where i < j) is

K(X; A Xj) = (R(Xs, X;) X5, X3)

(1/4)(c5_, = 3¢5) ifi=1
=9 (1/4)¢f il j=i+1
0 otherwise.

For any orthonormal X and 'Y each orthogonal to Xy,

K(XAY)=U(X,Y)? - U (X, X)U,(Y,Y).

Proof. To prove the first part, we may assume ¢ < j. By Theorem 3.2,
the sectional curvature is given by K(X; A X;) = (1/4) (sz,j—i - SC?J-),
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where ¢;,, = 0 except if I = 1 or m = 1. To find the sectional
curvature for an arbitrary X and Y in Xi-, we use equation (2.2),
relating sectional curvature to U and the Lie bracket. Since Xj- is
abelian, the bracket terms in equation (2.2) vanish and U reduces to
U1. [m]

As a corollary, we find that a subspace is flat (K = 0) exactly when
the tensor U; vanishes.

Corollary 4.4. Let (n,(-,-)) be a metric Lie algebra in L,,. For any
subspace m of n, K|y =0 if and only if Uy|m = 0.

Using Theorem 4.3 we find the Ricci curvature for elements of £,,.
These appeared first in [19].

Theorem 4.5 [19]. Let (n, (-,-)) be a metric nilpotent Lie algebra in
L. Then the Ricci curvature and scalar curvature are given by

(/)i fi=i=1
ric (X, Xj) = (1/2)(?_, —¢?) ifi=j>1
0 ifi# .

1

n
2.
2

|

SC = —

>
U

In £,, a key to understanding sectional curvature and geodesics is in
analyzing the restriction of Uy to the orthogonal complement of Xj;.
When this tensor is represented by a matrix relative to the adapted
basis, the matrix is a symmetric tridiagonal matrix with zeroes on the
diagonal. The next lemma describes properties of such a matrix.

Lemma 4.6. Let A = (a;j) be an m x m symmetric matriz so that
aij = aj; is nonzero if and only if |i — j| = 1. Let p(x) denote the
characteristic polynomial of A. Then A has the following properties:

(i) When m is even, there exists a polynomial q such that p(xz) =

q(2®) and A has rank m. When m is odd, there exists a polynomial q
such that p(z) = xq(z?) and A has rank m — 1.
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(ii) The eigenvalues of the matriz A are distinct, and nonzero eigen-
values come in real pairs of the form *a.

(iii) If V is a subspace of R™ of dimension k such that v' Aw = 0 for
all v and w in V, then 2k < m if m is even and 2k < m+ 1 if m is
odd.

Proof. Let A be an m X m matrix satisfying the hypotheses of the
lemma. For simplicity, write a; for a; ;41 = a;41,; for i =1 tom — 1.
Let pi(z) denote the determinant of the k x k minor Ay, in the upper
left corner of A.

We will show by induction that for & > 1,

pr(x) = zpr—1(z) — af_1pr-—o(2),

(where we let ap = 0, p_1(z) = 0 and po(z) = 1), and that when k& is
even pi(z) is an even polynomial with k& nonzero roots, while when &
is odd, pr(z) is  times an even polynomial with £ — 1 nonzero roots.

First, we consider the case that k = 1. Then 4; = (0), so pi(x) =
x = zpo(z) —adp_1(x). When k = 2, the matrix Ay = (aol o ) We see
that pa(z) = 2 —a?, an even polynomial, and p2(z) = zp1(z) —a3po ().
We also see that pa(z) has two nonzero real roots, +ay.

Now assume that the statement holds fori =1, 2,... , k, and consider
the matrix
T —ai 0 0 cee 0 0
—ap T —ao 0 e 0 0
0 —as T —as e 0 0
xI — Ak+1 - . .
—ag_2 T —ar-1 O
0 0 e 0 —ap_1 T —ag
0 0 e 0 0 —ay T

To find the characteristic polynomial, we expand the determinant up
the rightmost column:

pry1(z) = wpr(z) — (—ar)(—arpr-1(x)) = zpi(z) — aipx-1(z),

as desired. If k + 1 is even, then k is odd and k£ — 1 is even, and
from the inductive hypothesis, each of xpg(z) and pr_1(z) is an even
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polynomial. Thus py1(z) is even also. We see that 22 divides zpy(z),
but pg_1(z) has a nontrivial constant term because zero is not a root of
pr—1(z). Therefore zero is not a root of py41(z). If, on the other hand,
k+1is odd, k is even and k — 1 is odd; hence, zpi(z) and pi_1(x)
are each a product of  and an even polynomial, which means py41(z)
is of this form also. Thus zero is a root of pg41(z). But zero is not a
root of pi(z) = det Ay, so zero is a root of multiplicity at most one for
Pr+1(z) = det Ag11. This completes the induction.

Since A is symmetric it has real roots. We know that if a is a root of
an even polynomial then so is —a; hence, the form of the characteristic
polynomial ensures that the nonzero eigenvalues of A are in pairs.
When m is even, zero is not a root of p,,(x), so A is nonsingular.
When m is odd, zero is a root of p,,(z) with multiplicity one, so A is
has corank one.

Now we show that there are no repeated roots. It is not hard to show
using induction and the summation formula for matrix multiplication
that, for k > 1, the matrix A* has a nonzero entry a;; with |i —j| =k
and all entries a;; with |[¢ — j| > k are zero. Therefore, the minimal
polynomial for A must be of degree m. Hence, the minimal and
characteristic polynomials are equal. As A is diagonalizable, there are
no repeated roots.

Finally, we prove the third property. Let V be a subspace of R™
of dimension k such that v!Aw = 0 for all v and w in V. Suppose
that w and v are vectors so that w = Av and both w and v are in V.
Then w'w = (Av)'w = v’ Aw = 0. Thus V and AV intersect only at
0. When m is even and A is nonsingular, this implies that 2k < m.
When m is odd and A is corank one, it is possible that V' contains a
zero eigenvector, and then 2k < m + 1. o

5. Geodesics and totally geodesic submanifolds of C/,. In this
section, we return to the larger class, C),, defined in Section 2. Here
we use the information in Section 3 to determine which one-parameter
subgroups are geodesics. First we classify those geodesics which are
orbits of one-parameter subgroups.

Theorem 5.1. Let (n, (-,-)) be inC},, and let Y be a nontrivial vector

inn. Then span{Y} is a totally geodesic subalgebra if and only if
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(i) Y is a multiple of X1, or
(ii) (X1,Y) =0 and U(Y,Y) =0, or
(i) Y = a1 X1 + a2 X2 where a1, ay # 0.

Proof. There are three possibilities: Y is a multiple of X;, Y is
orthogonal to X, or Y has components in both the X; and Xi-
directions. By Lemma 2.2, span {Y} is a totally geodesic subalgebra if
and only if U(Y,Y) = 0. We see that U(X;,X;) = 0, so for the first
case, any multiple of X; generates a geodesic subalgebra. In the case
that Y is orthogonal to X3, we simply need U(Y,Y) = 0.

Consider Y = a; X + X, where a; # 0 and X = > , a; X; # 0 (the
third case). Since X is orthogonal to [n,n], U(a1 X1+ X,a: X;+X) =0
if and only if, for all &,

0 = <a'd;1X1+X(a/1X1 + X)’Xk>
= (a1 X1 + X, adg, x, +x Xk)
= (X, [a1 X1 + X, Xi])

n

i a; X;, [Z a; X;, Xk:| >
; i1

1=2

Assume that U(Y,Y) = 0. We will use the previous condition to
inductively show that a, ; = 0 for all § = 0,... ,n — 3. We first
confirm the inductive hypothesis in the base case when ¢ = 0. Let
k =mn — 1 in the above equation:

0= <iaiXi, [iaiXi,an] >
i—2 i—1
= <iaiXiaalcl,n—1Xn>

=2

= a1anC1,n—-1-

Since a; # 0 and ¢;,,—1 # 0, the coefficient a,, is forced to be zero.

Now assume that a,,_; = 0 for ¢ = 0,... ,r, where » < n — 3. Then
X = Z?:_;_l a;X;. Note that n >n —r—2> 1,80 ¢1,p—r—2 # 0. We
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set k =n —r — 2 in the equation above:

<

n—r—1

n_i 1 |: Z aquXn T— 2:|>
o
>
=2

0

n—r—1
= a; X;, E aici,nTZan+i2>

i=1

T
3

<an r— an r—1,a1C1,n—r— 2Xn r— 1>
= a1ap—r—-1C1,n—r—2-

Since a1 # 0 and ¢1,n—r—2 # 0, the coeflicient a,—,_1 = 0. Thus the
inductive hypothesis holds for i = r+1. This proves that if U(Y,Y) =0
then Y = a1X1 + (1,2X2.

Conversely, when Y = a1 X1 + a2X2, we find (Y, [Y, Xi]) = (a2Xo,
[a1 X1 + as X2, X]) = 0 for each k, thus U(Y,Y) = 0. O

Example 5.2. Let (n,(-,-)) be in C,. For any ¢ = 1,...,n, the
one-dimensional subalgebra span {X;} is a totally geodesic subalgebra
of (n,(-,-)), since U(X;, X;) =0.

Next we describe a property of totally geodesic subalgebras of dimen-
sion two or more for elements of C/,.

Theorem 5.3. Let (n,(-,-)) be in C},, and let m be a nontrivial totally
geodesic subalgebra of n of dimension two or more. Then (X, m) =0
and U1(X,Y) =0 for all X andY in m.

Proof. Let m be a totally geodesic subalgebra of n with dimension
at least two (m # n). First we will show that m is orthogonal to X;.
Suppose not: (X;,m) # 0. For some element X of m, (X, X;) = 1.
Since dimm > 1, we can find another Y € m independent of X. Define
k to be the minimum so that (Xj, m N Xi-) # 0. Note that k > 1.
Choose Y an element of mN Xi- achieving this minimum value of &, so
(Y, Xj) # 0. Each of the vectors adxY,ad% ;... ,ad% *Y is in m. For
each i =1,...,n — k, the least j for which the quantity (ad’%Y, X;) is
nonzero is when j = k + i. Therefore, for each i = 1,...,n — k, ad Y’
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is nontrivial, and the set {ad&Y}?z_ok is linearly independent. The set

{ad{ Y} is contained in the span of the set {Xj, Xxi1,---,Xn}
and has cardinality n — k + 1. Hence m = (X) & (Xg, Xi41,--. , Xn)-

Suppose k = 2. Then the dimension of m is dim (m) = n and so
m = n, a contradiction. Next, suppose 2 < k < n. Then X,,_4
and X, are in m and, because m is totally geodesic, Vx A X,_1 =
(1/2)¢1,n—1 X7 is also in m. Once we know X is in m, then Vx, X} =
—(1/2)c1,k—1Xk—1 + (1/2)c1 x Xk+1 is also in m. This contradicts the
minimality of k. Finally, suppose 2 < k = n, so that m = (X) & (X,,).
Then

VX)(n - leXn + VXle-Xvn - _%Cl,nlenfl + U(X - Xla Xn)
is in m. This vector is nonzero, having a nontrivial component in the
X,,_1 direction, as
Unfl(X_XlaXn):

<[Xn717 X—X1], Xn>+ <[Xn71;Xn]aX_X1>: 0.

1 1
2 2
Since V xX,, is orthogonal to X,, it must be a multiple of X. Let
a = (X, X,_1). We use the formula for the connection in Theorem 3.1
to find that (VxX,, X1) = (1/2)aci n—1, and we showed above that
(VxXn, Xn-1) = —(1/2)c1n—1. In X, the ratio of the coefficients of
X1 and X is a, while in Vx X, it is —1/a. In order for these to
hold simultaneously, we need a?> = —1, which is impossible. Thus if
m is a nontrivial totally geodesic subalgebra of n of dimension greater
than one, (X;,m) = 0.

To conclude the proof we observe that for a totally geodesic m
orthogonal to X; we have Uy (X,Y) = 0 for all X and Y in m, by
Lemma 2.2. ]

Example 5.4. Let (n,(-,-)) be in C/. The subalgebra my, =
span {X; | i is even} is totally geodesic. More generally, for any integer
k, the subalgebra mj, spanned by basis vectors with subscripts that are
multiples of & is also a totally geodesic subalgebra. This follows directly
from the connection form in Theorem 3.1. If (n, (-,-)) is in £,, then
the subalgebras my of n, £ > 1, are flat, because VxY = 0 for all X
and Y in my. If (n,(,-)) is in C,, then the subalgebras my of n, & > 1,
are flat if and only if they are abelian.
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We note that my is isometrically isomorphic to a metric Lie algebra
in the family £}, where d = dim (my).

6. Geodesics and totally geodesic submanifolds of £,. In
Theorem 5.1, we characterized the one-dimensional totally geodesic
subalgebras of elements of C/,. We now use the expression for U; in
Theorem 4.1 to specialize to L], as follows:

Corollary 6.1. Let (n,(-,-)) be in L),. Then span{Y'} is totally
geodesic if and only if U1(Y,Y) = 0.

Example 6.2. In the metric Lie algebra (n,(-,-)) in £4 with
co = c3 = 1, the span of X5 — X, is totally geodesic by Theorem 5.1.

The next theorem shows that for elements of £/, the only totally
geodesic subalgebras of dimension two or more are the types we are
guaranteed to find by Proposition 2.4.

Theorem 6.3. Let (n,(-,-)) be in L, and let m be a nontrivial
subspace of n of dimension two or more. Then m is a totally geodesic
subalgebra of n if and only if m is in the mazximal abelian subalgebra
of n and U(X,Y) =0 for all X and Y in m. Furthermore, any such
nontrivial m is flat.

Proof. Let m be a subspace of dimension two or more. First suppose
that m is orthogonal to X; and U;(X,Y) = 0 for all X and ¥ in m.
Then m is trivially a subalgebra because it is abelian, and m is totally
geodesic since U(X,Y) = Uy(X,Y) = 0 for all X and YV in m. By
Proposition 2.4, m is flat.

The converse follows from Theorem 5.3. m]

Let (n,(-,-)) be in £!. In the next theorem we analyze which
subspaces are totally geodesic subalgebras of dimension two or more,
as described in Theorem 6.3. Let A denote the matrix representing the
restriction of U; to Xi-. Then A satisfies the hypotheses of Lemma 4.6,
so we can let X4,..., X denote eigenvectors for A with distinct real
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eigenvalues Ao, ..., \,. Let

CA = {ile; | i)\zxf = 0}
1=2 =2

_ {gmixg {2y, ), (2, 22)) 20}-

This cone is a codimension-one subset of Xi-.

Theorem 6.4. Let (n,(-,-)) be in L. Suppose m is a totally
geodesic subspace contained in Xi-. Then m is a subspace of Cj.
The mazimal dimension of m is |n/2|, and this mazimal dimension is
always achieved. Conversely, any subspace of C4 is a totally geodesic
subalgebra.

Proof. Let X be an arbitrary element of Xi-. Then U; (X, X) = 0 if
and only if 0 = X7 AX. For an arbitrary X, > ., z; X/, we get

0=X7TAX = XTAZn:xixg =XxT Zn:xi,\ixg = ixixf.
1=2

=2 =2

Thus, totally geodesic subalgebras correspond to subspaces of the cone.

We show that the maximum dimension is achieved. If n = 2k+1, then
dim Xi- = 2k and if n = 2k + 2, dim Xj- = 2k + 1. Let +uy,... , +up
be the distinct nonzero eigenvalues of A as guaranteed by Lemma 4.6,
with eigenvectors U; and V; for p; and —pu; respectively. Let Z denote
the zero eigenvector in the case that n is even and n — 1 is odd.

If n = 2k + 1, the set spanned by {U; + V;}_, is a k-dimensional
totally geodesic subalgebra. When n = 2k + 2, the set spanned by
{Z}U{U; + V;}£_, is of dimension k + 1 and totally geodesic. In both

cases, this is because >\, Az} = Zle(ui —pi) =0. O

Example 6.5. Let (n,(-,-)) be the metric Lie algebra in £} with
¢y = c3 = ¢4 = 2. The restriction of Uy to Xf is represented by the
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matrix

O = O
_= O = O
o= O O

0
1
0
0
with respect to the basis {X,-}?=2. The characteristic polynomial of

the matrix is p(z) = 2* - 322 + 1 = (22 + 2 — 1)(2? — z — 1), and its
eigenvalues are +7 and +771, where 7 = (1 + v/5)/2. The vectors

1 1 1 1

_ -1 -1

Vi = i , Vo = 4 y Vier = T —1 1> and V_ -1 = T_l
T T —T —T
1 1 1 1

have eigenvalues 7, —7, 7~ ! and —7 ! respectively. The subspace m
spanned by X =V, +V_,and Y =V,.-1 +V__-:1 is a totally geodesic
subalgebra of (n, (-,-)). This is because an arbitrary element of m is of
the form

aX +bY =aV, +aV_, +bV,-1 +bV_, 1.

Thus, as required in Theorem 6.4, {(a?,a?,b%,b), (1, —7, 7L, —771))
=0.

7. Conclusion. We conclude with some general observations com-
paring filiform nilpotent geometry to two-step nilmanifold geometry.
Filiform geometry is the opposite of two-step geometry in several ways.
Using the formula for volume growth Z?Zl irank (n; /n;41) given in [2],
we see that volume growth in a filiform nilmanifold of dimension n is
a polynomial of degree 1 + (n(n — 1))/2. This is the largest possible
degree polynomial volume growth for n-dimensional nilmanifolds. By
contrast, volume growth in two-step nilmanifolds is smaller, of degree
n + dim [n,n] < 2n. Secondly, for filiform nilmanifolds in £,, all to-
tally geodesic subalgebras are abelian and flat, which is not necessary
in two-step nilgeometry. Furthermore, totally geodesic subalgebras are
abundant in filiform nilmanifolds, whereas in the two-step case they
may even fail to exist. Thirdly, filiform nilmanifolds have small isome-
try groups; in fact, there are only finitely many nontranslational isome-
tries for a filiform Lie algebra of dimension four or more [11].
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