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ON THE SPACE OF ORIENTED GEODESICS
OF HYPERBOLIC 3-SPACE

NIKOS GEORGIOU AND BRENDAN GUILFOYLE

ABSTRACT. We construct a Kéhler structure (J,, G) on
the space L(H?3) of oriented geodesics of hyperbolic 3-space
H? and investigate its properties. We prove that (L(H3),J)

is biholomorphic to P! x P! — A, where A is the reflected
diagonal, and that the Kahler metric G is of neutral signature,
conformally flat and scalar flat. We establish that the identity
component of the isometry group of the metric G on L(H?)
is isomorphic to the identity component of the hyperbolic
isometry group. Finally, we show that the geodesics of G
correspond to ruled minimal surfaces in H®, which are totally
geodesic if and only if the geodesics are null.

1. Introduction. The space L(M?) of oriented geodesics of a 3-
manifold M? of constant curvature is a 4-dimensional manifold which
carries a natural complex structure J. In the case where M3 is an
Euclidean 3-space E3, this complex structure can be traced back to
Weierstrass [13] and Whittaker [14], with its modern reemergence
occurring in Hitchen’s study of monopoles on E? [5].

More recently, this structure has been supplemented by a compatible
symplectic structure, so that L(IM?) inherits a natural Kéhler struc-
ture. This has been investigated when M?® = E3 and M?® = E} |2, 3,
4], and the purpose of this paper is to study the hyperbolic 3-space
case M? = H3.

From a topological point of view, L(M?) is homeomorphic to $%xS? —
A, where A is the diagonal. However, from holomorphic point of view
we show that:

Theorem 1. The complex surface (L(H?),J) is biholomorphic to
P! x P! — A, where A is the reflected diagonal (see Definition 2).

2010 AMS Mathematics subject classification. Primary 51MO09, Secondary

51M30.
Keywords and phrases. Kaehler structure, hyperbolic 3-space, isometr}llvlgroup.
Received by the editors on November 6, 2007, and in revised form on March 3,

2008.
DOI:10.1216/RMJ-2010-40-4-1183 Copyright ©2010 Rocky Mountain Mathematics Consortium

1183



1184 NIKOS GEORGIOU AND BRENDAN GUILFOYLE

The P! in Theorem 1 refers to the boundary of the Poincaré ball
model of H3, considered as the past and future infinities of the oriented
geodesics, from which L(H?) inherits its complex structure.

We then turn to the Kéhler metric G and prove:

Theorem 2. The Kdihler metric G is of neutral signature, confor-
mally flat and scalar flat.

We also show that, despite the (+ + ——) signature, this metric on
L(H?3) faithfully reflects the hyperbolic metric g on H3, in the following
sense:

Theorem 3. The identity component of the isometry group of the
metric G on L(H?) is isomorphic to the identity component of the
hyperbolic isometry group.

A curve in L(H?) is a 1-parameter family of oriented geodesics in H?:
a ruled surface. Our final result characterizes the ruled surfaces that
arise as geodesics in L(H?):

Theorem 4. The geodesics of the Kdahler metric G are generated by
the 1-parameter subgroups of the isometry group of G.

A ruled surface generated by a geodesic of G is a minimal surface in
H?3, and the geodesic is null if and only if the ruled surface is totally
geodesic.

In the next section we describe the space of oriented geodesics of hy-
perbolic 3-space from a topological and a differentiable point of view,
using the ball and upper half-space models of H?. In Section 2 we
define and investigate the Kiihler structure on L(H?) and prove Theo-
rems 1 and 2. The proof of Theorem 3, which is contained in Section 3,
consists of a number of steps, formulated as propositions. We first
find the Killing vectors of G. We then compute the action induced on
L(H?) by isometries of H® and prove that the infinitesimal generators of
this action coincide precisely with the Killing vectors of G. Finally, we
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study the geodesics of the neutral Kihler metric and the ruled surfaces
they generate in H® in Section 4.

The uniqueness of this Kéhler structure has recently been established
by Salvai [11] (cf. [10] for the E™ case). Indeed, a number of our results
overlap with those of Salvai, who utilizes techniques of Lie groups to
obtain his results. Our approach is particularly geared to the study
of surfaces in L(H?) [1] and, given recent interest in flat and CMC
surfaces in H® [7, 9, 12|, we hope that this line of inquiry will prove
fruitful.

1. The space of oriented geodesics of H?.
Definition 1. Let L(H?) be the space of oriented geodesics in H3.

The topology of L(H?) is most easily seen using the Poincaré ball
model. This has underlying space

B ={(y",y"y*) e R* | (¥)* + ()" + (v°)* < 1},
for standard coordinates (y',y?,%®) on R3, with hyperbolic metric

e Al + (@) + (d)?)
11— ()2 — (P2 - )22

Definition 2. Let ¢+ : S2 — S? be the antipodal map and define the
reflected diagonal by

A= {(p,p2) € 5% x 8% | 1 = o(2)}-

We can now identify the space of oriented geodesics of H?:

Proposition 1. The space L(H?) of oriented geodesics of hyperbolic
3-space is homeomorphic to S?x 8% — A.

Proof. Consider the unit ball model of H3. In this model the geodesics
are either diameters, or circles which are asymptotically orthogonal to
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)

FIGURE 1. Hyperbolic geodesics in the ball model.

the boundary 2-sphere. An oriented geodesic can thus be uniquely
identified by its beginning and end point on the boundary. Moreover,
any ordered pair of points on the boundary 2-sphere define a unique
oriented geodesic, as long as the points are distinct. Thus, the space of
oriented geodesics is homeomorphic to $2xS? — {diag}.

In fact, for geometric reasons which will become clear below, we will
identify an oriented geodesic by the direction of its tangent vector
at past and future infinity, see Figure 1. Since these directions are
inward and outward pointing (respectively), we see that the oriented
geodesics can also be identified with S?xS2 minus antipodal directions,
as claimed. O

For computational purposes we use the upper half-space model of H3.
Thus, the underlying space is

R3 = {(2°,2',2%) e R® | 2° > 0},

for standard coordinates (z°,z',2%) on R3. In these coordinates the
hyperbolic metric g has expression:

dg’Z _ (dm0)2 + ((dai)l)); + (dx2)2‘

This is related to the ball model by the mapping P:R% — B? :
(2°, 2", 2%) = (y', 9%, y°) defined by
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1 2zt
Y @112+ @2+ (a)2
2
(1.1) y? 2z

= (20 + 1)2 + (21)2 + (22)2°
s @0+ @) @)
vy = (m0+1)2+(w1)2+(w2)2'

The map P is a diffeomorphism. In fact, it is an isometry: P*(ds?) =
ds? [8].

We now describe the geodesics of H? in this model.

Proposition 2. The geodesics of H? that are not parallel to the

x0-azis are
0 1
z” = ,
\c2 + 2 cosh(r + 7o)
1 C1
r* = - tanh(r + ro) + ca,
11T
C2
2® = —— tanh(r + ro) + cu,
€1 T €

where r is the arclength of the geodesic, c1,c2,c3,c4,70 € R and c1,co
are not both 0. Geodesics parallel to the x°-axis are given by

z° (r) = et tro ml(r) =c3 z2 (r) = cq,

for cs,cq,mo € R.

Proof. Let (z°,2',2%) be local coordinates on the space H? with
metric g as defined above. The only nonvanishing Christoffel symbols
of the metric are

1

1
0 _ 10 _
207 [ =T =—5.

Fgo = F(ln = F(Q)z == 20
The geodesic equations (using the summation convention here and
throughout)
Pt |, detdo
dr? Udr dr

=0, k=0,1,2,
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then turn out to be:

da®  1[(dat\® (daf\T (da®\T) _
dr?z = 20 dr dr dr o
A2zt 2 dzl dzf 22 2 dz? dz°

W o dr O @ o dr dr

where r is an affine parameter along the geodesic.
These can be integrated to yield the first integrals:
(i,O)Z + (i,l)Z + (1‘2)2 23:2 23:1

= e BT e

where the dot denotes differentiation with respect to r. Thus, Iy, I, I3
are constant along any geodesic.

By parameterizing the geodesic by arc-length we can set I; = 1. Let
Iy = 2¢y and I3 = 2¢s, so that

(1.2) (2°)* + (&H2 + (#%)%* = ()2, 2! =c1(2")?, @* = co(a®)?
Combining these equations, we then get
i (2%) + 3 (")t + (i°)% = (7)?,

or, rearranging:

Integrating, we have that:

dz®
(1.3) ————— =147 K:cf—i-cg.

z94/1 — K (29)2
For ¢; # 0 or ¢z # 0 we find that

/ dz® 1 1—4/1—K(29)?
x0 gl+ 1— K(29)2

VI K@P 2
1

(0]
— 10

2 4;%).
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So we have

1 VI RGP = (1 4 T KG),

and hence
0 1

z’ = ,
Vet + ¢ cosh(r + o)

as claimed.

Now, from the second of equation (1.2),

-1

it =y (20)?

)

we obtain that
.1 C1

B (c2 4 ¢2) cosh®(r +7q)

Similarly we obtain

.2 C2
(c2 + %) cosh®(r 4+ o)’

and integrating we finally get

c c
z'(r) = 54— i 5 tanh(r+79) +c3, 2 (r) = %tanh(r—i—ro)—{—c%

€1 T6 ]
as claimed.
The case ¢; = ¢z = 0 follows easily by integration of (1.3). O

We see that the geodesics in H?, where ¢y, ¢z are not both 0, are semi-
circles in 3-space R® with center (0, c3,c4) and radius (c? + c3)~'/2. If
we let

& =cy +ico, n = c3 + icy,

then the geodesics can be labeled as shown in Figure 2.

In fact, initially we will define a Kéahler structure only on an open
subset of L(H?). We define this subset as follows.

Definition 3. Let U C L(H?) be the set of oriented geodesics in
the upper-half space model that are not parallel to the 2% —axis.
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n+ee

FIGURE 2. Hyperbolic geodesics in the upper half-space model.

Introducing complex coordinates t = z°, 2 = ' + i2?, so that

o _1/9 .9 o _ 9
9z 2\azt ‘ex2) ot 020

the metric tensor g becomes

dzdz + dt?
2 __
dS —_ t—2.

From Proposition 2 the points of U are the oriented geodesics in H3
that are given in terms of the constants £ and n by

1 tanh(r + r
n (r +10)

(1.4) b= |€| cosh(r + 1)’ 2=0 I3 ’

for £ € C—{0},n € C and rg € R.

Thus, (£, n) are local coordinates on U C L(H?) and by setting ro = 0
we fix the parameterization on these geodesics. In the next section we
define a Kihler structure on U and extend it to all of L(H?). First,
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we must explicitly identify the tangent space TU with the orthogonal
Jacobi fields along the associated geodesics in H? [6].

Definition 4. Let ® : U x R — H? be the map ®(&,n,r) =
(t(&,m,r),2(§,m,7)) given by equations (1.4) with ro = 0.

For later use we note that:

Proposition 3. The derivative D® : T¢ ,, ) (UxR) = Ty (¢, (H?)
s given by

0 tanhr 0 1 0
() -2

¢ £2 82_2§|£|coshr&’
0 0
Dq)(g,n,r) <6_77> = &7
) 1 o 1 0 sinhr 0
Do, 5] == P 97 Iglcosh®r Ot
(& )<3T> Ecosh® r 0z " Ecosh®r 0Z  |¢| cosh® r O

Proof. This is found by differentiation of ®. i

Definition 5. A null frame at a point p in H? is a trio of vectors
€(0)) €(+)) €(—) € C® TI,I‘I3 such that:

€(0) = €(0)> €(+) = €(=)»
g(e); €0)) = glery,e-)) =1,  gle),e)) =0,
where the hyperbolic inner product g is extended bilinearly over C.

Given an oriented geodesic in H®, an adapted null frame is a null
frame along the geodesic such that e(g) is the tangent to the geodesic.

Proposition 4. An adapted null frame to the oriented geodesic
(&,m) € U is given by

1 0 n 1 0 sinhr 0
e) = = — — - =,
© £cosh’®r 0z  £cosh®r 0z  |€|cosh®r Ot
1 e"9 €9 1 0

= V2cosh®r | € 0z - €0z - \/§|§\cosh2r§'
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Proof. We note that ey = D® , ) (d/0r) and a straightforward
computation gives

1 00
g(e(a)ae(ﬁ)) =10 0 1}, a,3=0,+,—.
010
Thus, we have an adapted null frame as claimed. ]

Note. An orthonormal frame along the geodesic (§,7) is given by

_ 1 sinhr 0
‘©=" \/m cosh? r 9z0
c1 1 0 Co 1 0
e} + c3 cosh?r ozt e} + 3 cosh?r dx?’
1 1 0 ci sinhr 0 cy sinhr 0O
‘= \/MCosh2 r 0z0 * ci+c} cosh? r ozt * e} + 3 cosh?r dx?’
Ca 1 0 c1 1 0

e) = — — —.
) c? 4+ c2 coshr dz' ¢ + 3 coshr Ox?

In particular,

1 .
e = lew +ieph

Proposition 5. The inverse of the mapping of Proposition 4 is

% = —|£| sinh r e) + %e(+) + %6(),
0 _g, &t &
9z 2°© 22 (+) 2v2 (=)-

Proof. From Proposition 4 we have the linear system

€(0) 8/8Z
e | = A 8/8? ,
€(-) 0/0t
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where

1 fﬂ E\/§ 7\/§|£|Sinhr

A= == 19 —fefr g@r ‘£|
V2€€ cosh? r ger —fe T €|
So the inverse of A is
ST Y Tl
A_ = — é‘ 2 £€T _é‘e—fr
2V2 | _avaleisinhr 2l 2]
The result follows. n]

Definition 6. Let v : R — H? be an oriented geodesic. A Jacobi
field along a geodesic describes an infinitesimal variation of the geodesic.
In H3 this is given by a vector field X along ~ satisfying the equation

V5V X -X =0.

The solutions of this equation form a 6-dimensional vector space, which
we denote by J(v). Let J+(v) be the 4-dimensional vector space of
Jacobi fields that are orthogonal to ~.

Definition 7. For an oriented geodesic v in H?, let Pr., : T, H® —
T,YH?’ be the projection onto the plane orthogonal to the geodesic.
Let h : T,U — T,H? be defined by h = Pr, o D®.

Proposition 6. The map h has local coordinate description on U

b ( 0 > e’ e "
r —_— = — e — €e(_ 5
(&m,r) o¢ 2\/55 (+) 2\/55 (=)

h <£> — 766_*7‘6 + gie
(&mr) on = 22 (+) 22 (=)-

Proof. From Propositions 3 and 5 we get

Do (3> =— a ey — e’ e
(577777') aé' - 2\/56 (JF) 2\/56 (7)’

0 13 e " Ee”
D¢yl =— ) =2 _ 5 + o,
&m, )(an> 26(0) Qﬁe(ﬂ 2\/56( )
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and therefore the projection of D® ,,1(9/9¢) and D® , 1(0/0n)
gives the expressions of the proposition. O

The next proposition shows that the tangent space T{¢,)U can be
identified with the orthogonal Jacobi fields along the geodesic (£, n).

Proposition 7. The map h is a vector space isomorphism between
T,U and J+(v).

Proof. First we show that e, is a parallel vector field along the
geodesic, that is,

Ve e+) = 0.
To do this we compute the nonvanishing covariant derivatives:
0 1 0 0 1 0
g __Z hr— Z _Z hr—
Va/atat 2|§|COS "o Va/azaE 2|§\COS vt
0 1 0 0 1 0
va/"”& = —§|§|coshra, Va/atg = —§|§|coshr£.
Thus,
5 ol o
e = tanh
Vew 8z My, 25 coshr ot
0 8 |§| 0
Ve = tanhr— —
©gz ~ Mz T S coshr 2€ cosh r Ot
9 &l o RS 0
e o = —= — + tanhr—
Vew ot €coshr 0z Ecoshr 8z +tan "ot
and finally we find that
Vewe+) =0-
Now, since the frames are parallel, for « = —, 4+ and any function f(r),

df af
Vew (Few@) = 5-e@ + Ve e = g€
df a>f df
Vew (fe@) = Ve, <56(a)> 22 6@t 5 Ver €@

d*f
- We(a).
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Now we are ready to prove our claim. Since the frame is adapted, we
have that ¥ = e() and

-Tr

0 e’ e
2 9\ _ v _ -
Ve«»"(ag) V( 226" 2\/556”>’
_E N, e e
Tz \ 2v2e) D T A\ avae )

—-T

e’ e
=R RS
0
=h|{=|.
(3)
Thus h(0/9¢) is a Jacobi field along the geodesic. Similarly h(0/dn) can

be shown to be a Jacobi field along the geodesic. Moreover, these vector
fields span the space of orthogonal Jacobi fields along the geodesic. O

2. The Kahler structure on L(H?). A Kéhler structure on a
4-manifold M is a triple (J, 2, G), where J is a complex structure, 2
is a symplectic 2-form and G is an inner product. These are required
to satisfy the conditions:

Q(Ja']) = Q(a )a G(a ) = Q(Ja )

We now construct a Kihler structure on L(H?). We first define the
structure on the open subset U C L(H?) and then show that it extends
to the whole space.

Definition 8. Given an oriented geodesic v in H?, let R., : T, H? —
T, H? be rotation through 90° about the tangent vector to the geodesic.

Because we are working in a space of constant curvature this rotation
preserves Jacobi fields:

Proposition 8 [5]. The map R, takes J+ to Tt

We now define our complex structure:
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Definition 9. Let J : T,U — T, U be defined to be J = h1 oR,oh.

It is clear that J2 = —Id, so that we have an almost complex
structure. In order to be a complex structure J must also satisfy a
certain integrability condition. This is equivalent to the existence of
holomorphic coordinates, which we demonstrate below.

Proposition 9. The following two vectors form an eigenbasis for J

at (&,n): 5 5
%t S

Proof. Note that R, (e(4)) = ie(y), and thus we have

20 0N aop (LETL Y (@0 0
(@) rtom (g < (F )

Similarly, we have

as claimed. u]
We introduce holomorphic coordinates on U as follows:

Definition 10. Define (ug,us) € C? by
n 1 1
p=-nt=s, = o
3 1M+ (1/€)

the inverse relation being
1 < 1 ) ¢ 2
n=—slm-—1 =
2 iz iy + (1/p2)
We are now in a position to prove one of our main results:

Theorem 1. The almost complex structure J extends to the whole
of L(H?) and is integrable. Moreover, the complex surface (L(H?),J)
is biholomorphic to P! x P! — A.
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Proof. We first note that (u1, u2) are holomorphic coordinates on U.
Indeed,

8 1 om, 170 10
om 5[@] o€ 20
:_1<E2i+ﬁ>
2> 9¢ on)’
o 1 2u0 \>0 0
Opa 243 (m)a_é_a_ﬁ]

1/ 1\*(,0 0
2(1¢) (o o)
and hence we find that

J<i> _;9 J(i) _; 0
our)  Opr’ Oz Opa’

so we have holomorphic coordinates for J and therefore the almost
complex structure is integrable.

These coordinates come from the past and future boundaries of the
oriented geodesic in the ball model. To see this explicitly, introduce
coordinates (w,p) on the 3-ball by w = y! + iy? and p = y3. The
isometry P given by equations (1.1) becomes P(z,t) = (w, p), with

Mapping a geodesic v € U to the Poincaré ball we get

_ 2[(n+(1/€)) e +n—-(1/9)]
(m+(1/€6)+(n/&)+@/€)+1)e> +(4/[€)er+(nm+(1/£€) - (n/€)—(T/€)+1)’
3 2(e2" +(2/€])e"+1)
(m+(1/€6+(n/&)+(M/€)+1) e +(4/|E)er+(nn+(1/£€)—(n/€)—(T/€)+1) |

Define

e = rggloo w(r), P+ = TEI:EOO p(’f‘),
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and find
o, 2 (n+(1/8) o
T+ (L/EE) + (/) + W/E) + 1 pafia+ 1
=1— 2 _ _ 1 pop,
o T () + /) + MO +1 1+ ey
m+ (1/€€) — (n/&) — @/&) +1 iy + 1
p_ = 1 2 _ /Jflﬁl -1

o+ (L/€€) — (n/€) — (/) + 1 mpy +1

We see that wiwy + p2 = 1 and so (wi,psr) € OB = §%) as
expected. In fact, po is the holomorphic coordinate obtained on S2
by stereographic projection from the south pole, while p; is the anti-
holomorphic coordinate (the composition of stereographic projection
and the antipodal map ¢).

It is now clear that the definition of J as rotation of Jacobi fields
about the oriented geodesic extends to all of L(H?) and the theorem
follows. O

We now define the symplectic structure on U.

Definition 11. Let X,Y € T, U. Define a 2-form on U by

QX,Y) = g(h(X), V4(h(Y)) = g(h(Y), V5 (A(X)).

Proposition 10. The 2-form Q is given in local coordinates (£,7m)
by

0= —%{dgAdﬁwZAdn},

and so is closed and nondegenerate, that is, it is a symplectic structure.
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Proof. We have found that

A
2f 2¢" M oy

< st

Thus, the only nonvanishing components of {} can be computed to be

0 0 o 0 1
2(oe ) ~2(ogom) =2 °

The complex structure and symplectic form are compatible in the
following sense:

Proposition 11. (J-,J-) = Q(-,-).
Proof. Let X,Y € T, U, and we compute

—-T

e
+ -)
e(+) 2\/556( )

(ae) =
o) = %
)54

,,.

%!@ Q’!Qﬂ A

It is clear that Proposition 11 holds if V5 and R, commute on
orthogonal vector fields along the geodesic. To see this, let X =
[ e) + fe) be an orthogonal vector field along the geodesic +.

Then
V4(Ry(X)) = Vyi(fer) — fe))
i(few) — Fey)

Ry(fey + Fey)

as claimed. O
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Definition 12. The Kahler metric G on U is defined by

This has local coordinate expression:

Proposition 12. The Kdhler metric has the following expression in
local coordinates (€,n):

G_—é(glzdgz— E%d?—k?dnz—{zdﬁz).

Proof. First we express the symplectic form €2 in terms of ui, pus. By
Definition 10 we have

1 1
dn = —§<d,u1 + ﬁ—gdﬁQ)a
2

R (e VA

(13 dy, — dps).

By Proposition 10 we have 2 = —Re[d¢ A d7], and since

1
dé Ndny = ——— (p3 dpy — dp2) A <dﬁ +—duz>,
[+ )t (24~ db2) s
2
= A+ )2 diy A dpa,
we get
1 _ —
(2.1) Q=- (1+ paiy)? dpa N dpg + (1 + T2 diy A dpo
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Now we find G in these coordinates

G=- [(1+M1_ )sz1®dM2 i+7 2)2dﬁ1®du2]’
— I (s )
2 2 w211
¢ (ﬁ&il)2(£2dﬁ_df)v

= —i [—(dn + Z%df) ® (& dn — di)

¢
ae? — gizd? L - €2dﬁ2>,

Liye (€ dy- ds)} ,

|

|
NS
/N
L,\'l:_’|’_l

as claimed. O

We are now in a position to prove our second result:

Theorem 2. The Kdhler structure is defined on the whole of the
space L(H?). The metric G is of neutral signature, is conformally flat
and scalar flat.

Proof. It is clear from the expression of G and €2 in holomorphic
coordinates (equations (2.1) and (2.2)) that these are well defined
except where p; = —pq ! But this is just the reflected diagonal, and so
the Kiihler structure is well defined on the whole of the space L(H?3).

The signature of the metric is (+ + ——), and the curvature can be
computed directly from the coordinate expressions given above. The
only nonvanishing components of the Riemann curvature tensor are

o 2
Ruz _ _th —
Hipape Hip2fty (1 +ﬂ1'u2)2'

The results are then as stated. 0
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As in the case of oriented lines of E2, this metric has the following
mechanical interpretation: the length of a vector X € T, L(H?) is the
angular momentum of the Jacobi field h(X) about the geodesic v in
H3.

3. The isometry group of the neutral Kahler metric. We
now find the isometry group of the space of oriented geodesics endowed
with the above Kahler metric.

Theorem 3. The identity component of the isometry group of the
metric G on L(H3) is isomorphic to the identity component of the
hyperbolic isometry group.

We prove this by way of a number of propositions: first we find
the Killing vectors of G and of the hyperbolic metric g. Then we
integrate those of g up to explicit expressions for the isometry group of
H? and find how this group acts on L(H?). Finally we show that the
infinitesimal generators of this action are precisely the Killing vectors
of G.

We start then with:

Proposition 13. The Killing vectors of G form a 6-parameter Lie
algebra given by

0 0
K=R Na—+(@—c C1p3) 5 —
e[(01+62111+03#1)6u1 + (¢s —Cap2 + 01 M2)6M2]v

where c1,ca,c3 € C.

Proof. Let

0 0
K =Re( K" — + Ktz — |
< Op 3#2)

be a vector field on L(H3) with K*i = KHi(uy, iy, pe, liy) for i = 1,2.
We will solve the Killing equations for K:

(3'1) K’&ij + GkiajKi + GjiakKi =0,

where O represents partial differentiation.

In what follows we denote the Killing equation with specific values of
the indices j and k simply by (j, k). Thus, for example, (p1, ;) will
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mean the Killing equation (3.1) with j = u1,k = ;. Similarly for the
derivative of these equations.

To start then, the (71y, ;) and (fy, Iy) equations are
oz, K2 =0, og, KH =0,
and so
KH = K" (puy, iy, p2), K2 =K (p1, po, 1)
Now, differentiating the (u1, pu2) equation with respect to ps gives
(pafiy +1)202, K™ + 2(pafiy +1)9,, K™ = 0.
This can be rewritten
O» [(H2ﬁ1 +1)%9,,K"™| =0,
which integrates to

aq _ .
K#*? = qy + ————, for a; = a;(u1, iy, eC, i=1,2.
2 gy + 1 i i(p1s By s p2)

Since 07 K2 = 0 we get
(H1l5 +1)0g, a2 + 05, a1 = 0.

Differentiating this with respect to 1, we see that 95 as = 0, and hence
Oz, a1 = 0. Thus, a; and az are holomorphic, that is, a; = oy (1, p2)
and oz = aa(u1, H2)-

We now differentiate the equation (u1, ue) with respect to u yielding
(pafty +1)%0, K™ + 2(uuiy + 1)9,, K™ =0,
which, by a similar argument, has solution

Qy
K" = a3 + ————, for az(p1, p2), as(p, p2) € C.
P (11, p2), calpr, p2)
The equation (%, i) now gives a; = ag = 0, while 8”18%2 (1, 117) says
that
,ulf)zlag + 281“0(2 =0,



1204 NIKOS GEORGIOU AND BRENDAN GUILFOYLE

with solution

a
as = as + N_ﬁ, for as(p2), ag(p2) € C.
1
Now, 02 Oy, (11, fi;) reads

—(p1fy 4 1)*0y, 006 + 2aigpipa = 0,

which implies that ag = 0. On the other hand, the derived equation
6%1 Oy, (p12, fip) implies that

,U,gazz()ég + 28H2a3 =0,

and so
ag
az = a7+ )
2

where ay = a7(p1), a8 = ag(p1) € C.

Substituting the previous results in equation (p2, i) we find that
(B piz + 1)%0,, as — 2aspaps = 0,

from which we conclude that ag = 0.

The derived equation 95, 631 (1, 15) implies that 821047 =0, and so

a7 =c1 + copy + 03,u%, for ¢q,c9,c3 € C.
Similarly, 0z, 822 (21, o) implies that 822 as = 0, and we therefore have

2
a5 = cq + cspe + cepy, for cq,cs,c6 € C.

Finally, putting all of the preceding together we obtain
K" = ¢; + capiy + capi, K" =C3 — Capa + G113,

as claimed. O

By a similar method we compute the isometry group of the upper
half-space model of H? and its Lie algebra.
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Proposition 14. The Killing vectors of the hyperbolic metric g form
a 6-parameter Lie algebra given by
0 0 0

+K'— + K’ —

_ 770
K_Kaxo Ozl Oxy’

where
K° = (aq + asz® + agz?)a?,
K'=a1; — Ltas ((3’50)2 (') + (2%)?)
— am:vz + a4ac + agx ac2,
K2=agfla6(( ) + (2')* — (¢%)?)
+ alox + a4x + a5:c1x2

fOT a4,0s5, 06, a9, 10,11 € R.

Proof. Let K = K°(9/08z°) + K*(9/0z') + K?(0/0x3) be a Killing
vector of the hyperbolic metric g. Then it satisfies

(3.2) K'0;gj + gri0; K' + g0k K" =0,

where g;; = (z°)725;;.

As before, we denote the Killing equation with specific values of
the indices j and k simply by (j, k). Thus, for example, (xt,2?) will
mean the Killing equation (3.2) with j = z!, k = 2. Throughout, all
functions will be real-valued.

To start then, the (z°,2°) equation is
20,0 K° — K° =0,

with solution K° = a12° for a1 = a1 (:p T ) Substituting this into the
equations (z!,z%) and (22, z"), we obtain

%0101 + 0 Kt =0, 2%0,2a1 + 0,0 K2 =0,

which we integrate to K1 = ay — (1/2)(2°)?0,1a; and K? = a3 —
(1/2)(z°)?0,2a1 for az = az(zt,2?) and az = as(z!, x?).

Now the derived equations 92%,(z?,z?), 9% (z',z') and 2% (2%, z')
yield
2201 =0,  0ha1 =0,  0p20,a1 =0.

T x
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The first of these implies a; = a+bz? for a = a(z') and b = b(z!), while
the last equation means that 0,:b = 0 and so b is constant. The middle
equation says that 0,1(8,1a1) = 6%.a = 0, and hence a = ¢ + dz',
where ¢, d are constants. Therefore, we have a1 = a4 + asz' + agz?,
where aq4, as, ag are constants.

Substituting the above results to the equations (z!,z!) and (z?%, 2?),

we obtain
1 2 1 2
Opra2 —ayg —asx —agz” =0, Oy2a3 — ag — asx” — agz” =0,

with solutions

1,1 1\2 1,2
az = a7 +agx + zas(z)” +agz 27,

and

2,1 2\2 1,2
az = ag + asx” + 5a6(c”)" +asz 27,

where a7 = a7(z?) and ag = ag(z?).
Now the equation 9,1 (z?, z') gives 0%,as + ag = 0, and therefore
1)2

11
ag = ag + apxr — za6(x)",

where ag and a1g are constants.
From 8,2 (z?, z'), it implies that d%,a7 + a5 = 0, and therefore
2)2

_ 2 1
ar = a1y + appr” — za5(x”)”,

where a;; and aj2 are constants. The equation (wz,xl) gives ajg =
—ai12.-

Finally, assembling expressions for K* we get:

K° = (a4 + asz* + agz?)z?,

K' = an = fos (@) = (@) + (@°)%)
— a10m2 + a4a:1 + agmle,

K? = ay — 3a5 ((2°) + (") — (2*)?)
+ aloxl + a4x2 + a5:clac2,

as claimed. O
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Corollary 1. The Killing vectors of the hyperbolic metric g are

K =Re t(v—l—?ai)%—&—?(,6’+’yz—at2+azz)% ,

for a, B,y € C.

Proof. If we reintroduce variables (¢, z) in the upper half-space model
of H? by
t=2"cRy, z=az'+iz?€C,

and set
o= %(a5+ia6)7 B:a11+ia9, ’y=a4—|—ia10,
o, B,7€C,
the result follows from Proposition 14. o

We now integrate the Killing vectors of H? to get the group action:

Proposition 15. The isometry group of H3 is 6-dimensional,
parameterized by «, 3,7 € C, and the associated 1-parameter group
of local isometries which map ((to,z0),s) — (£(s), 2(s)), for a and v
not both zero, s

t(s) _ to(‘Zo—T|2+t(2))
20 — 7 — (@/m) (e — 1) (|20 — 7|2 + 82)]° + 83

6(71+71)S/2
b

20— T — 4(6715 — 1)(|ZO — ’7'|2 + t2)
Z(S) _ Y1 0

20 — 7 — (@/m)(em® — 1) (|20 — 7|2 + 82)]* + 83
X (|z0 — 7'|2 + t%)e“s + 7,

where T is a solution of @t +~y7 + B =0 and v, = v + 2ar.

For o = v =0, the isometries are
t(s) = to, z(s) = Bs + 2.

Proof. Consider the integral curve R — H®:s — t(s)(0/0t) +
2(8)(8/0z), of the vector field K. To find the integral curves explicitly
of K, we have to solve the system of differential equations
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33) t'=t(3(v+7) +az+az), =B +7yz—at® + @’

where a prime denotes differentiation with respect to the variable s.

For a = v = 0 the result follows immediately, so we now consider the
case where a and 7 are not both zero.

First let us assume that 5 = 0. The system (3.3) can be written as

(3.4) V' =VAV + BV + VBT,

N EEAPS F PN

System (3.4) is a matrix Riccatti equation and has general solution [15]

where

s ~1
v=o[vi- [Qtaqa| o,
0
where Vp = V(0), and @ is a 2 X 2 matrix satisfying the equation
QI:BQa Q(O):Ia

I being the 2 x 2 identity matrix.
This has the solution

e(1/2)s 0 T aes 0
= [ 0 6(7/2)5], and so Q" AQ = [ 0 a(ﬁs]

Thus,

/Os QT AQds = [(E/V)(gw ~1) (a/i)(g% B 1)} ‘

If the initial value of V! is

for v € R and vy, € C, then

c=vi - [ QraQas= [l
0

V2 _ ]
—v2 vi—(a/7)(e7*-1) ]’
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and the determinant of C' is

2
2
+ v3.

vy — — (7 =1
ol )

Q

det C =

So, we obtain the inverse of C"

—1
S 1 : B _
- r _ 1 [m—e/mE- vy }
[Vo /0 Q" AQ ds] s [P e
Finally, we find the solution

V= chlQT o 1 [873(51—(04/7)(576_1)) —uge(7 )8 /2 :| ‘

~ detC vaelTEVe/2 7" (v1—(@/y)(e7*~1))
For 8 = 0 then, the integral curves are

s) = — v2 e(v7)s/2
) = o @me P+ 3
Z(S) _ 61 - (a/ﬁ)(eﬁs - 1) e’

for — (@/7) (e — )P + 3

I

To solve the general case with 8 # 0, choose a complex number 7
satisfying 3 = —y7 — @r?. Then a shift z — 2z + 7 and completing the
squares on the z term of the righthand side of the second equation of
(3.3) reduces the equations to system (3.4). Thus, the general solution
turns out to be

_ v2 (1 471)s/2
t I Y1TY1
) = @ e — D+ @ ’

v — &(6715 — 1)

“ T @) (e DE T

z(s)

ens ,
BT
where v; = v + 2ar.

Setting

Zo— T to

’U1:4‘z0_7_|2+t(2), ’U2:——|Z0_T|2+t%7

we obtain that z(0) = zg and t(0) = tg, and the result follows. o
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Since the above transformations ((%o, 20), $) — (t(s), z(s)) are isome-
tries of H3, they map oriented geodesics to oriented geodesics. The
following explicitly describes this as a map from L(H?) to itself.

Proposition 16. The above action maps oriented geodesics accord-
ing to: (§,m) — (&',n') where, for a and v not both zero:

cese (o)

1

fpnafr-t-) 1)

/ n——(@/71)(e"* = 1) (n+(1/€)—7) (n—(1/&)—7)

= _ L Y18
T = (@ en (a8 —1)-1][@/n) e D (-0 -r)-1]¢ 17

and for aa =y =0,

¢ =¢, n =n+Bs.

Proof. 1t suffices to work on U C L(H?) and consider the action on
the oriented geodesics

tanhr 1

2o =n+ -, ty = —F/—".
3 vV EEcoshr

We will find the oriented geodesic that is obtained by mapping this
oriented geodesic by the 1l-parameter group of actions in the last
proposition.

The case a = v = 0 follows trivially, so we omit the proof and consider
the case where o and 7y are not both zero.

Denote

A:‘Zo—’r|2+t(2)

(77 N tanhr> (ﬁ - tanhr>

= — — -7 ,
3 3

1 n—T N—T

2

=ln-7 +——|—< 4+ — >tanhr.

et (e T
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Then we obtain v17; +v3 = A~%. Set A = ay;*(e7+* — 1), and

vy — A]> 02 = 1-A(z0 = 7) _i(zo —7)+ |)\|2A’
=M =) =M@=+ A (=P + )
= - ,
L (P =7) = N)/E+ (AP(n = 7) = 1)/¢) tanhr
A .

We now shift n to n + 7; this will simplify the calculations and can be
undone at the end by shifting 1 to n — 7. Thus, the above expression
becomes

1—A\np— 7 NE 2 1 2
oy A2 o2 = LA AT+ AP (0 + (1/1€)

A
(A7 = A) /€ + (|A*n — X)/€) tanhr
+ .
A
Then,
t= RGNS

o = A2 + 03
and therefore

|&] " Le(M1H71)8/2

b= [ m t INE P (A2 €]%)) cosh r - (AZ7—3) /& (AP n—3) sinb 7]

Introducing values A; and Ay by

O oms _ l)
- 1)<n F

Then we may rewrite ¢ as follows

A =

Ay =

1

t= .
J(€e=727) Ee—1#) 4243 cosh (v + log(A1/ A2)
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Hence, we have the following map

e L

Y1

ad 715_1<—_1>_1]
X[%(e W¢) 1)
" =7 +log (j—:)

It remains now to find how the 7 transforms. To find this we have to
find the z.

z = U1 — (0‘/71)(6%8 — l) eVts
lv1 — (@/71)(e7* = 1)|? + v}
- _ 20—(a/7;) (€T —1)A _ _ ens
L= A =27+ A2 112+ (A2 /1€12)+ (I PT=A) /E+(APn =) /€) tanhr 7
(n+(tanh /&) —(a/7,)(71* =1)[In+(1/[€[*)+((n/€) +(71/€)) tanh 7])e71* cosh 7
(1A= N+ X2 Il A2/ [€]2) coshr +((IX2-X) /& (A=) /€) simh 77
(@) (€ D) (n+(1/9) (- (1/8) oS
[(@/72)(e* 1) (n+(1/8) 1] [@/m) (72 1) (n—(1/€)) 1]
L tanh(r+log(A1/Az)) —
e ((@/m) (1" =) (n+(1/8)) 1) (@/7)(e717=1) (n—(1/8)) -1)

)

Therefore, we have the mapping

. @/ E (D) (1-(/O)
T = (@0 (/) 1] [@/m) e -1 (n-1/8)-1] ¢

e (zeafe ) (e (-

A
" =r+log (A—:>

Finally, we shift n back to n — 7 to yield the stated result:

_ n—r—(@/71) (€7 1) (n+(1/8) ) (1-(1/O) =7)
T = [@An e D+ /D) -1[@/m) e 1) (- 1/8-7)-1]

oo

eM® 4+ 7,
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Proof of Theorem 3. We have obtained a map

FL(HS) xR — L(Hs) ((5777)’8) — (fl(gvnas)v f2(£a777 3));

where, for a and 7 not both zero:

Ji(&m,5) = € T [_3(6%8 - 1)(ﬁ+ ; F) - 1]

Y1

o, 5 1
x| L@ -1 <ﬁ———?>—l},
[’Yl( ) £
_ n—r—(@/y)(° 1) (n+1/&)—7)(n—(1/&) )
1281 9) = @m0 (/8 —) ][ e D - /O )1

X e + 7,

and, for a =y =0,
fl(gvnas)zgv f2(€7n78):n+68'

We will show that for any s € R this map is an isometry of G. In
order to do so, we first find the derivative of F' at the point s = 0

d dfy
F.( — = —
<ds 0> ds

Calculating the derivatives of F' in the case « = v = 0 and converting
to (w1, u2) coordinates we obtain the vector field

0 — 0
= R —_ —_— 2—>’
0> e< Baﬂl Bu?fr)uz

which are the Killing vectors of G found in Proposition 13 with
¢yt =—0B,ca=0and c3 =0.

0

0 OM

0 dfy

0  dfs
08§+ ds ds

006 ds

0, df

o On ds

d
K=F. —
<ds

On the other hand, suppose that a and y are not both zero. Then

% = *715*205@*?), %

ds |, ds =mn-r)+a

0

1
(77*7)2‘#2—2
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Recalling now the change of coordinates to (1, p2) in L(H?), we obtain

ko= L L) 40| d
4\ T ds |, ds]|,

=mr—ar’ + (v — 2ar)m —apj,

2 2 T

Mo [ 1 df1 2 dfsy

Ktz = = — — —
4 <N1 i H2> ds

-2 s

— —a— (7 — 207z + (M7 — a7?) 4

0 0

Now, substituting v; = y+2ar and y7+ar? = —f3 back in the above
expressions, we find that

KM = B4y —api, K" =—a—73u - Buj.

These are precisely the Killing vectors of G found in Proposition 13
with ¢; = —f, co = 7 and ¢3 = —@, and hence

Tsog(L(H?), G) = Isoo(H3, g),

as claimed. O

4. The geodesics of G. A curve in L(H?) is a 1-parameter family
of oriented geodesics in H3, which we refer to as a ruled surface in
H?3. The ruled surfaces that come from geodesics of the neutral Kihler
metric in L(H?) have a particularly elegant characterization:

Theorem 4. The geodesics of the Kahler metric G are generated by
the 1-parameter subgroups of the isometry group of G.

A ruled surface generated by a geodesic of G is a minimal surface in
H?3, and the geodesic is null if and only if the ruled surface is totally
geodesic.

Proof. For I C R, let ¢ : I — L(H?) be a geodesic in L(H?) with
affine parameter ¢. By an isometry we can move the geodesic to lie in
U C L(H?) and use coordinates (£,n) as earlier. Thus, the geodesic is
given by c(t) = (£(t), n(t)) satisfying the geodesic equation

Vee =0,
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where ¢ is the tangent vector to c:

the dot denoting differentiation with respect to t.

This equation, using the metric expression in Proposition 12 turns
out to be

(4.1) €+ Mk =0,  &ij+28=0,

which we solve as follows. From the second equation we obtain
d /-
d(pdn)_,
dt dt

from which we get that

for some complex constant bs.

Substituting this into the first equation of (4.1), we obtain

¢E— 24755 =0.
This has solution _
b3 sinh(bat + b
gty = 22RO (b2 o)
2
We now get that
-2
by

= b3 Sinh2 (Egt + 51) ’

which we integrate to find the geodesics:

- 53 Sinh(bzt + bl)
= —b2 ,

52 COSh(EQt + 51)

£(t) by sinh(bot 4 1)’

n(t) = by

for by, b, c3,c4 € C. We note that the length of the tangent vector to
-2
the geodesic is the constant (b, — b3)/4.
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The geodesic in terms of (1, p2) coordinates is given by

b2[1 + cosh(byt + by)]
bs sinh(bot + by)

_ b3 sinh(byt + by)

" bsby sinh(bat + by) + ba[1 — cosh(bat + by)]’

p1 = —bs +

)

M2

The tangent vector of the geodesic is
0 0

28 = Re 102 4 4,2

) e<M13,UJ1 +u26u2>’
where

ba[1 + cosh(Bat + By)]
b3 sinh2 (Egt + 51)
b%gg [COSh(th + bl) — 1]

(bsby sinh(bot + by) + ba[1 — cosh(bat + by)])*

fi =

fr2 =
Thus, for all ¢,

f11(t) = 1 + cop (t) + capi(t), fi2(t) = C3 — Copra(t) + Capu3(t),

where )
b2b2 — b, bs
-, = —bsby, =——.
2bs C2 304 C3 2
We conclude from Proposition 13 that the tangent vector of the geodesic
is the restriction of a Killing vector of G.

C1 =

We now compute the second fundamental form of the ruled surface
in H® generated by the geodesics of G. In order to simplify the
calculations we first utilize an isometry of U, cf. Proposition 16 with

bsb
a=0, s=1, e = b3, and 721)33—;41.
This simplifies the geodesic to
inh(bot + b by cosh(bat + b
) = Tl Eb) gy becoshlal D)
ba sinh(bat + 1)
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The map ®: U x R — H3: ((¢,7),r) — (2°, 2, 22), where

20— 1 xl_n—i—ﬁ tanhr 1+l
|| coshr’ 2 2 ¢ &)
(N — jtanhr (1 1
xQZZ(n 7])+zanr L1y

2 2 \¢ ¢

now yields the parametrization of the ruled surface S in H3. In
particular, we have a surface given by (r,t) — (2°(r,t), z!(r,t), z%(r,t))
which has induced metric

_ Ozt 0xI

ik = 9ij 8yl ayka

and normal vector N
N (0 ooy b
oyl 0y2  Oy? Oyl ) 0x°
0z° 022  0z° 922\ O
- <8_y10—yz - 8_y28—y1> oxt
0z° 0zt 0z° o'\ O
<6_y18_y2 - 6_y28_y1> 0x?’
where y' = r and y? = t.

The second fundamental form K, of S is given by

oz* (ON, ~. Oz
Ku = - — 1 2 Ni ) 7b:1727
P oy ( ay> oy > ‘

where N is the unit normal of S and f;k are the Christoffel symbols of
the hyperbolic metric g.

After some lengthy calculations, the components of the second fun-
damental form of the ruled surface S in H? are found to be:

‘ Sinh(bgt + b1)|
2M

K = Re [52 Sinh(bzt + bl)]
"7 Tsinh(byt + by )|M

K, =0, K, = (b% - E;),

-2
(bg o b2)a
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where

M? = 2|by|? coshrsinh r Re [cosh(bot + by )]
— 4|by|? sinh? r (| cosh(byt + by)|*> + 1)
— 2|by|?| cosh(bat + by)|?
| sinh(bat + by)[2 (B2 + B2) — 2|b?.

Computing the mean curvature of S, we get
H=g"K, =0,

and hence every geodesic in L(H?) is a ruled minimal surface in H®.

In addition, we see that the second fundamental form vanishes when
ba € R or by € iR. As noted earlier, the length of the tangent vector
to the geodesic is Z(Eg — b3)/4, and so the geodesic in L(H?) is null if
and only if the ruled surface S in H? is totally geodesic. |

Note. We can also parameterize the geodesics in H® so that the
closest point to the origin in the ball model is at affine parameter r» = 0.
In this case, the map ® : L(H?) xR — H3is ((u1, u2),7) = (y1, 9% v3),
where

p2 ([ Pe" —p1 (14| pz e "
(14|11 [2) (14| p2]2) cosh r+ |1+ fip [/ (1+] 11 2) (1+] p2[?)
y3 _ (Atp®) (A —=|p2|?)e” = (1+|pa]*) (1—|p1]*)e™" )
2[(1+|p1 ) (14| p2]?) cosh r+[1+pTia |/ (L w1 [2) (1+ p2]2)]

y'+iy? =
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