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THE SHERRINGTON KIRKPATRICK MODEL
WITH FERROMAGNETIC INTERACTION

AGNESE CADEL AND CARLES ROVIRA

ABSTRACT. We consider a spin model with both ferro-
magnetic interaction and Sherrington-Kirkpatrick couplings
in a high temperature region, with the presence of an external
field. We generalize some results obtained in the standard SK
model, studying the overlap and the magnetization and limit
for the free energy. These results show how ferromagnetic
interaction affects the behavior of the model.

1. Introduction. We consider the Sherrington Kirkpatrick model
with ferromagnetic interaction. The configuration space is ¥y =
{—1,1}¥, and the energy of each configuration o € ¥ is represented
by the Hamiltonian

2
_HN(O') = %<201> + j—%( Z gi7j0i0j> —i—hZO'i,
i<N i<j<N i<N

where {g;j;1 < ¢ < j < N} is a family of independent standard
Gaussian random variables and h > 0 is the intensity of an external
electromagnetic field. The two parameters 3; and ([ play the role of
two inverse temperatures. If 81 = 0, the Hamiltonian is equivalent to
the one of the Sherrington Kirkpatrick model. On the other hand, if
B2 = 0, the model reduces to Curie Weiss model, that is, the canonical
model for mean field (deterministic) ferromagnetic interaction. For this
type of interaction, in which spins tend to align with the ones in their
vicinity, we need a term proportional to 0;0; in the Hamiltonian, or,
equivalently, we can consider the square (3, 5 0;)? in order to write
the Hamiltonian as a function of the magnetization

1 N
l
(1) mp = _7‘7;0-1
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The Gibbs’ measure is given by

G (o) = % exp(—Hy (o)) with
N = Z exp(—Hy (o)),

oEXN

where Zpy denotes the partition function. We will denote by (f) the
average with respect to the Gibbs’ measure of a function f: Xy — R
as well as for a function f : X% — R. So

=g X fet ,a">exp(—zHN(al)>.

oEDY, I<n

We write v(f) = E(f) where E denotes the expectation with respect
to randomness in the Hamiltonian.

The high temperature regime of the SK model with external field
has been widely studied, see e.g., [4, 5], but the results on models
with ferromagnetic interactions are scarce (see, e.g., [1, 2, 3]). The
SK model with ferromagnetic interaction is a system with difficulties
due to the ferromagnetic interaction but with a familiar disorder. It is
interesting since it appears as a first step in the study of models with
this kind of interaction.

Our aim is to extend the well-known results obtained in the SK model
(see, e.g., [5]) to this model, trying to describe the behavior of the
model in the high temperature region. In our model, anyway, we have
to consider two order parameters and not just one as in the SK model.
One of them is the same one considered in the SK model, that is, the

overlap
1 /
Rl = == E O'I»O'I»
) N . 171
i<N

’ . .
where ¢!, o' are understood as two independent configurations under

Gy, and the other is magnetization, defined in (1). Our first result
regards the behavior of these two quantities: we will prove that they
converge in L? to two constants, ¢ and u, respectively, that are the
unique solutions of the replica-symmetric equations of this model:

@) {q: E tanh®(B22./q + Bip + h)
p = Etanh(822./q + Bip + h),
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where z is a standard Gaussian random variable. It will then be natural
to obtain some extra information on the exponential moments of the
quantities Ry 2 — ¢ and m; — . We will also obtain precise estimations
for the second order moments of R; 2 — ¢ and m; — p. Then we will
study a quantity that is closely related to the free energy considered by
physicists, pn(81,62) = (1/N)Elog Zy, and we will prove that, when
the size of the system tends to infinity, px (81, 82) converges almost
surely to the function

2
F(B1,62) = P21 ) +1og 2+ B (logcosh(Br2/ + s + )~ 2.

Moreover, we will talk about the regularity of the system and, in order
to understand the behavior of the Gibbs’ measure, we will study the
family of random variables {(0;) }i=1,... n-

Bip?

Our methods of proof follow closely [5]. However, the presence of the
ferromagnetic interaction requires a careful study at each step of our
computations.

Our paper is organized as follows. In Section 2 we introduce the
cavity method for our model. In Section 3 we will prove that system
(2) admits a unique solution (g, u), and we will prove the convergence
of (Ri1,2,m1) to it. Section 4 is devoted to the study of pn (81, 52)-
In Section 5 we will compute the moments of order 2k, k > 0, of the
quantities R; 2 —¢ and m; —p that allow us to study the behavior of the
Gibbs’ measure in Section 6. Finally, in Section 7, we will give a more
precise value to v((R1 2 —¢)?),v((m1 — p)?) and v((R1 2 — q)(m1 — p))
in order to obtain central limit results.

We will denote by K almost all constants, although their value may
change from line to line.

2. The cavity method. With this method we reduce a system
with IV spins into one with N — 1 spins, creating a cavity, so we can
think the last spin oy independent from the others. The main idea of
the cavity method is to reorder in the Hamiltonian all the terms that
depend on the last spin.

Let p=(01,... ,0N-1) € Xn_1, and let

(3 =", g =y s,
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that will play the role of 8; and (2 in our reduced system. The
Hamiltonian becomes

Hn(0)= Hy 15 5 () + ot o (g(0) 4B,

where —H | ;- 5-(p) is the Hamiltonian of the reduced system with
BT B3
N — 1 spins and g(p) is defined as

b1 B2
9p) =" D, oit—— Y, ginoi
N i<N—1 \/NigN—1

We will denote by (-)_ the average with respect to the Gibbs’ measure
in X1 with reference to the Hamiltonian —Hx_1(p).

For a function f : Xy — R, the following equality holds

(Avf expaw(glp) + 1)
(f) = Z ,

where Av means average on the values oy = 1 and

Z = (Avexpon(g(p) + h))_ = (cosh(g(p) + h))_ .

For functions in X7%;, we also have

<Avf exp i<, o (9(o") + h)>—
((cosh(g(p") +h)_)"

To simplify notation we will write g; = 05\,.

(f) =

In order to construct a continuous path between the original config-
uration and a configuration where the last spin is independent of the
others, let us define for a function f: ¥% = R

<Avf exp i<, ei(g:(p') + h)>_
Zp ’

<f>t:

where
N VB o —
g:(p') = N ig;_lgz,NUi +V1—=t(B221/q)
+t% Y o+ (1—t)Bip

i<N-—1
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and
Zy = (Avexpe(gi(p') + h))_ = (cosh(gi(p") + R)) _ .

Moreover, let us write

En,t = exp Z el(ge(p') + h)

I<n
and
vi(f) = E(f)e.
Notice that it will be simpler to compute vy(f) than v4(f) = v(f) and
that these two quantities are obviously related by

v(f) —w(f) = /0 vi(f) dt.

In the following lemma we show how to compute vo(f). The proof is
an obvious extension of Lemma 2.4.4 in [5].

Lemma 2.1. Let Y be the random variable defined as

(5) Y = B22/q+ Bip + h.
For any function f~ : X% _; — R and any subset I of {1,...,n}, we

have
Vo (f— He,-> = E(tanh V)@l (f7) = V0<Hsi> vo(f7).

i€l i€l
We now compute the derivative of v4(f) with respect to ¢.

Proposition 2.2.

vi(f) = 55( > wi(fasr (R — q))>

1<I<l'<n
- nf3; Z vi (feient1(Rint1 — )
I<n
©) n(n + 1)
+ ﬁgTVt (fentiEnt2(Rnt1,nt2 — 9))

#61( X wfeatm = ) = i = ) ).

I<n
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Remark 2.3. Define

thus, the following relations hold

1 _ 1 _
(7) 5l5l’Rl,l’ = N + Elsl/RH,, gmy = N +em; .

Proof of Proposition 2.2. It suffices to prove

dn-s( Y w(aentn - o))
1<i<l'<n
- ”/Bg Z Vi <f5l5n+1(Rl_,n+1 - Q))
() <o

n(n+1 _
+ 5%%’4 (Fentrent2(Ry iy nye — 0)

+ b1 (;Vt(f&'l(ml — ) —nv(fengpr(m,  — N)))

and then use relations (7). This proof is an extension of the proof of
Proposition 2.4.5 in [5], checking that

E < (Avf Zzgn ei(f1 (Pl) — Bim)én,e) - >

zp
E < (Avf&ne)_ (Ave(fi(p) — Bip)ére) _ >
n e
_® < (Avf Y cpetfi(p)ne) - >
zp
(Avf(Ent1 fr(p"™))ens1e)
— nE< Zf*l >
- 51ME< zr -n Ztn+1

(Avf X i< €iénit) - <Avf€n+1fn+1,t>>

=61 (w1 X eutm = 1)) = walemia(mzy = )

I<n
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As a consequence of Proposition 2.2 we can bound v;(f) by v(f).

Proposition 2.4. If f is a nonnegative function on X%, we have

vi(f) <v(f)exp (4n263 + 4nﬂ1) .

Proof. Since we can assume that |¢| < 1 and |u| < 1, the proof is an
extension of Lemma 2.4.6 in [5]. O

Proposition 2.5. Consider a function f : X% — R and numbers
a1, az, T, T2 > 1 such that 1/a; +1/as = 1 and 1/71 + 1/7 = 1.
Then

v(f) < wolf)
+ 20263 exp(4n®B3 + 4nBy) (W)™ (V| Ryz — q| )™
+ 201 exp(4n?B2 + 4nBy) (v] f1°) " (vlmy — plo2)" 2.

Proof. Notice that
1
o) =)+ [ v(r) e <)+ sup W)
0 0<t<1

Applying Holder’s inequality in (6), we get that

i ()] < 20263 (| F1™)™ (el Ruz — ¢|™) "™
+ 2081 (el £190) 0 (velmy — pf*2)" 2

Then, we use Proposition 2.4. O

3. L? convergence to the parameters. Before proving that R, ;s
and m; converge in the L? sense to ¢ and u, respectively, we will check
that system (2) admits a unique solution (g, u). Actually, it is enough
to use a Banach fixed point theorem for the function

T:[-1,1] % [0,1] — [-1,1] x [0,1]
(1,q) — (Etanh(Y), E tanh?(Y)),



1448 AGNESE CADEL AND CARLES ROVIRA

where Y is the random variable defined in (5). Indeed, T is a contrac-
tion since it can be checked that

A (T(p,q), T(W',q)) < 2d*((1,q), (W5 ),

where o? = 10(57 + 83) and o < 1 when 3; and (3> are small enough.

Now we can focus our attention on the main theorem of this section.
Let us assume that from now on our high temperature region will be
determined by the following relations

{ 1633 exp (1603 + 861) < 1/4,
81 exp(1665 +861) < 1/4.

Notice that, under (9), @ < 1 and we have a unique solution (u, q).

(9)

Theorem 3.1. For 1 and B2 satisfying (9) and for g and p solutions
of (2), the following inequalities hold

Qn :=v((Ri2—q)*) < %,
My = v((my — p)?) < %

Proof. Let f = (m1 — p)?. By symmetry, v(f) = v((e1 — u)(m1 — p))
and, using Lemma 2.1 with f~ =mj — (N — 1/N)u, we can write

1

vo((e1 — p)(m1 — p)) = NVO((& —w)) +wvo((er—p) f7) =

Applying Proposition 2.5 with a1 = as = 71 = T2 = n = 2, we get that

v(f) < vol(er — p)(my — p))
+ 1633 exp(1655 + 81) (v(R12 — 9)%)'/*(v(my — p)*)"/?
+ 861 exp(l6ﬁ% + 8681 )v(my — ,u)z,

1 —H2 1/2

+ 1682 exp(1682 + 88, ) MY/ *QY/
+ 861 exp(1663 + 831) My

My <
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Using the same arguments for @), we obtain

1_ 2
T 1687 exp(1682 + 861)Qn

+ 861 exp(1653 + 861) QN My ”.

Qn <

(11)

Then the problem reduces to study the system (10)—(11). Observe
that hypothesis (9) and relation (QnMy)Y? < (Qn + My)/2 yield
that system (10)—(11) implies that

{MN <(K/N)+ (Qn + My)/8+ (1/4)Mn
QN < (K/N) +(Qn +My)/8+ (1/4)Qn,

and the result follows easily. O

4. Study of the free energy. Set

log( > eXp(—HN(U))>] :

cEXN

1 1
o (B, B2) = NElog In = NE

This quantity is closely related to the free energy considered by physi-
cists, up to a scaling factor, and we call it the free energy of our system.
In this section we will prove that the limit of px (81, B2), when N — oo,
is the function

Bip?
-

2
F(B1,B2) = ’84—2(1 —q)*+1og 2+E (log cosh(B221/q + Bip + h)) —

Theorem 4.1. If 51 and B2 satisfy hypothesis (9), we have

J\}i_{noopzv(ﬁhﬂz) = F(B1,B2)-

Proof. Let us recall first that, under (9), (g, ) are unique and well
defined. Moreover, since they satisfy (2) it can be checked (see, for
instance, [5, Lemma 2.4.16]) that

oF OF
(12) E(ﬁ17627h7Q7M)‘ + a_q(617627h7Q7/J’) =0.
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Now, if we fix 83, we have

|F(B1,82) — pn (B, B2)] < |F(0,82) —pn (0, 52)]
+/Bl dF(z,B2) Opn(z,B2)
0

dx Oz
Thanks to Theorem 2.4.18 in [5], we know that |F'(0, 82) —pn (0, B2)| <
K/N. On the other hand, using (12), we get

dr.

3—51 = —%2 + pE(tanhY) = %2
and N ,
P (£ (Za) expl(~Hx (=)
. N2\
= WE < ( ; 0'Z>
The proof finishes easily using Theorem 3.1. u]

Remark 4.2. The value of the free energy can also be obtained for
more values of 81, B2 and h without the computations of the previous
sections from the well-known result for the classical SK model (8; = 0,
B2 small and A > 0). Doing a Gaussian integration and using a large
deviations argument, it can be obtained that

_ sup FSK(h+61p) Bup
F(BIMB2) - SupF (/82) - Ta
“w
where FSK(h+811)(5,) denotes the free energy for the SK model with
external field h + Bipu. We would like to thank the referees for this
observation.

5. Exponential moments. The aim of this section is to control
the exponential moments of our model, that is, to obtain that:

N , N )
“(Ryo— = _ .
y<exp L(R 2—q) > < L and 1/<exp L(m1 ) > <L
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The main tool is the control the moments of order 2k, k > 0, given
in the following theorem.

Theorem 5.1. For all k > 0 and for B1 and B2 satisfying (9) the
following inequalities hold

v (Ria - q)**) < (%’“)k and v ((m1 - p)™) < <%’“>k

Notice that these estimates will permit us to prove, at the end of this
section, the following bounds

2=
2=

[v(Riz2 —q)] < and |v(my —p)| < .
We will prove Theorem 5.1 by induction, considering that we have
already proved the induction step k£ = 1 in Theorem 3.1. The induction

hypothesis is, for all [ < k,

(13)  v(Riz2—9)* < <%>l and v(m; —p)* < <%>l

To prove this theorem, anyway, we will need the following lemma,
whose proof is an obvious extension of Lemma 2.5.2 in [5].

Lemma 5.2. We assume (14) and k < N — 1. Then, if Ly > 4, we
have for oll j < 2k,

B - Lo(G +1)\""*
IRy, - ap) < (PE)

Lo(k—i-l))k’

s - ) < 3( 2

and for all j < 2k,

Ay ) < (%)/

W(lmi - uf*) < 3($>k
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We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let f = (m; — p)?**2. Symmetry implies
v(f) = v(f) with f = (e — p)(my — p)?**1. Using Proposition 2.5

withn =2, 11 = a3 = 2k+2)/(2k+1), 2 = as = 2k + 2 and
hypothesis (9), we have
(14)

(2k+1)/(2k+2)

v(f) < vo(f) + 867 exp(1653 + 861) (y((f)(2k+2)/(2k+1)>>
x (v ((Ri2 — q)2k+2))1/(2k+2)

+ 4531 exp(1662 + 861) (V ((f)(2k+2)/(2k+1)
2k+2))1/(2k+2)

)) (2k+1)/(2k+2)

x v (((ma — )
<wo(f) + % [v ((m1 —

X [l/ ((R1,2 - q)2k+2)]1/(2k+2) +

(2k+1)/(2k-+2)
M)2k+2)]

1

yid ((m1 — u)2k+2) .

So, using that for any numbers a, b < 1 such that a + b = 1 and z,
y > 0, we have 2%y® < = +y, and (14) becomes

W(f) < 20(f)+ 5w (Ru = )*42).

Letting g = (R12 —q)**2,§ = (162 — q)(R1,2 — ¢)** !, and by similar
arguments we have that

o 1
v(9) < 2vo(g) + Sv(f)-
So we have to study the inequalities

v(f) < 200 ((ex — p)(ma — w)***1) + 3v(g)
v(g) < 2vg ((e162 — @) (R1,2 — @)*F ) + Sv(f)-

If we prove that

- { vo (61 — ) (my — w)?+1) < 32K ((k + 1)/N)*+!
Vo ((5152 — q)(Rl’z — q)2k+1) S 32L§ ((k + 1)/N)k+1
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the system becomes

v(f) < 64LE ((k+1)/N)* + Lu(g)
v(g) < 64Lf ((k+1)/N)" + u(f),
and we conclude easily choosing Ly = 128.

To prove (15) we use Lemma 2.1. It implies that vo((e1 — p)(m; —
p)#*+1) = 0, and hence

Vo ((51 — p)(ma — M)2k+1) = ((51 = p)((m1 — N)2k+1

~(my —p)*h).

Using the inequality |z2**1 — ¢k +L| < (2k + 1)|z — y|(z%* + y%F),
Proposition 2.4 and relations (7), we have

o ((61 _ ,u)(ml . “)2k+1) < 4% exp(lﬁﬁ% + 851)

x [v(my — p)* +v(my — p)?*].

Since (9) holds, we can assume exp(168% + 83;) < 2. So, using
Lemma 5.2 and the induction hypothesis, we have

() (5
k 1(L0(k+1)>k'

0] ((51 — p)(ma — M)2k+1)

Similarly, we have

k+1<L0(k+1)>k‘ .

vo ((e162 — q)(R12 — @)% 1) < 32 N N

The last goal of this section is to prove the following theorem.

Theorem 5.3. For 81 and B2 satisfying (9), the following inequali-
ties hold

and  |v(m1 — p)| <

2=
2

[V(Ri2 —q)] <
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First, we need the following lemma, that is an extension of Corollary
2.3.4 in [5]:

Lemma 5.4. For a function f: X% — R, we have

(16) wh) - () < = (),
a7) () = wolf) — )] < T (o) 2.

From now on, set

q = Etanh*(8y2,/q + Bip + h)
i = Etanh®(Bs2,/q + Bap + h).

Proof of Theorem 5.3. Let f = mj; — u. By symmetry, we have
v(f) = v(ex — p). Thanks to Lemma 5.4, we have

/ K(n)
(18) lv(f) —vo(er — p) —vpler — p)| < N

where vp(e1 — ) = 0 because of Lemma 2.1. To compute v{(e1 — u)
we use (8) with n = 1 and Lemma 2.1, and we get

vo(er — p) = B3 (i — wvo(Ry 5 — @) + B1(1 — Qo (my — ).
Since (16) implies that

(19) { vo(Riz —a) = v(Rip —q)| < K/N

lvo(my — ) —v(mi —p) < K/N,
(18) becomes

1) = B3R — W (Raa = 0) = Bu(1 = )l — )] < © .
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Reasoning analogously with g = R; > — g, we have

2| =

[V(Riz —q) — B5(1— 4q+39)v(Riz —q) — 281 (p — p)v(ma — p)| <
So we have to study the system

(1 -pB3(1 4q+3q)) v(Ry2 —q)
=281(p — p)v(my — p)| < K/N

|(1 = Bi(L = q))v(mi1 — p)

—B3(t — p)v(Ry2 — q)| < K/N.

Clearly, there exist two constants L and L' such that |L| + |L'| < K/N
and
(1-B3(1—4g+39))v(Ri2 —q)
=261(n = pv(m1 —p) + L
(1 =Bl = q))r(mi — p)
=B3(h—p)v(Ri2—q) + L
Thus,

28183 (1 — p)?
1 - B3(1 — 4q + 39)

1-p1(1—-q)+ v(my — )

L
1-p3(1—4¢+37q)

=L+

Since 0 < 7 < ¢ < 1, we have that 1 — 4¢ + 37 < 1, and for 82 < 1/2,
we get

<1-65(1~4q +39).

N | =

Moreover, for 8; < 1/2, we get that

26183 (5 — p)?
1-p53(1—49+39) —

L gl g+ >1- 1) > .

Thus,
lv(my — p)| < 4|L| +2|L).

Using similar arguments we study |v(Ri2 — q)|. o
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6. Regularity of the system. One way of looking at the regularity
of the system when N — oo is to investigate the limit of the laws
of the random variables ({o1),..., (o). In fact, one way to study
the self averaging phenomenon for the model is to show that those
quantities converge to some independent and identically distributed
centered random variables that can be clearly identified, by analogy
with the fact that the magnetization vanishes for the Ising model at
high temperature.

It turns out that the above sequence is formed by asymptotically i.i.d.
random variables, and the limit law of each one of them is the law of
the random variable Y = tanh(f2z,/q + B + h), where z is as usual
a standard Gaussian random variable.

The central theorem of this section reads as follows.

Theorem 6.1. If 81 and B2 satisfy (9), we can find independent
standard Gaussian random variables {Zi}ign such that

E{Z ((o3) — tanh(Ba2iv/g + Bup + h))* | < %

i<n

To prove it we need some preliminary results.

Lemma 6.2. Denote by q and pu_ the solutions of (2) when (i
and By are replaced by B, and By defined in (3). Then, for 81 and B2
satisfying (9), we have

00l <R and popol<n
g-g¢|<5 ond |p—p|< 4
Proof. Clearly,
_ dq _
q(B1,B2) — q(By By )| < sup |81 — By |
61,6 | OB1
dq ‘ _
+ sup |— — .
ﬂl,ﬁpz 862 |B2 /82|
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Since system (2) can be seen as

{q = F1(B1, B2,49(B1, B2), (B1, B2))
p = F2(B1, B2,q(B1, B2), 1(B1, B2)),

for ¢ = 1,2 we have

Oq _ (OF1/0Bi) + (OF1/Op)(9p/08:)
0B; 1 — (0F1/0q)

and

Op _ (0F2/0B;) + (0F2/0q)(0q/98i)
0B 1 — (0F>/0p)

Computing these derivatives, we can conclude that

(81, 82) = a(B; . 83)| = K (B, B)182 — 5
- KB f2)
< K05,
(1, 8) — (i, 5] < 0P,

Now set e = 37, n(o3), [lel* = 35, y_1(03)? and

@) gl =T Y s+ Y (o

i<N-1 i<N—1

Lemma 6.3. We can find a standard Gaussian random variable z
that depends only upon (g; ;)i<j<n, but it is probabilistically indepen-
dent of the (gi j)i<j<n-1, such that

z| >

E (((ow) — tanh(By2/q + Bupu + 1))°) <

Proof. Let
1
= H Z gi,n (o3)

i<N-—1
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and let Y be the random variable defined in (5). Using the inequalities
|tanhz — tanhy| < |z — y| and (z + y)? < 222 + 2y%, we have
(21)

E ((<UN> - tanh(Y))z) < 2B (((on) — tanh(g(c) + h))?)

(G 3 )

i<N—1
3 2
+4E<<Nl 4 > o) —51M> >
i<N-—-1
We will prove in Lemma 6.4 that
(22) B (((on) — tanh(g(c) + h))?) <~

Following the proof of Lemma 2.4.14 in [5], we can obtain
(23) E ﬁz N (03) —5;;\[2 <K

\/N i<Ning,N i) 2 q = N
Finally, using a similar argument we have

o (% 5 o o))

i<N-—1

The proof finishes putting together (21), (22), (23) and (24). o

Lemma 6.4. For 81 and B2 satisfying (9) and g(c) defined in (20),

we have
B (o) ~ tanh(g(e) + 0))*) < =
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Remark 6.5. In the proof of Lemma 6.4 we will use Gronwall’s
inequality in the following way: let g(t) be a function such that
g(0) < L/N and ¢'(t) < Lg(t). Then g(¢t) < L/N.

Proof. Consider g;(p) defined in (4), and set g;(c) in a similar way
Vipa
gi(c) = (i) _ + V1 —t(B221/q)
t VN ig;l i
LS o) - 0B

i<N—1

We consider the function
o)) =E (U - V(©)*),
where
U(t) ={on);
V (t) = tanh(gs(c) + h)
(Ave exp(e(g:(c) + h)))_
(cosh(ge(c) +h))_

where U(t) and V' (¢) are defined similarly, putting g;(c) instead of g:(p).
Obviously, our aim is to check that

z| >

p(1) <

Since go(p) = go(c), we have p(0) = E((U(0) — V(0))?) = 0 and
(1) = ¢(1) = ¢(0). Set p(t) = p1(t) — 2pa(t) + ¢s(t), where

(25) ¢1(t) =EU*(1), @2(t) =EU@®)V(?), ps(t) =EV(1)).

Then, it is enough to prove that

==

(1) =9(0)] < |1(1) =1 (0)[+2[p2(1) — p2(0)[+]p3(1) —¢3(0)] < -
We begin with the study of ¢;(¢). The same kind of computations will
be useful to study ¢2(t) and ¢5(t), provided that we will prove that
relation (17) also holds for @2 (t) and p3(t).
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Step 1. Using symmetry, we have ¢;(t) = v1(g1€2), and thanks to
(17) we have that

2|

lp1(1) — 1(0) — ¢1(0)] <

So it is sufficient to prove that ¢}(0) < K/N. Using Proposition 2.2
with n = 2 and f = €165 and Lemma 2.1, we have

©1(0) = B3(1 — 4q + 3q)vo(Ri 5 — @) + 281 (p — Bvo(mT — p),

and we can conclude using (19) and Theorem 5.3.

Step 2. Study of ¢3(t). For a function f: X% — R, set

<Avf exp (Zlgn eu(ge(c) + h))>
(Fhe = (cosh™(gi(c) + h))

Using symmetry,
p3(t) = E (e162); -

The only difference between (-); and (-)} is that, instead of g;(p'), we
will have g;(c¢). So, (8) remains valid, provided one replaces v;(-) by

E();, Ry by [|e]2/N and m; by e~ = (1/N) Sicy_y (o) Thus,

Tenn=5 Y ® <f (K- q)>

1<i<l'<n t

2 !
—nf3) E <f615n+1 (% - q> >
t

I<n

2 !
+ ﬂ%@]ﬂ <f5n+16n+2 <% — q>>

+ 61 E(feile- —p));

I<n
— nBiE (fenii(e- — n))y -

(26)
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To prove that (17) holds, we have to verify first that (16) also holds.
We will use Remark 6.5 to prove that

E

Some easy computations give that the functions

w<t>—E<(”jﬂ2—q)2> and (1) = B((e- ~?)

satisfy the hypothesis to apply the Gronwall’s inequality (see Remark
6.5). Indeed, for t = 0, E(-})j = E(:)o = vo(-). Thus, thanks to
Proposition 2.4 and Theorem 3.1, we have

To show that ¢'(t) < Li(t), it is enough to use (26).
We have to prove now that ¢5(0) < K/N. Using (26) with n = 2 and

f = e1€2, we have
2
©5(0) = B3(1 — 4g + 3q)vo <% - q)
+ 281 (1 — B)vo(e— — p),
and so ¢5(0) < K/N.
Step 3. To study ¢2(t), we will do the same things as Step 2.
Set

() = (Avfexp (Y, o, culge()+m) exp(Y 1y e (ge(e)+h)))
t = {cosh™ (g, (p)Th) cosh™ (ge () +h) :




1462 AGNESE CADEL AND CARLES ROVIRA

Then

@2(t) = E (e122)] .
Now, in the adapted version of (8) some of the terms R;, are replaced
by N7 Y, 1 0i(0:)— and others by ||c||>/N, while the terms m; are
again replaced by e_. The analysis of the problem proceeds similarly.
So we have to prove that the functions (¢), n(t) and

o{(v 3 w00 a))

verify the hypothesis of Remark 6.5. We will verify this just for the
last function, considering that, for ¢(¢) and 7(t), the previous reasoning
holds. In this case, we have that for ¢t = 0, E(-)j = E(-)o = vo(-), and
we obtain

(7.2 )
_ ,,0(<% IR (i) — q>2>

3

_qu()(N o; <0i>> +q°
i<N-—-1
Notice that
1 _ K K
2 (N i<%;10i <Ui>> =vo(Ryy) =v(Ri2) + N -4ty

thanks to (19) and Theorem 5.3. Besides, using Hélder’s inequality, we
have

1 2 . K
muo(( Z o1 <oi>> > =1o(Ry R 5) < @+ N’
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and so

2=

S(CPREBOPE

On the other hand, it suffices to proceed as we did in Step 2 for 1 (t)
and 7(t), in order to obtain

|05(0)] < (1 + 4q + 39)B3|mo(Ry 2 — a)

2
V<w|>
0 N q

+ 8383

+2(p + 1)Br|vo(my — p)
+2(p + 1)Brlvo(e- — )|
< K
< N O

Corollary 6.6. For 81 and B2 satisfying (9), we have

E ((o1) — (o1)_ )" <

2=

Proof. We will proceed as in the previous proof. Set

U(t) = (o),
V() = (o1)
_ {Avor exp(e(gi() + h)))
(cosh(ge(c) + ) _

and
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Clearly, ©(0) = 0, and we only need to prove that
18(1) — 2(0)] < [p1(1) — 21(0)] + 2/@2(1) — #2(0)]

—~ — K

B - FHO) < 1

where we define p1(t), p2(t) and p3(t) as in (25). Using symmetry we
have

— o~ " o~ !
o1(t) = z/t(aiof), p2(t) =E <o%0f>t , p3(t)=E <0‘%O’%>t.

Notice that p3(t) does not depend on t. So 3 (0) = 0, and we just
have to prove that

==

_ K —
FOI< N, I 0)<
Using (8) and Lemma 2.1 we have
21'(0) = B3quo(oloi (R, — @) — 4B3quo(o1of (Ry 5 — q))
+ 303 qvo(0101(Rs 4 — q)) + 2B1pw0(0107 (my — p))
— 2B1pwo (010t (mg — p)).
Observe that, from (16) we have
vo(o10% (R — q)) — v(o10t (R — q))]

)

2=

+ (oot (my — ) — v(opot(my — )| <
and using symmetry we can write
v(otoi (R — q)) = v(Ri2(Rir — q))
=v((Ri2 — @)(Rir — q)) + qu(Ri i — q).
Thus,
p1'(0) = B3qv(o101(Rz — q)) — 4B3qv(010% (Rus — q))
+3B3qu(010i(Rsa — q)) + 281w (010f (m1 — p))

K
— 21w (010 (ms — p)) + N

= B3qv ((R12 — 9)%) — 4B3qv (R12 — ¢)(Ru3 — q))
+3B3qv (R12 — q)(Rsa — q))

+ 281w ((Ry,2 — q)(ma — p))

)

~2um (Ruz — a)(ms — ) + .
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Then, using Cauchy-Schwarz’s inequality and Theorem 3.1, |7’ (0)] <
K/N.
To prove that 35 (0) < K/N, we proceed in a similar way. Deriving
and using Lemma 2.1, we have
2'(0) = Bavo(f(Ryz — q)) — 4B3qn(f (R 5 — q))
+383qvo(f(R56 — q))

~ssan(7( 5 X ot -a))

i<N—1

r3stan(1(5 X obled -a))

i<N—1
+2B1pvo(f(my — p)) — 2B1uvo(f(my — 1)),

so using symmetry we have |g5(0)] < K/N. o
We can now prove Theorem 6.1.

Proof of Theorem 6.1. We will proceed by induction over n consider-
ing that, in Lemma 6.3, we proved the case n = 1. We suppose that it
is true for n, and we will prove it for n + 1.

Let Y; = Bozi\/q+Bipu+h and Y;” = 35 2;,/q— + B pi— +h. We have

> E (((o3) — tanh(¥))*) < K Y E (o) — (03)_)*

+ KZE ((0s)_ — tanh(Y;"))”
+K i E (tanh(Y;”) — tanh(¥;))?.

From Corollary 6.6, we obtain

2 _ K(n)
> E((o3) —(os)_)" < N

i<n

Using Lemma 6.2, we can follow the proof of Theorem 2.4.12 in [5] in
order to finish the proof. ]
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7. Second order moments computations. A first step through
central limit results is to give a more precise value to v((Ri2 — q)?),
v((m1—p)?) and v((R1,2 — q)(m1 — p)). The estimates are established
by our next theorem.

Theorem 7.1.
v (Bip— 0?) — (A1 +2B1+ B)| < <o
v ((m1—p)?) — %(D1 +Gh)| < %7
(o= m =) - €+ F)) <

where Ay, By, Cy, Dy, Ey and F; are constants that we will define
later.

We need to introduce some new notation and definitions.

Definition 7.2. Set

L_ ). (sl 1 _ .
(0" =b)- (0" —b) Tl:(a b)-b T:U—q;

N ’ N ’ N

Tl,l’ =

U =my—(mi); U= (mi)—p,

where b = (o) = ((03))i<n. Hence, we have Ry —q =Ty + 11+ Ty +T
and m; —pu=U; +U.

Definition 7.3. Set A = B%2(1 — 49 + 37), B = Bi(p — 1),
C= 61(1—\7q)7 D= 72135(/17,[7)’ E= /35(1*2%“/1\), F= ﬂl(,u—hu’qua)v
G =063- 4%

Remark 7.4. Notice that A < 1 (see the proof of Lemma 2.8.3 in [5]),
C < 1 (since ¢ € (0,1)) and E < 1 (see how to compute (2.255) in
[5]). On the other hand, from the definition it is clear that BD < 0.
So, under hypothesis (9), the constants A;, By, C1, D1, E; and F;
appearing in Propositions 7.6 and 7.7 are well defined.
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The following remark and the next two propositions yield the proof
of Theorem 7.1.

Remark 7.5. Using symmetry we can prove that for all I,1’, k, k’,

(l’ll) 7& (kv kl)a |V(Tl,l’Tk,k’)| = 0;
for all ,1', k,
v(Ti o Te)| + v(Tiw Uy)| = 05

for all 1,1,
(L0 T)| + v (11,0 U)| = 0;

for all I,I', 1 £1',
lv(Ti )| = 0;

forall I, k, | # k,
lv(TiU)| = 0;

for all 7,
v(TT)| + [v(TiU)| = 0;

for all k, k', k # K/,
|v(UrUg)| = 05

for all &,
lv(UkT)| + [v(UU)| = 0.

Proposition 7.6. If 31 and By satisfy hypothesis (9), we have

A K B K
2 1 2 1
V(TI,Q) - W < N3/2° V(Tl) - W < N3/2’
Cl K D1 K
V(UITI)_F S N3/2 and V(U]?)—W S W’
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where

E
A=A my
B, — (1-C)(¢g—9q +BE(—n)
(1-E)[(1-A)(1-C)-BD]’
o = m—m-A)+ D7)
(1-E)[(1-A)(1-C) - BD]
B BD(p — i)
1-0C)[(1-A4)(1-C)—-BD)
p, = 190 —A)+ D — )

[(1-A)(1-C)- BD]
B BD*(u— i)
(1-C)?[1-A4)1-C)-BD]

Proof. For the sake of completeness, we will give the study of v(T75).
Using symmetry we can write

v(Tf,) = u<(01 - ‘72)&(‘73 —a*) (o' - 05)];[(03 . 56)>

(27) = %y ((e1 —e2)(e3 —ea)(e1 —€5)(e3 —€6))

+v((er —e2)(es —ea)f7)

where f~ =Ry 3 — Ry 3 — Ry ¢+ Rj¢. Moreover, we have
vo ((e1 —€2)(e3 —ea)(er —e5)(es —&6)) =1 —2¢ + 7
and (v((f)*))* < K/VN. Using Lemma 7.8 and (27), we get that

v(f (Ri3— Rs3— Ris+ Rsg))

1 _ K
=5V ((e1 —es5)(es —26)f ™) + N3/2
1
= — g (61 —e2)(es —ea)(er — &5) (e — e0))
1 5 K
+ EV(Tl 2) + N3/2
1 —2¢+q K

= NE +E (T12) N3/2'
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We conclude by noting that

|v(f~(Ris — Rs3 — Rig+ Rse))
K
N3/2

—v ((R13 — Rs3 — Ri6 + Rs6)°)| <

implies

1-E ., . 1-2¢+¢ K
E V(TLQ) - NE — N3/2 :

In a similar way we can prove the next proposition.

Proposition 7.7. If 31 and By satisfy hypothesis (9), we have

FE4 K
V(%) - ~| = N
Fy K
I/(UT) — W S N3/2
and
G1 K
2
MU= F ]S e
where Eq, F1 and G1 satisfy
[(1-A)(1-C)-FD]E;
=(@-¢)(1-0)
+ 63 ( (1-C)@~¢*) +2F (i — pg)) A1
9 . 2F?
+ 2085 +2q—3q+,8—) B,
1
+2/31( )(7i — ng) + 2F (¢ — u*)) C1,

(L-C)Fy =i — pg + B3(fi — pg)A:
+ 263 (1 + pg — 2f1) By
+2B1(q — p2)Cy + B2(fi — p)Er,
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(1-C)Gr=q—p*+ B3 (p+ pg — 21)Cy
+ B1(q — p?)Dy + B2 (i — p) Fy.

The proof of the previous propositions are based in the following
lemmas that are extensions of the equivalent results for the SK model
given in Propositions 2.6.3 and 2.6.8 in [5].

Lemma 7.8. Let f~ : X% _; =+ R. Then

vy ((e1 —€2)(es —e4)f ™) = Evg (f~(Rys — Ryy — Rys + Ry ,))
and

|V ((e1 —e2)(es —ea)f) —Ev(f (Ris— Ria— Ras+ R2,4))|

K(n) —\4\)1/4
ST(”((f))) .

Lemma 7.9. Let f~ : X% _; = R. Then

Vo ((e1 —€2)esf ™) = B3(1 — q)vo (f~(Ry3 — Ras))
+63a-9) 3 w (F (B, - Ry))

4<I<n
- nﬁ%(q - (j)l/o (f_(R;,n+1 - R;,n—‘,—l))
+ B1(p— v (f~(my —my)) .

Besides, if f~ does not depend on p®, we have

|V ((e1 —e2)esf™) — B3(1 — 49+ 3Q)v(f~ (Ri3 — Rap3))

- B3(q—79) Z v(f~(Riy — Rag — Riny1 + Rong1))
4<i<n

— Bilp — wv(f~(m1 — my))|
K _\a\y\1/4
< N (” ((f ) )) :
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Lemma 7.10. Let f~ : X% _; = R. Then

vh (e —e)f7) = B3 —1) Y wo (1 (B~ By))

3<i<n
- nﬁz ﬁ) ( R1 n+1 Rin—i—l))
+B1(1 = qwo (f~(my —my)).

Besides, if f~ does not depend on p®, we have

v ((ex —e2)f7) +263(n = B)v(f~ (Ri3 — R2))

—B5(n—7) > v(f (Rt —Roy— Ring1 + Ronin))
4<i<n

— Bl = q(f (m1—ma))| < = (v ((F)})*.

ZIN
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