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A NOTE ON ELLIPTIC CURVES WITH
A RATIONAL 3-TORSION POINT

RINTARO KOZUMA

ABSTRACT. We determine reduction types and images
of local connecting homomorphisms of elliptic curves with
a rational 3-torsion point over a number field in which 3
is unramified. These results are shown to be useful for the
explicit calculation of Selmer groups.

1. Introduction. Let E be an elliptic curve defined over a number
field F with an F-rational 3-torsion point, and let ¢ : & — E be an
associated 3-isogeny over F' with the dual elliptic curve E/F. Assume
that 3 is unramified in F'. We begin in Section 3 by calculating minimal
Weierstrass forms and the number of irreducible components of Néron
models for F, E over the completion F} at a finite prime p. With these
results, in Section 4 we determine the image of the local connecting
homomorphisms (Theorem 4.1) that fit into the composed injection

35, : E(Fy)/3(E(Fy)) — H'(F, E[g]) % H'(Fy, py) — F}/F?,

where e stands for a Weil (Z—pairing. This result enables us in Section 5

to explicitly calculate the Selmer groups of E/F associated with ¢. As
an application, we will consider Knight’s problem in Section 6. We
first introduce notation used in the present paper and recall some basic
results of descent theory in Section 2.

2. Descent via isogenies. Let E be an elliptic curve defined over a
number field F. The well known Mordell-Weil theorem states that the
set of F-rational points on an elliptic curve F, often called a Mordell-
WEeil group, is a finitely generated abelian group. One problem of prime
interest is the determination of the rank of the Mordell-Weil group
E(F). If one could calculate the finite quotient group E(F)/mE(F) for
some integer m > 1, one could thence find the rank of E(F'). Descent
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1228 RINTARO KOZUMA

theory gives an upper bound for the size of the group E(F)/mE(F),
which also often corresponds to the exact size of this group.

Now assume E admits an m-isogeny ¢ : £ — E over F with dual
elliptic curve E /F, and let ¢ E —> E be its dual isogeny. For a short

exact sequence 0 — E[¢] — E(F) 2 E(F) = 0 as Gp-modules (G :
the absolute Galois group of F'), taking Galois cohomology yields the
exact sequence

0 — E(F)/¢(B(F)) — H(F, E[¢]) — H'(F, E)[¢] — 0.

Considering the above F' again locally, we also have a similar localized
exact sequence. For the completion F, at each prime p of F', fix an
embedding F — Fp once and for all. Since the embedding F — Fp
induces restriction maps of Galois cohomology, we obtain the following
commutative diagram.

0 B(F) *— H(F, El¢]) ——— H(F, E)l¢]| ———0
o(mm)
Jresp resy resp
0 EWs) % (5, Blg)) —— HY(Fy, E)]¢] —— 0
o(B(ry))

where §, 6, stands for connecting homomorphisms. Note that for an
infinite prime p, if 2 { {E[¢], then H'(F,, E[¢]) is trivial, and hence
the map d, is also trivial. The ¢-Selmer group of the elliptic curve F
is a finite subgroup of H'(F, E[¢]) defined by

SO (E/F) = {Z € H'(F, E[g]) | res, (€) € Ims,

for any finite/infinite prime p of F' }

Wlth reference to the above diagram, it is clear that the Selmer group

(#)(E/F) contains E(F )/¢(E(F)) as a subgroup. The gap between
these groups is represented by the ¢-kernel of the Shafarevich-Tate
group, which fits into the exact sequence

0 — E(F)/¢(B(F)) — S9(B/F) — LWI(E/F)[¢] — 0.
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Conversely, one can define the ¢-Selmer group S @) (E' /F), the ¢-kernel
of the Shafarevich-Tate group III(E/F')[¢] by interchanging the role of
the isogenies ¢ and ¢.

The relation between the finite groups E(F)/qb(E(F)) and E(F)/
g/z,’; (E(F)) is described by the exact sequence

o, E®@ | B 3

SEFE)m])  S(BEF)  mBEE) | §(B(F))

)
=
3
g
=

From this, when m = p is a rational prime number, each term of the
above sequence is a vector space over Fp, and we thus have

ranky, = dimp E(F) img E(F)
(2.1) T T I ()
— dim 7E(F)[A] — dim
TE00 ) R

Though it is straightforward to calculate the last two terms on the right-
hand side, the first two terms on this side are, in general, particularly
difficult to calculate. However, the Selmer groups can be calculated in
principle and hence give an upper bound for the rank of E(F).

Given an isogeny and its dual isogeny, it is known that Cassels’ duality
formula in [3] connects the order of a Selmer group with that of its
dual Selmer group. Let |- |, be the valuation of F, with the usual
normalization |r|, = {F," (F, :== Op/p, Op: the ring of integers of
F) where 7 stands for a prime element in F}, and let Ey(F,) be the
group of Fy-rational points on E with nonsingular reduction (of course,
the Weierstrass form is taken to be minimal), which is isomorphic to
the group of Op,-valued points on the identity component of a Néron

model for E/F,. Define EO(Fp) similarly.

Theorem 2.1 [3]. Let E be an arbitrary elliptic curve and ¢ : E — E
an isogeny, which are both defined over a number field F. Then

1SO(E/F) _ $E(F)[] 11 /B, @l

1S@(E/F)  tE(F)9] % Jeer,) 1wl
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where p vartes through all the primes of F'. Here w is a global invariant
differential on E/F, and ® stands for the dual of the object e.

We remark on the integrals in the above theorem. Since there is some
a € F* such that ¢*@ = aw, we calculate
(2.2)
_ ~ —1 ~
wlp = laly - 4E(F)[¢] - [E(Fy) : o(E(Fy))] /A |@lp-

Fy) E(Fy)

This not only holds for global w, @, but also for any local invariant
differentials on £ and E. The case for the dual is similar, but note
that aa = deg¢ for @ € F* with ¢*w = aw. Combining these facts
with the product formula of the valuation |- |, yields

Ja) Pl _ 10 [E(F,) : (E(F))]
b fE(F,,) |wlp o §E(Fy)[9] ’

a result first derived by Cassels in [3].

Furthermore, when p is a finite prime, Tate pointed out in [8]
that fE(F,,) lwlp = [E(Fp) : Eo(Fp)](BEp(Fp)ns/iFp) for an invariant
differential w on E/F, associated with a minimal Weierstrass form.
Here the subscript ns stands for nonsingular points on the reduced curve
E, of E at p. Upon deriving the corresponding expression for the dual,

we have fﬁ(pp) |@|p/fE(Fp) lwlp = [E(Fy) : Eo(Fp)]/[E(Fy) = Eo(Fy)]
since ﬁEp(Fp)ns = #E,(Fp)ns, which is an isogeny invariant. By
equation (2.2), we have that

_ ol LEE) 6 (B(Fy))]
bEE)E

~,~

[B(5) : $(EF))]

= |alp =~

BE(Fp)[¢]

If F has class number 1, then for any global invariant differentials w,

w,

(2.3)

~

Ja(z,) e JBimy Bminle o [B(F,) : Bo(F)]

(2.4) - “BE) T
p fE(Fp) |w|p p:infinite fE(Fp) |wmin|p p:finite [E(Fp) : EO(Fp)]
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where wpin, Wmin are differentials associated with global minimal Weier-
strass forms.

Henceforth we assume E[¢] C E(F).

2.1. On the Selmer group S¢)(E/F). For any finite group G,
define the set of all Galois extensions over F' whose Galois groups are
isomorphic to a subgroup of G by

Gal(G/F) := {(F D) K/F: Galois extension ‘ Gal(K/F) < G}/

{isomorphisms over F' }

Then the elements in Bal(E[¢]/F') come from the group Hom (Gr, E[¢])
by the surjection

¢ : Hom (Gr, E[¢]) — Gal(E[¢]/F)

f s FKerﬁ

where G := Gal (F/F). By the assumption E[¢] C E(F), we obtain
the composed map

Sp : B(F)/¢(E(F)) -2 H'(F, E[¢])

= Hom (Gr, E[g]) = Gal(E[¢]/F)

which sends a point P € E(F) to an extension F(¢o7Y(P)) €
&al(E[¢]/F) from the definitions.

Lemma 2.2. For any K € &al(E[¢]/F), the fiber of the map
0 at K is given by o Y(K) = {£ = toresg | ¢ : Gal(K/F) —
E[¢]; group injection}. Hereresi stands for the restriction map Gp —
Gal (K/F). In particular, o=*(F) = {the zero map}, and for the case
that the group E[@] is cyclic, o(§) = o(n) if and only if (&) = (n) in
Hom (Gr, E[g]) for £, n € Hom (GF, E[¢]).

res

Proof. For any K € &al(E[¢]/F), take the composed map & : Gg —
Gal (K/F) < E[¢] with any injection ¢. Then & € Hom (G, E[¢]) and
0(§) = K, and hence p is surjective. Since any ¢ € Hom (G, E[¢])
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satisfying o(£) = K decomposes as above, the fiber o~ !(K) is identified
with the set of injections ¢ : Gal(K/F) — E[¢]. The last statement
then follows easily. o

Considering the above locally, we have the commutative diagram

E(F)/¢(E(F)) —£— al(E[¢]/F

Jresp JI'GSF

E(Fy)/¢(B(F)) _m Gal(E[g]/F,).

When E[¢] is cyclic of order m, by applying Lemma 2.2 we have that

t1SO(E/F) =Y o([K : F]),
KeC
@.— {K € Gal(Cyn/F) K/F is unramified outside Sy }

K - Fy € Imdp, for any p € Sp

where ¢ is the Euler function, C), stands for the cyclic group of order
m and Sy the set of finite primes of F' at which E has a bad reduction
or dividing m.

2.2. On the Selmer group 5@) (E’/F) Assume that the group
E[¢] is cyclic. Since E[¢] C E(F), the Weil pairing e (-, ') with a

fixed T € E[¢] constructs injective homomorphisms gp, ng that fit
into the commutative diagram

N . E(F) /6\ Hl F E "N 84;( ’ T) 1 * *x1m
D E[G]) 2 HY(F, )~ F* |F
"3 EF) (F, E[¢]) (F, pm) = F"/
> E(Fp) :;\V 1 jasie e({,('vT) 1 ~ * *m
6Fp g(E(Fp)) H(FpaE[¢]) H(Fpa,um)—Fp/Fp .

We can hence rewrite the $—Selmer group as
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2.5) S@(B/F) = {E € F*/F*™ | d € Imdp,

for any finite/infinite prime p of F' }
Further details of this argument can be found in [6].

3. Elliptic curves with a rational 3-torsion point. Let E/K
be an elliptic curve defined over a perfect field K having a K-rational
3-torsion point. Then we can find a model of E/K as the form

(3.1) y*+azy+by =23 (a, b € K such that A := (a®—27b)b> # 0),

with the 3-torsion point (0, 0). The dual elliptic curve E = E/((0, 0))
is then given by the form

(3.2) y*+azy — 9by = z* — (a® + 27b)b (3 = (a® — 27b)°b # 0),

while the 3-isogenies between them are

¢o: E— E;
3 +blax +b) z3(y+4b) — blazx + b)? + by(y — b)
(x7 y) '_) ( 2 ) 3 )7
x x
(}5\: E-— E;
(y—9b)(az+y) (y—9b\°
(@, y) — ( (a2 +3z)2 ' \a?+3z '
These 3-isogenies have kernels and relations given by
(3.3)
E[¢] = ((0, 0)), ¢*W = w,
~ o~ 2 3427 —3(a® —27b ~
E[¢]_<(_%’3(a+ 7)—1—1\8/ 3(a 7)>>’ 7w = 30,

where w, @ stand for the invariant differentials associated with the
respective Weierstrass forms (3.1) and (3.2). Explicit formulae for
general isogenies may be found in [9]. From the theory of the Weil
pairing and descent (see [6]), the rational function y € K(F), whose
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divisor is 3(0, 0) — 3(O) and satisfies y o 6 e K(E)*3, describes the
injection

(3.4) ok : B(K)/6(E(K)) — K*/K*?
in subsection 2.2 with 7" = (0, 0) as

R yK* if P = (z,y) # O, (0, 0),
(3.5) ox(P) = b>K*3 if P = (0, 0),
K* ifP=0.

In this paper we consider the case that K is a number field, F', or its p-
adic completion, F},. For the present case, there is no need to consider
infinite primes p since H'(F}, E [q/g]) is trivial. For a finite prime p, let
vp be the additive valuation of F}, with the normalization v, (7) = 1. In

order to determine the image of gpp, we first present simple, but useful,
lemmas as follows:

Lemma 3.1. Let p be any finite prime of F. If 3v,(a) > v,(b) and
3| vp(b), then Imdp, — D}p/D}?; (=~ D}pF;?’/F;?’).

Proof. We assume 3v,(a) > v,(b) and 3 | vp(b). Let m := 371y, (b) €
Z. Then the substitution (z, y) + (m?™x, 7°™y) yields the Weierstrass
form y(y + 7 ™ax + 7 3™b) = 2 of E/F with coefficients in Op,. If
vp(y) > 0, then vy(y + 7 ™az + 7~3™b) = 0, and hence 3 | v, (y).
If vp(y) < 0, then 3 | vy(y). Therefore, the image (3.5) of gpp is of
p-exponent divided by 3 for any point (x, y) € E(F}). This yields the
lemma. O

Lemma 3.2. If v;,(b) # 0 (mod 3), then the group (bFy?) ~ Z/3Z

s a subgroup of Im S\Fp.

Proof. Since vy(b) # 0 (mod 3), the image of the point (0, —b) €
E(Fy,) is 0F, (0, —b) = bFy®, which generates a subgroup isomorphic to
Z/3Z. o
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Take a minimal Weierstrass form of E/F),, and for each r € N, let

E(Fy) = {(z, y) € E(Fy) | vp(y) < =3r} U{O},
U" ={deF,|v(d—1) >r}.

By a similar argument as in the proof of Lemma 3.1, we can prove the
following lemma.

Lemma 3.3. Let p be any finite prime of F, A the discriminant for
the Weierstrass form (3.1) of E/F,, and A, a minimal discriminant
of E/F,. Then, for any integer r > v,(A/A,)/12,

vp(A/Ay)

S\Fp (B (Fp)) = Uét)Fg3/F;3 where t := 1 — 19

+ vp(a).

Proof. Let (z,y) — (2, y') be a substitution that transforms the
Weierstrass form (3.1) to a minimal Weierstrass form. Note that
this is Fj-linear, see [6] for further details. Then, for any (2, y') €
E,(F,), the corresponding point (z, y) belonging to (3.1) satisfies
3vp(z) = 2vy(y) = —6m by the assumption m = r — v, (A/A,)/12
is positive. Making the substitution (z, y) — (7=2™z, 7=3™y) yields
the Weierstrass form y? + n™azy + m3™by = 2, and hence (x, y) must
be of the form (s* + 7™t s* + 7™u) for some s € O}, and t, u € O, .
The statement clearly holds for the case 7 t 3, namely the image of
ng is trivial by (3.5). We thus assume 7 | 3. Substituting for (z, y)
in this form into this Weierstrass form yields the congruence u = as?
(mod 7™); therefore, we have s ™3y = 1+ 1™as~! € Uém+y” @) which
implies the statement by relations (3.5). O

For each finite prime p, we next calculate the reduction type of the
elliptic curves E, E over F, and the group indices [E(F}) : Eo(Fp)],

[E(Fp) : EO(Fp)] which appear in formula (2.3). The proof relies
entirely on Tate’s algorithm [7, 8], but it is wholly systematic. For
simplicity, when p | 3, we make the assumption that 3 is unramified
in F, in certain cases. To ease notation, let ¢, 7 be rational integers
defined by

(3.6) min{3v,(a), v,(b)} =3¢+r, 0<r <3,
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and let (a’, b, D') := (7 %a, 7 39b, a’® — 27b'), which lie in the ring of
integers O, from the definition. We shall denote by (5) the Legendre
symbol at p. We also quote Ogg’s formula, which will often be used in
the proof of the lemmas below. (See also [7, IV].)

Theorem 3.4 (Ogg’s formula [5]). For any elliptic curve E over a
local field F,/Qp, let fe/F, be its conductor, A, a minimal discrimi-
nant, and mg,p, the number of irreducible components on the special
fiber. Then fg/r, = vp(Ap) —mp/r, + 1.

Proposition 3.5. Let p be an arbitrary finite prime of F. Assume
that' 3 is unramified in F, when p | 3 (we shall indicate using the
symbol T positions at which this assumption is used). Then the elliptic
curve

E:y*+azy+by=2" (a, b€ F, such that A = (a® — 27b)b° # 0)
has a minimal Weierstrass form given by
(W) Y Hdey+by=2a" (A= (a" - 20 =v°D).

The reduction type is determined as follows:

(The boz indicates | Kodaira symbol H [E(F}y) : Eo(Fy)] ‘)

Bup(a) < wp () | Loy ) [ 30p(8) ,

3vp(a) <wvp(b)— vp(D') >0 —|L, (D)

3up(a) = vp(b)—
vp(D') =0 [l [ 1],
P13 - [Lomma 56,
pts—[Io[1]
vp(b) = 1 (mod 3)—[1v ]3],
vp(b) =2 (mod 3) — | 1v* | 3].

vp(D') if G3 € Fy
lor2 ifl3 & Fp |

vp(b) =0 (mod 3) —

3vp(a) >vp(b) —
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Proof. The substitution (z, y) — (729z, 737y) yields the Weierstrass
form

(w) v +azy+by=2a°

which is defined over Op, and has the discriminant A’ = 7~'27A.
First assume 3vy(a) = vp(b). Then v,(A’) = vy (D'). If vp(D') = 0,
then the reduction type is Iy. If v,(D’) > 0, then m { 3, and so
a’® = 330 (mod 7). Using this, we find the singular point (—3—2a’2, b')
on the reduced curve of (w). Making the substitution (z,y) —
(r — 37%a/%, y + V') yields a new Weierstrass form with the usual
quantities in [6] as follows:

a; =a, by = —371a’?,

as = —371a"?, by = —3734'D,

as = —372D', bs = 375(5a" — 330D/,

ay =33d'D, bs = =3~ "a'*(2a"® — 3% D/,

ag=—3%a”-23%)D', A'=b°D"

From this we have 7 | a3, a4, ag, m { by and the discriminant —3~1a'?
of the quadratic polynomial T2 + a,T — as. Therefore, by using Tate’s
algorithm, the reduction type is either split multiplicative or nonsplit
multiplicative according to whether or not the condition (3 € Fj is
satisfied, respectively. If one uses Tate’s algorithm starting from the
Weierstrass form (w), the other cases are easily verified except for the
case 3vp(a) > vp(b), vy(b) = 0 (mod 3), p | 3. So the precise proof
is omitted. We will deal with the remaining case with the following
lemma. o

Lemma 3.6. We retain the notation of Proposition 3.5. Assume
that' v,(3) = 1. If the condition 3vy(a) > vy(b), vy(b) = 0 (mod 3)
holds, then

(W) y2 + alxy + bly — .’.US (AI — (U/IS o 27b/)b13 — bISDI)

is a minimal Weierstrass form. The reduction type is determined as
follows:



1238 RINTARO KOZUMA

(The boz indicates ‘ Kodaira symbol H [E(Fy) : Eo(Fp)] ‘)

() =0~ [m]2]

(2) %011}
4 - [

vp(D) =<5 v 3if (D/p) =1
Lif (D/p) #1]
6 5 [ 15 [1or2or4]
2 [ Jrert] w20,
where o
D .= b'33 5
D' (d Kb
D == a—k27§b/+ € 9Or
m\ 7 T T P

for any k € OF, with V' = k® (mod ).

Proof. We may start from the Weierstrass form
(w) v +dey+by=a3

with the discriminant A’ = 77'29A of p-exponent v,(D’). From the
condition we observe v,(D’) > 3. If v,(D') = 3 < 12, then the
statement follows from Lemma 3.8 by using Ogg’s formula and the fact
that if two elliptic curves over a local field are isogenous over the ground
field then those conductors coincide. Next we assume v,(D’) > 3.
Note that either of the cases v,(D’) = 4 or 5 automatically implies
vp(3) = 1; hence, we properly use the assumption v,(3) = 1 only
for the case v,(D’') > 5. For these cases we have the equivalence
373a"® = V' (mod ), which yields the singular point (—3—2a2, b')
on the reduced curve of (w). Making the substitution (z,y) —
(x —372a'?, y + V') yields a new Weierstrass form with the same usual
quantities as in the proof of Proposition 3.5. Since v,(D’) > 3, we
have further that 7 | as, a4, ag, ba. The statement of the lemma is
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then easily verified by using Tate’s algorithm. However, note that
in the case v,(D’) = 5 the discriminant of 7% + 7 lazT — 7 2ag is
equivalent to &'(D’/337?) modulo 7. This algorithm will terminate
with equation (w); consequently, it is minimal. O

Proposition 3.7. Let p be an arbitrary finite prime of F. Assume
that' 3 is unramified in F, when p | 3. Then the elliptic curve

E:y?+azy— 9y = 23 — (a® + 27b)b
(a, b € F, such that A = (a® — 27b)%b £ 0)
has a minimal Weierstrass form given by one of the following forms
N y* +adzy — 9y =2 — (a® + 270 )V
(W) N 3 1\37/ 173
(A" := (o —270")% =b'D"),

N a 9
(W) v+ —ay — BV +a'k7)y
9 3
=’ — Skia® + —(3d'V + k2 + 9k )
Y i
1
— —(a”®V + 73°* + 2233V k2 + 23%a"k; + 3°KY)
™

(3// — 7r_12(a'3 _ 27b')3b/ _ 71_—12b/DI3)‘

Here all the coefficients lie in O, while k, denotes any integer in Op
satisfying k. = a'/3 (mod 7). The reduction type is determined as

follows: (The boz indicates

minimal Weierstrass form||Kodaira symbol || [E (Fp) : E’O(Fp)] )

3vp(a) < vy (0)
3up(a) < vyp(b) = | (W)
3vp(a) = vy (b)

— R 3v,(D') if (s € F,
vp(D) > 0 = () |Taw, () |—m o
N lor2if (3 ¢ F,

(D) =0 = [ @]t 1]

L, o) || v (V)

u
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p 13— [Comma 55}
pi3=[@)]]1}

2+ (—a¥ " p)),

vpla) =1 - | @)|v

p|3—
. w(a) > 25| @)l 1],
— P13 = () Iv?l)i:;l:': :

st =1+ [

p|3—
. (@) 225 | @)uf 1}
R . 3if (3 € Fy
pf3—>(w) 1A' 1if<3¢Fp‘

Proof. The substitution (z, y) — (724z, m3%y) yields the Weierstrass
form

(W) v +adzy — W'y = x> — (a’® + 270 )V,

which is defined over O, and has the discriminant A! = =129\, First
assume 3vp(a) = vp(b). Then v,(A") = 3v,(D'). If v,(D') = 0, then
the reduction type is Iy. If v,(D’) > 0, then 7 { 3, and so we have
the equivalence a’® = 336’ (mod 7). With this equivalence, we find the
singular point (—3~1a'2, 32b') on the reduced curve of (W). Making the
substitution (z, y) — (z — 37ta’?, y + 3%b') yields a new Weierstrass
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form with the usual quantities in [6] as follows:

a, =d, by = —3a'%,

as = —a'?, by =3"1d'D’,
as = —371D', b= -373D"
as =371d'D', b =0,

ag = —33D"%?, AN =y D",

From these we have 7 | a3, a4, ag, 7 1 by and the discriminant —3a'? of
the quadratic polynomial 7% 4 a,T — a. Therefore, by applying Tate’s
algorithm, the reduction type is either split multiplicative or nonsplit
multiplicative according to whether or not the condition (3 € F} is
satisfied, respectively. Starting from either of the Weierstrass forms
(W) or (W) given in the proposition, the other cases are easily verified
except for the case 3vy(a) > vp(b), (b)) = 0 (mod 3), p | 3. Note
that the substitution (z, y) — (w2z — 3k2, m3y — 3(3b’ +a'k2)) yields a
transformation from (w) to (w’). We will deal with the remaining case
with Lemma 3.8. ]

Lemma 3.8. We retain the notation of Proposition 3.7. Assume
that' v,(3) = 1. If the condition 3vp(a) > vy(b), vy(b) = 0 (mod 3)
holds, then the reduction type is determined as follows: ( The box

indicates

minimal Weierstrass form || Kodaira symbol [E(Fp) : E’O(Fp)] )

(5) = 0= [@[ur]2]

3 = ) 3if (D'/p) =1
v :
" Lif (D'/p) = -1
vp(D')=1¢4 —
5 —

D
J/—F
—
o
=
[\)
Q
=
IS

or (\/Z\\//) I}‘,(,,_g) 2o0r4| (v>6),

A
\I/—!-
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where

D= (k- S0+
™ e ™

D(d , 3, K-V
-5 ) =on

for any k € O}, with b’ = k* (mod 7).

Proof. We may start from the Weierstrass form
(w) v +adzy — W'y =23 — (a + 270 )V

with the usual quantities

a, =a, by = a'?,

as = 0, b4 = —32a'b',

az = —3%Y, b = —b'(4a” + 33Y'),
as =0, bg = —a'?t' (a”® + 3%V),

ag = _bl(a/3 + 33bl), BI — le/3‘

From the condition we observe v,(D’) > 3. Assume v,(D') = 3. Since
7 | 3, the cubic equation

T3 4+ 7 tapT? + 7 2a4T + 7 3a6 =0 (mod 7)

has a triple root 7~ 1k(a’ + 3k) modulo 7, where k denotes an element
in OF  satisfying b = k% (mod 7). Note that such a k certainly
exists by 7 | 3. It thus follows from Tate’s algorithm that the possible
reduction types are IT*, IIT*, IV*, because equation (W) is minimal by
z/p(ﬁ’) =9 < 12. However the case II* is impossible by Ogg’s formula
along with the fact that the p-exponent of a conductor is greater than or
equal to 2 if and only if the reduction type is additive. We determine
whether the reduction type is IIT* or IV*. Making the substitution
(z, y) — (z + k(a’ + 3k), y) yields

as = d'k(a’ + 3k) — 9¥',
ag = a’*(k* =) + 9a"%k* + 27d'k® + 27(kS — b'?),

which are the usual quantities of the new Weierstrass form. Thus, the
discriminant of Y2 4+ 77 2a3Y — 7~ %ag is equivalent to

2’<a_’k2 — éb'—i— k? _bl>
™ s ™

3
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modulo 7. The reduction type follows from this. Secondly, assume
vp(D') = 4, which automatically implies v,(3) = 1. Then the elliptic
curve E/F, has reduction type II from Lemma 3.6. Therefore, E/Fp
must also have a bad reduction. But the equality yp(ﬁ’ ) = 12
implies that equation (W) is minimal. Thus, Ogg’s formula and Tate’s
algorithm tell us that E /F, has reduction type II*. Finally, assume
vp(D") > 5. Here the case v,(D’) = 5 automatically implies v,(3) = 1;
hence, we properly use the assumption v,(3) = 1 only for the case
vp(D') > 5. Then vy(a’) = 1,(3) = 1 and 37%a® = ¥ (mod 72).
Let k. be an integer in O satisfying k, = a’/3 (mod 7). Making
the substitution (z, y) — (7%z — 3k2, w3y — 3(3b' + a'k2)) yields the
Weierstrass form (W) with the usual quantities

a
a1 = —,
™

3 2

21"#7
as = —£(3b'+a'k2)
3 — 7_[_3 )

az = —

3
ay = —4(30,/(), + a'2k72r + gk;lr),
™
1
ag = ——5 (a0 + 73%0? + 223%d' V'] + 23%a%k; + 3°kD),
™
A — g2y p3 (= 71_71231)‘

It is straightforward to see that ai, as, a3z € Dpp, and a4, ag € Dpp by
the equalities

() (3 (s g
He e () ) e
(Y (D) ni) ()

Therefore, equation (w') is defined over Op,. If v,(D’) > 5, then the
usual quantity ¢y = a’D'/7* + (3%/7%)a’t’ is of p-exponent 2, which
is less than 4; that is, equation (W') is minimal. If v,(D’) = 5, then
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z/p(ﬁ” ) = 3 < 12. Thus, equation (W') is minimal. The reduction
types for the case v,(D’) > 5 now follow from Ogg’s formula and
Lemma 3.6. O

Remark 3.9. As we have seen in relations (3.3), if E/F, has the
minimal Weierstrass form (w) and E/F), has the minimal Weierstrass
form (W), then the invariant differentials satisfy

W =w, g/b\*w = 3.

Here, the isogeny ¢ is defined from (w) to (w). If E/Fp has the minimal

Weierstrass form (W), then the 3-isogeny @ : (w) % (W) = (%)

between minimal Weierstrass forms satisfies

**0 = Tw, D*w = ,

3
™
where & is the dual of ®, and &' is the differential associated with (W').
This is a consequence of the transformation of the usual quantities of a
Weierstrass form due to the change of coordinates. In the above case,
W' = ww. More precise details may be found in [6].

Remark 3.10. Assume that F' has class number 1, and 3 is unramified
in F. Then we can find a global minimal Weierstrass form as follows.
For the elliptic curve E/F (3.1), it is easily seen from Proposition 3.5
and Lemma 3.6 that one can take a global minimal Weierstrass form
as

(wg1) P rday+by=at (Agi= A[r 1),

where @’ = a[] 779, b = b[] m3%. Here g, is the integer “q”
defined by (3.6), which is determined exactly by a, b and 7.

As for the dual elliptic curve E/F (3.2), we first make a substitution
to get the form y2 + a’zy — 'y = x® — (a’® + 270" )b’ where a’, b are
as described above. Next, let = be the finite set of all distinct prime
elements 7 in F* above 3 at which the elliptic curve E has the minimal
Weierstrass form (w') over F,;. If = = &, then the above form of E/F is
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already minimal. Assume that = # &. For each m € Z, there are some
€x, kr € Op satisfying (3/7)e, = 1 (mod 7), kr = a'/3 (mod 7).
Let @ := [[,cem and ke := > =(3/7)erks € Op. Then for each
7 € E, the integer k. satisfies the condition k, = a’/3 (mod 7) and
the integer w is a prime element in F);. Thus, making the substitution
(z, y) — (w?x—3k2, w3y —3(3b' +a’k?)) yields the global Weierstrass
form

!
. 9
(W) o°+ agﬂﬁy - 5(35' +a'kL)y
=3 — %k;ﬁ + %(3a'b' + a?k2 + 9k2 )z
w w
1
— — (b + 73 + 2232 V'kZ, + 2370k, + 3°kY)
w

(Kgl = A2 Hﬂ_—qu),

which has coefficients in O and is minimal by Proposition 3.7 and
Lemma 3.8.

With these observations, we have in particular that

Q*Amin ;I\)* min 3
(3.7) Z Ymin _ o L Wmin 9

= )
Wmin Wmin w

where @ : (Wq) = (3.1) LA (3.2) = (Wq) is a refined 3-isogeny for

¢, and d its dual isogeny. This follows from relations (3.3) and the
relation wyin/w =[], 7%, Omin /& = w [, 7%~. (See [6].)

4. The image of the local connecting homomorphism S\FF.
We retain the notation of the previous section. We are now ready to
determine the image of local connecting homomorphisms.

Theorem 4.1. Let p be an arbitrary finite prime of F. As-
sume that! 3 is unramified in F, when p | 3. The image of OF, un-
der mapping (3.4) and the ratio of the numbers of irreducible compo-
nents of Néron models for E/F, and E/Fp are determined as follows:
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(The box indicates

3vp(a) < vp(b)

RINTARO KOZUMA

IIn?S\Fp

[B(F) : Bo(y)] )
[E(Fy) : Bo(Fp)]

3vy(a) > vy (D)

3vp(a) < vp(b) = Fy/Fy® | 1/3),
3vp(a) = vp(b)
3if (3 € F,
(D) >0 {e} |,
N 1if Cg ¢ Fp
v(D')=0—| OF, /D}i 1 |(good reduction),

vp(b) = 0(3) —

vp(b) =1(3) —

vp(b) =2(3) —

OF, /9% 1],

(good reduction),

!

(D) =5 - [Lomma 43],
vp(D') =4 —
pl3—
o) =5 - [Tomma 15,
;
vp(D') >5[ {e} |1}
* *3
p{3—|9%, /9% |1
1o(a) = 1~ [Lomma 1],
pl3—
o122 77
1 if¢s € F,
P13 | (bFS3) ?
1/3if (3 ¢ Fyp
5 D)
p|3—
v(@) 225 | 0F;®) [ 173,
1 ifCs € Fy
pi3—| (bF;?) :
1/3if ¢ & Fy
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Proof. All the materials we need have been prepared in Section 3. In
particular, the proof can be easily verified by applying formula (2.3)
along with Propositions 3.5, 3.7, Lemmas 3.1, 3.2, 3.6, 3.8, Remark 3.9
and invariants (3.3) depending on the isogenies ¢, ¢. O

Lemma 4.2. Assume that 3vy(a) > vy(b), v,(b) =0 (mod 3), p | 3,
vp(D') = 3, and assume that' 3 is unramified in F,. Let k be an integer
satisfying b’ = k3 (mod m) (such an integer always exists since p | 3),
and let

R := {r €{a complete representative system for Fp} | r # k(mod )}.

Then ImEFp B(Fp) : Bo(Fp)] are
[E(Fy) : Eo(Fp)]

(v fre s (o v(2- 20+
(5)

D}p /D}i 1 otherwise.

r€R> 3,

Furthermore, if (D'/p) = 1, then the group Imgp)u is of order §F,/3.

In particular, for the case F = Q, we have ImgQ3 = {e} or Z}/Z%3
according to whether or not (D' /p) = 1, respectively.

Proof. Under the assumption, in the case (D'/p) # 1, the statement
follows from formula (2.3) with the results of Section 3. Consider the
case (D'/p) = 1. Let (z, y) be an F,-rational point satisfying the min-
imal Weierstrass form (w). Under the assumption, since gpp (E1(Fy))
is trivial by Lemma 3.3, it suffices to consider the case v,(z) > 0.
When v,(z) > 0, we have either v,(y + a’z +b") > 0 or vp(y) > 0
from equation (w). In the former case, the point (z, y) is of the form
(mr, —b' +7s) for some 7, s € O, . Substituting for (z, y) in this form
into equation (w) modulo 72 yields 7 | s, and hence gpp (z,y) =V F;?

upon using Ué2) C Fy®, which follows from 1,(3) = 1. Consider the
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latter case. Let m := vy(z). Then (z,y) = (x™r, m*™s) for some
r, s € D}p since m > 0 and v, (y+a’z+b') = 0. Substituting for (z, y)
in this form into equation (w) modulo 7*™*?! yields 7%™d's = 73m¢r3
(mod 7#™*1) and hence gpp (z,y) = b'ng‘?’. Secondly, we assume
vp(z) = 0. Then v, (y) = 0 from equation (w). In this case, since every
integer in Op, is a cubic residue modulo p, the point (z, y) must be
written as (r(r + k) + ms, r® + nt) for some r, s, t € Op,. Substituting
for (z, y) in this form into equation (w) modulo 72 yields

mt(b +2r%) + (a/ = 3k)r*(r + k) + 30 —k*) =0 (mod 7).

Upon using vy(a’ — 3k) = 1 from the assumption v, (D’) = 3, we have

t= <kir>3<<%’ - %k)r(r+k)+ b/ﬂk?)) (mod ).

Since any smooth point on the reduced curve can be lifted to an Fy-

rational point, the form of the image of ng given in the statement
of the present lemma now follows from Lemma 3.6, which states

Lemma 4.3. Assume that 3vy(a) > vy(b), v,(b) =0 (mod 3), p | 3,

vp(D') = 5. Then |Imdg [ET) : Bo(Fp) | e
" E(F) « Eo(Fp)]

(A+mr)F2)|1/3] if re OF, s.t.r? =4"1(D'/3x*) (mod m),

| otherwise.

In particular, for the case F' = Q, we have ImgQ3 = Z3/Z3 or {e}
according to whether or not b’ = 375D’ (mod 3), respectively.

Proof. The condition v,(D’) = 5 automatically implies v,(a’) =
vp(3) = 1, and in particular ' = 373a’® (mod 7?). By applying the
results in Section 3 to formula (2.3), we observe ﬁlmgpp = [E(F}) :
Ey(Fy)]. If there is no element r € OF such that r? = 1(D'/33x?)

(mod ), then [E(F},) : Eo(Fy)] = 1 by Lemma 3.6; that is, Imng
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is trivial. Assume that there is such an r € O} . Then [E(F}) :
Ey(F,)] = 3 and the set E(Fy) \ Eo(F}) is nonempty. Equation (w)
is minimal and (—3-2a'2, 3-3a/3) is a unique singular point on the
reduced curve. Thus any element in E(F}) \ Eo(F,) has the form
(=372 + s, 37%a’® + 7t) for some s,t € Op,. Substituting for
(z, y) in this form into the minimal equation (w) modulo 7 yields

"N 3y
22 _ (@ \ D 3
b — (g) 3—3 (mod ™ ),

and hence ng (P) = (1 £=(3/d')*t)Fy® (# Fy*). This implies the
required result. ]

Lemma 4.4. Assume that vy(a') = v,(b') = 1, p | 3, and
assume that' 3 is unramified in F,. Let {ri, ra,..., T(m—-1)/2; U
{=r1, =r2,..., =T(m-1)/2} (C D’I‘,p) be a complete representative sys-
tem for the multiplicative group ¥y with m = #F,, and let R :=

{ri, 72,00y Pme1)/2}. Then |ImGy, [E(E) : Bo(Fp)] are
[E(Fp) : Eo(Fp)]

;
(bFy®, (1+r2(a'r? +V))Fy* | reR) |1 if (—a'b'"1/p) =1,

Fy/F?|1/3 if (—a'b'"1/p) = —1.

Furthermore, if (—a'b'"1/p) = 1, then the group Im ng is of order m.
In particular, for the case F = Q, we have Imdq, = (bQ33) or Q5/Q33
according to whether or not —a't'~! =1 (mod 3), respectively.

Proof. Under the assumption, for the case (—a’'t’~!/p) = —1, the
statement follows from formula (2.3) with the results in Section 3.
When (—a'b'~!/p) = 1, the Weierstrass form (w) is minimal from
Proposition 3.5, and the group E(F,)/Eo(F,) is of order 3 and is
generated by the class of the representative (0, 0). It is thus ver-
ified that the image Imdp, is (bF;3) - 8, (Eo(Fp)). Further, since
ng (E1(Fy)) is trivial from Lemma 3.3, it suffices to consider the im-
age of Ey(Fy) \ E1(Fp). From equation (w) we observe that any point
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P € Ey(Fy) \ E1(Fy) can be written as the form (r? + ms, r3 + 7t) for
some 7 € OF and s, t € Op,, which implies ng (Eo(Fp)) — Uél)/Uéz)

by the identity (Uél))?’ = Ué2) under v,(3) = 1. The substitution
(z, y) = (r? + ms, r® + 7t) into equation (w) yields

(mod =),

alz /
t=—r"+ —
m m

and hence
r 3y =14+r3@r*+V) (mod 7?).

Therefore, we have ;S\Fp (Eo(Fy)) = (A +r73ar* +V)F? | r e
D}p>, since any smooth point on the reduced curve can be lifted to
an Fj-rational point. It is sufficient to vary r through R because
(1+7r3(a'r? +1'))? is equivalent to 1 + (—7) 3(a’(—r)? + ¢’) modulo
72, The latter statement of the lemma is a consequence of the results
of Section 3 together with formula (2.3). o

Proposition 4.5. For an arbitrary number field F, the converse
statement of Lemma 3.1 is true; namely, the following two conditions
are equivalent for any finite prime p of F:

e 3vy(a) > vp(b) and 3 | vy (D).
o Imdp, = O, /O (~ Of F/F2).

Proof. 1f Imgpp — OF, /D}%, then by applying Theorem 4.1 and
Lemma 3.2, we must have 3v,(a) > v,(b) and 3 | v,(b). o

Let S be the set of all finite primes of F' satisfying 3v,(a) < vy(b)

or 3 1 vy(b). From the above proposition, the ¢-Selmer group (2.5)
(m = 3) is a subgroup of the multiplicative group

Rs:={d € F*/F** | y,(d) =0 (mod 3)
for any finite prime p of F' outside S}

which corresponds to the group of S-units and S-ideal classes with the
exact sequence

(4.1) 0-— OfgF**/F*® — Rg — Clp,s[3] — 0.
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Here

Ops:={d € F|vy(d) > 0 for any finite prime p of F outside S},
Clp,s := {nonzero fractional ideals of Op s} /F*Op g

are the ring of S-integers and the group of S-ideal classes, respectively.
We thus have the following estimate.

Proposition 4.6. dimF3S(¢A’)(E/F) < dimp, ClF,s(3] +rankzO% 5 +
dimp, pu3(F'). Here us(F) stands for the group of all cube roots of unity
in F.

Proof. This follows immediately from sequence (4.1) with the equality
dimg, O}, o F**/F** = dimp, O}, /O35 = rankz O}, ¢ + dimp, pz(F).
Note that rankzO% g = |S| +r — 1 from Dirichlet’s S-units theorem.
Here r denotes the number of all the infinite primes of F. ]

Remark 4.7. If F,, contains a primitive cube root of unity, then the
elliptic curve E/F} is isomorphic over F} to

y* + 3azy + (a® — 27b)y = 3

by making a substitution

1= 1=
(z, y)— (33:(12, 3V 3%ax3x/3y+a327fgl>.

We can thus apply the flow chart in Theorem 4.1 to determine the
image of 0, for finite primes p not lying over 3. When p | 3, additional
argument might be required in certain cases.

5. Computing the Selmer groups. The purpose of the current
section is to explain how to calculate an upper bound for the rank of
the elliptic curve (3.1) over a number field F' by using Selmer groups.
Recall the account of Section 2. Assume that F' has class number 1,
and 3 is unramified in F. It is then observed by applying formula (2.1)
that

(5.1)  rankgE(F) < dimp,S@ (E/F) + dimp,S®) (E/F) — 1.
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Combining Cassels’ formula in Section 2 with equalities (2.2), (2.4) and
(3.7) yields

(5.2)
) (7 |y [E(Fy) : Eo(Fp)]
45 (E/F) =345V (E/F)
AL L e R
Here w is as in Remark 3.10 (let @ := 1 in the case & = @) and

each [E(F,) : Eo(F,)|/|E(F,) : Eo(F,)] has been determined by the
flow chart of Theorem 4.1. From sequence (4.1), the Selmer group

S(‘;)(E/F) is a subgroup of the finite group
(5.3)

*F,SF*S/F*S _ {8H7Tm,, EF*
TeS

e € OF, mw—OorlorQ}/F*‘o’.

Hence, from definition (2.5), we only have to verify whether every

element in this group lies locally in Imdp, for every finite prime p
by again using the flow chart of Theorem 4.1. Summarizing these
procedures:

e Compute S(g)(E/F) by searching all the elements in (5.3) lying in
Im ép, for every p.

e Compute (5.2) to obtain the upper bound (5.1).

Example 5.1. Assume that the class number of F is equal to 1 and
(3 ¢ F. Consider the elliptic curve E:y +rzy+y=2%r¢cOp.
From Proposition 4.6, dimg,S(%) (LA?/F) < rankz93%. In particular,
for the case FF = Q and 3 t r, the ¢-Selmer group S@(E/Q) is
trivial and dimp,S®)(E/Q) = n where n is the number of primes
p | r3 — 27 satisfying p = 1 (mod 3). We thus have the upper bound
rankzE(Q) <n —1.

6. An application: Knight’s problem. In their paper [2],
Bremner, Guy and Nowakowski considered Knight’s problem:

Which integers n are of the form

1 1 1
1 = -+ -4+ - Z?
(6.1) n (a+b+c)<a+b+c>, a, b, ce
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To the author’s knowledge, the solutions to this problem in the range
—1000 < n < 1000 have been found, with most of these solutions dis-
cussed in [2]. When n # 0, 1, 9, 10, Bremner, Guy and Nowakowski’s
first observation is the one-to-one correspondence:

{[a, b, c] € P*(Q) | (a, b, c) satisfies (6.1)}

5 B.(Q)\ Bo(Q)]:
s (s s

Here E,, is an elliptic curve defined by the Weierstrass form

En:yz—i—(7"L73):vy—|—(nfl)yzcv3

(6.2) (n € Z such that A := n?(n — 1)%(n — 9) £ 0).

However, the original equation that they considered is y?> = z(2? +
(n? — 6n — 3)x + 16n), which is isomorphic over Q to form (6.2) and is
appropriate for descent via 2-isogenies. Equation (6.2) is appropriate
for descent via 3-isogenies, as has been discussed in the preceding
sections. Note that the torsion subgroup is isomorphic to Z/2Z x Z/6Z
for n = 10 (in fact rankzF10(Q) = 0), and Z/6Z for n € Z\
{0, 1,9, 10}. For the case n € {0, 1,9, 10}, one can easily verify
that n is representable in the form (6.1). Hence, from the above
correspondence the problem (6.1) may be generally reduced to that
of finding rational points on E,/Q of infinite order, that is, for any
nez\{0,1,9, 10}

(6.3) the integer n is representable in the form (6.1)
if and only if rankz £, (Q) > 0.

Notice that, for n € Z\ {0, 1, 9, 10}, the contribution of the torsion
subgroup E,(Q)[6] = ((n — 1, n — 1)) ~ Z/6Z to the solution of
problem (6.1) is described by

e([% % ﬂ) — 0(ja, b, ) + (n— 1, n— 1),
0([b; a, c]) = —6([a, b, c]),
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whenever there is a triple [a, b, ¢] representing n in the form (6.1).
Therefore, the torsion points generate no essential solutions. The latter
also implies the contribution of the inverse law for the Mordell-Weil
group E,(Q).

Since E,,/Q has the rational 3-torsion point (0, 0), one can state
a criterion for problem (6.1) by using the argument of the preceding
sections, which is as follows:

Proposition 6.1. If an integer n satisfies the following two condi-
tions, then n is not representable in the form (6.1).

e n is of the form +q" + 1 with prime q, positive integer r € N and
satisfies 91 n # 10.

o Every prime p dividing n(n — 9) satisfies p Z 1 (mod 3).

Proof. Tt is observed that n € Z\ {0, 1, 9, 10} under the assumption.
Thus, we have only to prove rankzFE,(Q) = 0 by (6.3). The proof
is easily deduced from the following flow chart with computation in
Section 5. O

Proposition 6.2. For any rational prime p, the image of the local
connecting homomorphism dq, for E,/Q is determined as follows:

(Bn(Qp) : En0(Qp)] )

(The box indicates Im:pr Q) @)
En, p :En,O p

n # 3 (mod p)

p=2-[ /2 1)
p#2

— pln(n—9)—| {1}
n Z 1(mod p) —

3ifp=1 (mod 3)
1ifp#1 (mod3) [

pintn-9 - 775 1],
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n = 3 (mod p)

p=2
n = 9 (mod 16) — z;/z;3 ,

N
n # 9 (mod 16)—),
p#2

p=3—

— n = 0(mod 9) —

Proof. Apply Theorem 4.1 to the elliptic curve E,, /Q (6.2). o
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