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MULTIPLIER HOPF ALGEBRAS IMBEDDED IN
LOCALLY COMPACT QUANTUM GROUPS

K. DE COMMER AND A. VAN DAELE

ABSTRACT. Let (A,A) be a locally compact quantum
group and (Ap,Ag) a regular multiplier Hopf algebra. We
show that if (Ag, Ap) can in some sense be imbedded in (4, A),
then Ao will inherit some of the analytic structure of A.
Under certain conditions on the imbedding, we will be able
to conclude that (Ao, Ap) is actually an algebraic quantum
group with a full analytic structure. The techniques used to
show this can be applied to obtain the analytic structure of
a *-algebraic quantum group in a purely algebraic fashion.
Moreover, the reason that this analytic structure exists at all
is that one-parameter groups, such as the modular group and
the scaling group, are diagonalizable. In particular, we will
show that necessarily the scaling constant p of a *-algebraic
quantum group equals 1. This solves an open problem posed
in [13].

1. Introduction. In [20], the second author introduced multiplier
Hopf algebras, generalizing the notion of a Hopf algebra to the case
where the underlying algebra is not necessarily unital. In [21], he
considered those multiplier Hopf algebras that have a nonzero left
invariant functional. It turned out that these objects, termed algebraic
quantum groups, possess a rich structure, allowing for example a duality
theory. These objects seemed to form an algebraic model of locally
compact quantum groups, which at the time had no generally accepted
definition.

In [13], Kustermans showed that a *-algebraic quantum group (which
is an algebraic quantum group with a well-behaving *-structure) natu-
rally gives rise to a C*-algebraic quantum group, which was a proposed
definition for a locally compact quantum group by Masuda, Nakagami
and Woronowicz [16]. Kustermans showed, however, that there was
one discrepancy with the proposed definition, in that the invariance of
the scaling group with respect to the left Haar weight was only relative.
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These investigations culminated in the, by now acknowledged, defi-
nition of a locally compact quantum group by Kustermans and Vaes, as
laid down in [11]. This definition was (up to the relative invariance of
the scaling group) equivalent with the one proposed by Woronowicz,
Masuda and Nakagami, but the set of axioms was smaller and simpler.
These axioms were very much inspired by those of *-algebraic quantum
groups, but introducing analysis made it much harder to show that they
were sufficiently powerful to carry a theory of locally compact quantum
groups with the desired properties.

In this article, we examine a converse of the problem studied in [9,
13]. Namely, instead of starting with a *-algebraic quantum group
and imbedding it into a locally compact quantum group, we start
with an imbedding of a general regular multiplier Hopf algebra in a
locally compact quantum group and look at whether the multiplier
Hopf algebra inherits some structural properties.

The study of this problem led us to an enhanced structure theory
for *-algebraic quantum groups. For example, the analytic structure
of these objects is a consequence of the fact that all the actions at
hand are diagonalizable. This has as a nice corollary that the scaling
constant of a *-algebraic quantum group is necessarily 1. It is odd that
*-algebraic quantum groups, which provided a motivation for allowing
relative invariance of the scaling group under the Haar weight, turn out
to have proper invariance after all.

The paper is organized as follows. In the first part we introduce
definitions of the objects at play and introduce notations. We will not
always use the definitions as given in the fundamental papers, but use
equivalent ones which are better suited for our purposes.

In the second part we investigate the following problem: if a multiplier
Hopf algebra Ay can be imbedded in a locally compact quantum
group, does this give us information about the multiplier Hopf algebra?
Firstly, we must specify what we mean by imbedded in: Ay has
to be a subalgebra of the locally compact quantum group, and the
respective comultiplications Ay and A have to satisfy formulas of the
form Ag(a)(1®b) = A(a)(1®0b) for a and b in Ag. Secondly, we must
specify whether we imbed Ay in the von Neumann algebra M or in
the C*-algebra A associated to the locally compact quantum group.
Already in the first situation, the objects of Ay will behave nicely with
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respect to analyticity of the various one-parameter groups. But only
in the second case can we conclude, under a mild extra condition, that
Ay is invariant under these one-parameter groups. Moreover, Ay will
then automatically have the structure of an algebraic quantum group.

In the third part we apply the techniques of the previous section to
obtain structural properties of *-algebraic quantum groups. We want to
stress that this section is entirely of an algebraic nature. For example,
we prove in a purely algebraic fashion the existence of a positive right
invariant functional on the *-algebraic quantum group. Up to now,
some involved analysis was necessary to arrive at this.

In the fourth part we consider some special cases. We also look at a
concrete example, namely the discrete quantum group Ug(su(2)).

Some of the motivation for this paper comes from [14], where similar
questions are investigated in the commutative and co-commutative
case. For example, it is shown that the function space Cy(G) of a
locally compact group contains a dense multiplier Hopf *-algebra if and
only if G contains a compact open subgroup. The multiplier Hopf *-
algebra will be the space spanned by translates of regular (equivalently,
polynomial) functions on this compact group.

1. Preliminaries. In this article we use the concepts of a regular
multiplier Hopf (*-)algebra, a (*-)algebraic quantum group, a (reduced)
C*-algebraic quantum group and a von Neumann-algebraic quantum
group, as introduced respectively in [11, 12, 20, 21] (see also [24]).
Since these objects stem from quite different backgrounds, we will give
an overview of their definitions and properties. As mentioned in the
introduction, we take those forms of the definitions which are most
suited for our purpose.

1.1. Regular multiplier Hopf ( *-)algebras. We recall the notion
of the multiplier algebra of an algebra. Let A be a nondegenerate
algebra (over the field C), with or without a unit. The nondegeneracy
condition means that, if ab =0 for all b € A, or ba = 0 for all b € A,
then a = 0. As a set, the multiplier algebra M(A) of A consists of
couples (A, p), where A and p are linear maps A — A obeying the
following law:

aA(b) = p(a)b, for all a,b € A.
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In practice we write m for (A, p), and denote A(a) by m - a or ma, and
p(a) by a-m or am. Then the above law becomes an associativity
condition. Now M(A) is an algebra, called the multiplier algebra of
A, by the composition (A, p) - (N,p') = (Ao N, p' o p). Moreover, if
A is a *-algebra, M(A) also carries a *-operation: for m € M(A) and
a € A, we define m* by m*-a = (a*-m)* and a-m* = (m-a*)*. Note
that when A is a C*-algebra, this definition coincides with the usual
definition of the multiplier algebra.

There is a natural map A — M(A), letting an element a correspond
with left and right multiplication by it. Because of nondegeneracy,
this (*-)algebra morphism will be injective. In this way nondegeneracy
compensates the possible lack of a unit. Note that, when A is unital,
M(A) is equal to A.

Let B be another nondegenerate (*-)algebra. In our paper, a mor-
phism between A and B is a nondegenerate (*-)algebra homomorphism
f:A— M(B). The nondegeneracy of a map f means that f(A)B = B
and Bf(A) = B, where f(A) C B ={>"", f(a;)b; | a; € A,b; € B}
(and likewise for Bf(A)). If f is a morphism from A to B, then
f can be extended to a unital (*-)algebra morphism from M(A) to
M(B). A proper morphism between A and B is a morphism f such
that f(A) C B. Note that when A and B are C*-algebras, a *-algebra
homomorphism f : A — M(B) will be nondegenerate in this sense if
and only if it is nondegenerate in the ordinary sense, i.e., f(A)B and
Bf(A) are dense in B. This follow, for example, by an application of
the Cohen-Hewitt factorization theorem, see e.g., [16, Theorem A.1].

*

We can now state the definition of a regular multiplier Hopf
(*-)algebra ([20]). It is the appropriate generalization of a Hopf
(*-)algebra to the case where the underlying algebra need not be unital.
A regular multiplier Hopf (*-)algebra consists of a couple (A, A), with
A a nondegenerate (*-)algebra and A, the comultiplication, a morphism
(in the above sense) from A to A ® A, where ® denotes the algebraic
tensor product. Moreover, (A, A) has to satisfy the following condi-
tions:

M.1. (A®)A = (¢t ® A)A (coassociativity).
M.2. The maps

Trho: AQA— M(ARA) :a®b— A(a)(1®0D),
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Tin:ARA—MAR®RA):a®b— (a®1)A(D),
Ta1: AQA— M(ARA) :a®b— Ala)(d® 1),
Ton:AQA— MARA):a®b— (1®a)A(D)

all induce linear bijections A® A - A ® A.

Here, and elsewhere in the text, we will use ¢ to denote the identity
map. We remark that we use the regularity of the maps (A ® ¢) and
(¢ ® A) to make sense of M.1.

The T-maps can be used to define a co-unit ¢ : A — C and an
antipode S : A — A, determined by the formulas

(e ® ) (A(a)(1 ® b)) = ab,
S(a)b = (e @ 1)(Taz(a ®)),

with a,b € A. The co-unit will be a (*-)morphism, while S will be a
bijective proper anti-morphism A — A, satisfying S(S(a)*)* = a for
all a € A when A is a multiplier Hopf *-algebra.

We will need an identity concerning the antipode (cf. [20, Lemma
5.5]): if a,b in A satisfy a @ b = Y 1", (pi ® 1)A(g;) for certain
pi,q € A, then A(a)(1® S(b)) = > A(pi)(¢; ® 1). We can give a
quick motivation for this result if we look at the special case where A
is a Hopf algebra. Using Sweedler notation A(z) = 2(1) ® 2(2), we have
that if a ® b= 37" | Pigi(1) ® y(2), then

A@)(1® 5() = ag) ® a)S()
= Z(piQi(l))(l) ® (Pii1)) (2)S(di(2))
= Zpi(l)%’(l) ® Pi(2)qi(2)S (qi(3))
= Zpi(l)%' ® Pi(2)
=Y Ap)(gi®1).
It is also interesting to note that if A carries a multiplier Hopf algebra
structure, it must necessarily satisfy some nice algebraic properties.
Namely, local units will exist in the following sense: for any finite

collection of elements a; € A, elements e, f will exist in A such that
ea; = a; and a;f = a, for all i (see [4]).
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1.2. (*-)Algebraic quantum groups. Our second object forms
an intermediate step between the former, purely algebraic notion of
a regular multiplier Hopf algebra and the analytic set-up of a locally
compact quantum group. An algebraic quantum group [21] is a regular
multiplier Hopf algebra (A, A) for which there exists a nonzero left
invariant functional ¢. This means that ¢ satisfies

(t@®p)oA =0

This should be interpreted as follows: the lefthand side makes sense as
amap A — M(A), by sending a € A to the multiplier m = (t®¢)A(a),
determined by mb = (:® ¢)(A(a)(b®1)) and bm = (t®¢)((b®1)A(a))
for b € A. Also the righthand side can be seen as a map A — M(A),
namely, the map sending a € A to ¢(a)l. Then the assumption is that
in fact both these maps are the same.

An *-algebraic quantum group is a multiplier Hopf *-algebra for
which there exists a positive nonzero left invariant functional ¢, i.e.,
@(a*a) > 0 for all a € A. This extra condition is in fact very restrictive,
as we shall see.

We can prove that a nonzero left invariant functional ¢ is unique
up to multiplication with a scalar. It will be faithful in the following
sense: if p(ab) =0 for allb € A, or ¢(ba) =0 for all b € A, then a = 0.
Then (A, A) will also have a nonzero functional 1, again unique up to
a scalar, such that

(Y @1)o A =1

If A is a *-algebraic quantum group, we can still choose ¥ to be
positive. We note however, that to arrive at this functional, a detour
into an analytic landscape (with aid of the GNS-device for ¢) seemed
inevitable. The problem is that it is not obvious that the evident right
invariant functional ¥ = ¢ o S is positive. To create the right o,
some analytic machinery was needed, namely, the square root of the
modular element, or a polar decomposition of the antipode (see [13]).
In this paper we show that it is possible to arrive at the positivity of
¥ = @ o S by purely algebraic means (see Corollary 3.6). This means
also that *-algebraic quantum groups are appropriate objects of study
for algebraists with a fear of analysis.

Algebraic quantum groups have some nice features. For example,
there exists a unique automorphism o of the algebra A, satisfying
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w(ab) = p(bo(a)) for all a,b € A. We call it the modular automorphism,
a notion we borrow from the theory of weights on von Neumann
algebras. Note that in pure algebra, o is rather called the Nakayama
automorphism of ¢. A unique multiplier § € M (A) also exists such

that
(v ®¢)(Aa)(1® b)) = p(a)db,
(e ® ) (1 ®b)A(a)) = ¢(a)bs,

for all a,b € A. It is called the modular element, as it is the
noncommutative analogue of the modular function in the theory of
locally compact groups, and indeed it can be shown that ¢ = ¢(- §) for
¥ = ¢oS. When A is a *-algebraic quantum group, ¢ will be a positive
element in the strong sense, i.e., § = ¢*q for some g € M(A).

There also is a particular number that can be associated with an
algebraic quantum group. Since ¢ o S? is a left invariant functional,
the uniqueness of ¢ implies that there exists a 4 € C such that
©(5%(a)) = pp(a), for all @ € C. This number y is called the scaling
constant of (A,A). In an early stage, examples of algebraic quantum
groups were found where p # 1, see [21]. However, it remained an open
question whether *-algebraic quantum groups existed with p # 1. We
will show in this paper that in fact 4 = 1 for all *-algebraic quantum
groups, see Theorem 3.4.

To any algebraic quantum group (A4, A), one can associate another
algebraic quantum group (21\, ﬁ) which is called its dual. As a set, it
consists of functionals on A of the form ¢(-a) with a € A, where ¢ is
the left invariant functional on A. Note that this is the same as the
set of functionals of the form ¢(a-) with a € A, or with the set of
functionals of the form ¥ (-a) or ¢¥(a-) with ¢ = p 0 S: we can use the
modular automorphism or the modular element to switch between the
different representations of these functionals. The multiplication and
comultiplication of A are dual to, respectively, the comultiplication and
multiplication on A. Intuitively, this means that

Awy)(a ®b) = wy(ab),
(w1 - w2)(a) = (w1 ®wz)(A(a)),

for a,b € A and wy,ws € A\, but some care is needed in giving sense to
these formulas.
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The counit on A is defined by evaluation in 1, while the antipode is
the dual of the antipode of A: if S denotes the antipode of A, then

S(w)(a) = wi(S(a)),

for w; € A and a € A. A left invariant functional @ of A is determined
by @(¢(a-)) = €(a), while a right invariant functional is determined by
Y(e(-a)) =¢(a), with a € A.

If Ais a "-algebraic quantum group, then also A will be *-algebraic.
The *-structure on A is given by wi(z) = wi(S(z)*), where w; € A
and z € A. More concretely, we have p(-a)* = ¥(- S(a)*) for a € A,
where ¢ = p0.S. Then it can be computed that a(wf -w1) = p(a*a) if

w1 = p(-a) with a € A. So ¢ is positive, and by a small adaptation of
the results mentioned, also $ = 1 o S~! will be positive.

1.3. Von Neumann-algebraic quantum groups. We now
enter the analytic arena and pose the definition of a von Neumann
algebraic quantum group [12, 24]. A von Neumann algebraic quantum
group consists of a quadruple (M, A, ¢, ) (which we mostly denote
by just (M, A)), with M a von Neumann algebra, A a normal unital
*_homomorphism from M to M ® M which satisfies the coassociativity
condition

(AR A =(L®A)A,

and ¢ and 9 normal, semi-finite faithful (nsf) weights which satisfy

(L®p)oA =g,
(Y ®1)o A =1

Here ® denotes the ordinary von Neumann algebraic tensor product,
and then the maps (A ® ¢) and (¢ ® A) are well-defined maps from
MM to M ® M® M. The identities concerning the weights should
be interpreted as follows: for any w € M, the weight ¥ o (1 ® w)A
should equal the weight w(1)y, and similarly for ¢. Note that these
are the strong forms of invariance and that they in fact follow from
weaker ones, see [12, Proposition 3.1]. It can be shown also that here
the weights ¢ and ¢ are unique up to multiplication with a positive
scalar.
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The most important objects associated with (M, A) are the mul-
tiplicative unitaries, which essentially carry all information about
(M,A). To introduce them, we first recall the notion of the GNS-
representation associated to the nsf weight 1. Denote by .4, the left
ideal {x € M | ¥(z*x) < oo} of square-integrable elements. The GNS-
space associated to ¢ is the closure % of the pre-Hilbert space .47,
with scalar product defined by (a,b) = ¥ (b*a) for a,b € A4;. The injec-
tion of Ay, into S}, will be denoted by Ay. We can construct a faithful
normal representation of M on J7j, via left multiplication. We can do
the same for ¢, obtaining a Hilbert space J#, and an injection A, :
Ny — Ft,. Moreover, there exists a unitary from J%; to J&,, inter-
twining the representations of M. We will identify both Hilbert spaces
by this unitary and denote it simply as J# We will let elements of M
act directly on J#as operators (suppressing the representation). Now
we can define the multiplicative unitary W, also called the left regular
representation: it is the unitary operator on S ®.4%, characterized by

(W) (W*)Ay(z) = Ap((w @ )A(2)), x € A, and w € B(H),.

We want to remark that it is not too difficult to show that the W*
defined by this equation is an isometry, but that proving surjectivity of
W* requires some subtle but beautiful arguments. The unitary W will
implement comultiplication as follows:

Alz) =W*(1Q@z)W forall z € M.

Moreover, the o-weak closure of the set {(: @ w)(W) | w € B(H€),} will
be equal to M.

We can also define the multiplicative unitary V, called the right
reqular representation: it is the unitary operator on J£Q ¢, determined
by

(@w)(V)Ap(z) = Ay ((t ®w)A(z)), x € Ay and w € B(H)..
It also implements the comultiplication:
A(z) =V(x®1)V* for all z € M.

Again, the o-weak closure of the set {(w®¢)(V) | w € B(H).} will be
equal to M.
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The regular representations can be used to define the antipode S on
(M,A). Tt is the (possibly unbounded) o-weakly closed linear map S
from M to M, with a core consisting of elements of the form (w®¢)(V),
w € B(J#)., such that

S(we (V) = (we (V).
Then also (¢ ® w)(W) € Z(S) for all w € B(H#),, and
S((t@w)W)) = (L @w)(W™).

This map S has a polar decomposition, consisting of a (point-wise) o-
weakly continuous one-parameter group (7¢) of automorphisms of M
(called the scaling group) and a *-anti-automorphism R of M (called
the unitary antipode). Then the antipode equals the map R o 7_;/s,
where T_;/» is the analytic continuation of (7;) to the point —i/2.
We recall here that for z € C, 7, is the (possibly unbounded) map
M — M which has as its domain the elements € M such that
for any w € M, the function f* : ¢t — w(m(x)) can be extended
to a bounded continuous function on the closed strip {w € C |
Im (w) lies between 0 and Im (z)}, analytic in the interior of this strip,
and that then 7,(z) is the element of M determined by the functional
w = f%(z) on M. An element z is called analytic for (7;) if it is in the
domain of all 7.

Now by noncommutative integration theory (see, e.g., [17]), we can
associate to ¢ and ¥ two other o-weakly continuous one-parameter
groups of automorphisms, denoted respectively by (o;) and (o}). They
are called the modular one-parameter groups (associated with ¢ and
¥). Then (o¢), (of) and (1) will all commute with each other. It can
also be shown that there exists a (possibly unbounded) nonsingular
positive operator § affiliated with M, called the modular element of
(M, A), such that o)(z) = 6%0oy(z)d * for z € M. As we shall see
further on, §% is a cocycle for (o) up to a scalar one-parameter group,
and then v can be seen as a cocycle perturbation of ¢ by §. We can
denote this intuitively as 1 = (62 - §'/2). This § will be invariant
under the scaling group (7;) and satisfy R(§) = 6 1. In the sequel, we
will also frequently use the commutation rules between these objects
and A: we have A(§%) = 6 ® 6%, and further,

ATt = (Tt ® Tt)A AO’t = (Tt ® O't)A
Ar = (0 @0 ,)A Aoy = (0} @ T_4)A.
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Now, just as for algebraic quantum groups, we can associate a certain
number to (M, A). Namely, there exists a v € R" such that o,(§) = v%6
(and hence vt /251t §s the proper cocycle for o). This constant v is
called the scaling constant. It was an important question whether
there exist locally compact quantum groups where this constant is
not trivially 1. Such quantum groups do indeed exist: an interesting
example is the quantum az + b-group, see [23].

With the aid of a multiplicative unitary, it is also possible to construct
a dual von Neumann-algebraic quantum group (M, A) Namely, it can
be shown that the o-weak closure of the second leg of W, by which we
mean the set {(w®¢)(W) | w € B(H).}, is a von Neumann-algebra M.
It has a natural comultiplication by defining A(z) = SW(z ® 1)W*E

for x € Z/\/[\, where ¥ denotes the flip map (taking £ ® n to n ® £). Also
a left and right invariant nsf weight can be constructed on M. For
example, the left invariant nsf weight @ is determined by the following:
if a € A, happens to be such that ¢(-a) is bounded on .4}, then
denoting its closure by w, and (wg, ® ¢)(W) by @, we have that a € N

and p(a*a) = p(a*a). In particular, we can again make our GNS-
construction for ¢ in the old Hilbert space J# by identifying Aa(ﬁ)

with A, (a). Then the left regular representation of M has W = SW*E
as its multiplicative unitary.

Note that we have essentiallx shown already/\that WeM® M. Tt
can also be shown that V' € M'® M, where M’ is the commutant of
M on

1.4. C*-algebraic quantum groups. A (reduced) C*-algebraic
quantum group is the noncommutative version of the space of con-
tinuous complex functions vanishing at infinity of a locally compact
group. While its theory can be developed by itself (with axioms resem-
bling those of a von Neumann-algebraic quantum group), we will only
need to know how to obtain a C*-algebraic quantum group from a von
Neumann-algebraic quantum group. This is no restriction, as every
(reduced) C*-algebraic quantum group turns out to be of this form.

So assume a von Neumann-algebraic quantum group (M, A) is given,
and let V, W denote the multiplicative unitaries pertaining to respec-
tively the right and left regular representation. Then the normclosure
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of the space {(w ® ¢)(V) | w € B(5)} will equal the normclosure of
the space {(t @ w)(W*) | w € B(5)}, and this can be shown to be
a C*-algebra A. The comultiplication A will restrict to a morphism
A — A® A (in the previously defined sense), where ® denotes the
minimal tensor product. Furthermore, all the one-parameter groups
(1¢), (o+) and (o}) will now restrict to (point-wise) norm continuous
one-parameter groups of automorphisms on A.

Our last remark concerns the invariant weights. Namely, it can be
shown that if #} = {x € M* | p(z) < oo} denotes the cone of
positive p-integrable elements, then A N ///J will be norm-dense in
AT, so that in fact ¢ can also be seen as a semi-finite weight on A.
The same applies for 1.

2. Multiplier Hopf algebras imbedded in locally compact
quantum groups. In this section, we fix a von Neumann-algebraic
quantum group (M, A) and a regular multiplier Hopf algebra (Ag, Ag).
The C*-algebraic quantum group associated to (M, A) will be denoted
by (A,A). We will use notations as before, but the structural maps
for Ay will be indexed by 0 (whenever this causes no confusion). We
also fix a left invariant nsf weight ¢ on (M, A). We can scale a right
invariant nsf weight ¢ on (M, A) so that ¢ = po R, with R the unitary
antipode. We use the notation .4;, for the square integrable elements
in M, and .#, = NN, for the algebra of integrable elements.

Assumption 2.1. Ay C M.

This means that Aj is a subalgebra of M, not necessarily invariant
under the *-involution. We also want to impose a certain compatibility
between A and Ag, but we have to be careful: M (Ap) bears no natural
relation to M. For example, denoting by j the inclusion of Ay in M, the
identity (j ® j) o Ag = Ao j can be meaningless if j has no well-defined
extension M (Ag) — M. We will therefore assume the following: for all
a,b e Ay,
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Remarks. This condition is strictly weaker than the condition (j ®
j) oAy = Ao j, when it makes sense. For example, the imbedding of
C(Z) in C(Z) sending d,, to d2, satisfies the former, but not the latter
condition. Moreover, it is possible that unit 1 of M is not in the o-weak
closure of Ag. In fact, it is not difficult to see that if Ag is a multiplier
Hopf *-algebra (with the same *-operation as M), then the projection
p € M NN which gives the unit of the o-weak closure N of Ay will be a
group like projection: A(p)(1®p) =p®p (see, e.g., [15, the first part
of the fourth section]). Also, in this case the third and fourth equality
will follow from the first two by applying the *-involution. We have
not investigated in detail the interdependence of the stated equalities
in the general case.

Our first result shows that the antipode S of M restricts to the
antipode Sy of Ag. The difficult part consists of showing that Ag lies
in the domain of S. We will need a lemma which is interesting in its
own right. It is a kind of cancelation property involving M and M "
the commutant of the dual quantum group M.

Lemma 2.1. Suppose a € M and x© € M satisfy ax = 0. Then
a=0orz=0.

Proof. Let W be the left regular representation for M. We recall that
W e M® M. So if ax = 0, then

W (1Qax)W =W"(1Qa)W(1Q®«z)
=Aa)(1®x)
=0.

Assume z # 0. Choose w € B(J€), + such that w(z*x) = 1. Then from
the foregoing we obtain (¢@w(z*-x))A(a*a) = 0. Applying ¢ and using
the strong form of right invariance, we get ¥(a*a)w(z*z) = ¢ (a*a) = 0.
Since 1 is faithful, a must be zero. O

Remark. By a similar argument, also the following is true: if a € M
and z € M, then az = 0 implies either a = 0 or x = 0.

We can show now that the antipodes of M and Ay coincide.



1162 K. DE COMMER AND A. VAN DAELE

Proposition 2.2. A lies in the domain of S, and S|4, will be the
antipode of (Ao, Ay).

Proof. Let b be an element of Ag. We will show that b € 2(S) and
S(b) = Sp(b). We start by choosing some fixed a in Ag. We can pick
pi,q; in Ag such that

n

a@b=" (pi®1)A(q).

i=1

Then we know that this is equivalent with
A(a)(1®@ So(b)) =D Alp:)(a: ®1).

)(V) = (¢ ® t)((c*a ® 1)A(d)), where

Let y be (OJAw(d) A,,,(c)( a) ®¢
= (-Ay(d), Ay(c)). Then

¢, d € ANy and WA, (d), Ay ()

by = (¥ ®)((c"a ® b)A(d))
= ®0¢) Z(C*Pi ® 1)A(g;d).

We know that this last expression is in 2(S) and that

S( @)Y (¢'pi @ DA(gid)) = (v @ 1) > Alc™pi)(q:d @ 1).

So
A(c™pi)(gid @ 1)

A(c*a)(d @ So(b)))

Denote by C the linear span of all such y, with ¢ and d varying. We
show that C'is a o-weak core for S. First we remark that functionals
of the form wy  (4)a,(c)(a-) have a norm-dense linear span in (M')..

Indeed, if z € M’ is such that (azAy(d), Ay(c)) = 0 for all c,d € Ay,
then az = 0; hence, z = 0 by the previous lemma. Then, since
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VeMe® M, there exists for every w € B(5¢). and every £ > 0 a
finite number of ¢,, d, € A4} such that

1D (@ry () rgen (@) ® (V) — (@@ )(V)]| <,
1D @y () hgen) (@) ® (V) = (w@ (V)] <&

Since {(w ® ¢)(V) | w € B(J#).} is a o-weak core for S, the same will
be true for C.

By choosing a net y, in C such that y, — 1 and S(y,) — 1 in the
o-weak topology, we can conclude that b € 2(S) and S(b) = Sy(b), by
the closedness of S for the o-weak topology. O

The previous proposition implies that A9 C 9(r,) for every z in C,
i.e., every a € Ay is analytic with respect to (7). Indeed, a € 2(S)
means that a € 2(1_;/2). Since S(S;'(a)) = a for a € Ay, we also
have that a € 2(S™") = D(7i)2). So Ay C P(7n;) for every integer
n € Z.

This again illustrates the lack of analytical structure of a general
algebraic quantum group: if its antipode S satisfies $?* = ¢, but S? # «,
then it cannot be imbedded in a locally compact quantum group. Such
algebraic quantum groups do indeed exist (see, e.g., [21]).

We can also use Lemma 2.1 to prove that actually A9 C M(A). Fix
a € Ag. Choose b € Ay and w € B(5).. Then

a®b="> (g ®1)A(p:)
=Y (@e)V(po )V,

for some p;, q; in Ag. Multiplying from the right with V' and applying
w® ¢, we get blw(a) ® t)(V) € A. But, as we have shown, the set
{(w(a) ® )(V) | w € B(),} is norm-dense in A. Hence, bA C A.
Similarly Ab C A, and thus Ay C M(A).

As a second result, we show that Ay consists of analytic elements
for (o). This follows easily from the following proposition, which
elucidates the behavior of Ay with respect to the one-parameter group
(k¢), with k; = o47_4. It will be decisive in obtaining some structural
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properties of *-algebraic quantum groups, as we will show in the third
section.

Proposition 2.3. Ay C PD(k,) for all z € C, and k,(A4p) C Ap.
Here k, denotes the analytic continuation of the one-parameter group
(kt) to the point z € C, and YD(k,) denotes its domain.

Proof. Let b be a fixed element of Ag. Choose a nonzero a € Ay, and
write

a®b= ZA(pi)(l ® ¢i),

with p;,¢; € Ap. Using the commutation relations between A, (7¢),
() and (o}), we get that

koi(a) @ pe(b) =Y A(pi) (1@ py(qs)) for all ¢ € R,

where p; = oj1y. Choose ¢ € Ag such that ¢b # 0, and multiply this
equation to the left with 1 ® c to get

r-t(@) @ epr(b) = Y _((1® )AP:)(1® pe(a))-

Choose a;j,b;; € Ag such that
(1@ )Ap:) =) aij ® by,
j=1

and let L be the finite-dimensional space spanned by the a;;. We see
that k_¢(a) ® cpt(b) € L ® M, for every t € R. Since cpg(b) =cb # 0
and p; is strongly continuous, we get that there exists a § > 0 such that
cpe(b) # 0 for all ¢ with |¢| < 6. This means x¢(a) € L for all |t| < 4.

For every £ > 0, let K. = span{k;(a) | [t| < £} and n. = dim (K_).
For small ¢, we have n. € N. Choose an £ > 0 where this dimension

reaches a minimum. Then K := K. = K. /5 will be a finite-dimensional
space containing a, invariant under x; for all t € R.

Now (k¢) induces a continuous homomorphism ¥ : R — GL (K). It
is then well known that it must necessarily be analytic (see, e.g., [6]).
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Hence, for any w € M,, the map ¢t — w(k¢(a)) is analytic. Thus,
a € 9(k,) for any z € C, and k,(a) € K C Ay. This concludes the
proof. i

Remark. The lemma remains true if we replace k; by p; = 10} or
o107}

Corollary 2.4. Ay consists of analytic elements for (o).

Proof. This follows easily from the previous two statements. If
a € Ay, we know that a is analytic for 7; and k¢ = oy7_. If z € C, then
7.(k;(a)) makes sense, since Ag is invariant under k.. Since o, is the
closure of 7, 0k, (a fact for which we have found no concrete reference in
the von Neumann-algebra case, but which is true here anyway because
Ao € M(A), so that we can use Proposition 3.11 of [8]), we arrive at
a€ Yo,). o

As a consequence, Ay is invariant under o,,; and o, with n € Z.

Remark. We do not know if Ay, or even the von Neumann-algebra
N generated by it, has to be invariant under the one-parameter groups
(0¢) and (¢). There seems to be an analytic obstruction to be able to
conclude this. It is however easy to see that if IV is invariant under
either (o), (7¢) or 6=% - 6%, then it is invariant under all of them (see,
e.g., Proposition 2.9). That this is an important problem is shown by
the following: suppose that A is a multiplier Hopf *-algebra and that
N contains the unit of M. Then A(N) C N® N, and invariance under
7; and R would give, by Proposition 10.5 of [1], that N is in fact itself a
von Neumann-algebraic quantum group (possibly with a different left
invariant weight). Thus, this would show that such multiplier Hopf
*-algebras are intimately related to von Neumann-algebraic quantum
groups.

Next, we impose a stronger condition on Ajy:

Assumption 2.2. Ay C A.

We will say then that Ay has a proper imbedding in A. Because
Ay is now a subspace of the C*-algebra A, we can say more about its
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connection to ¢. We first need a simple lemma, which also appears in
some form in [14]:

Lemma 2.5. Suppose that a € ANP(0;)2) and e € A satisfy ea = a.
Then a € A,.

Proof. Choose ¢ in AN.#} such that [[c—e*e|| < 1/2. This is possible
because //l‘;‘ N A is normdense in AT. Then

1* * * *
§aa§a (1+c—e*e)a=a"ca.

Since a € 9(0;)2), we know that a*ca € . by a fundamental result
in noncommutative integration theory. Thus, a*a € ///j,j since it is
bounded from above by an integrable element. |

To={z € MNN |z € D0.) and 0.(x) € NN AN forall z € C}.

Proposition 2.6. Ag belongs to the Tomita algebra of p: Ay C

Proof. We know that Ay has local units: for every a € A there exist
e, f € Ag such that a = ea and a = af. So, since Ag consists of analytic
elements for (o), we can apply the previous lemma to each element of
(Uzecoz(Ao)) and Af since also for each of these we can supply local
units. This implies that Ag C 7. O

Remark. The converse is also true. Suppose Ay consists of square
integrable elements in M. Then Ay will be a subset of A. Namely, let
b be a fixed element in Ay such that ¢(b*b) = 1. Choose a in Ag. Then
a®b="> A(g;)(p; ® 1) with p;,q; € Ap. Multiply to the left with
1®b* and apply ¢t ® ¢. Then a = Y (¢® (-Ay(gi), Ap (b)) (W*)p;. Since
Ao C M(A) and each (¢ ® wa,(g),A,4 (W*) € A, this is an element
of A.

The previous proposition has the interesting corollary that the scaling
constant of A is necessarily trivial. We will come back to this fact in the

third section, where we apply our techniques to *-algebraic quantum
groups (see Theorem 3.4).

Corollary 2.7. The scaling constant v of (A, A) equals 1.
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Proof. We have that I/*t/zfit, where k; = o0 o 7_4, induces a
one-parameter unitary group u; on 4 by the formula wA,(z) =
v=t2\,(ki()) for z € A,. As in the proof of Lemma 2.3, there is a
nontrivial, finite-dimensional subspace K of Ay that is invariant under
(kt). Therefore, the space L = A,(K) is invariant under (u;). This
means that there exists a nonzero x € Ay such that { = A,(z) € L and
u € = e, for some A € R. Hence, v~ /%k(z) = e®*z. But, since xy
is a one-parameter group of *-automorphisms, we get
QA /2

t/2|

2]l = [[r:(2)[| = lle | = v .

Sov=1. |

From the previous proposition, it follows that Ay C A, N A
Because A2 = Ag, we also have Ay C M, so every element of Ay
is integrable with respect to p. However, we cannot conclude that
(Ao, Ap) is an algebraic quantum group, because we do not know if
the restriction ¢y of ¢ to Ay is nonzero. In any case, it will be left
invariant: If a,b € Ay, then A(a)(b® 1) € A,g,, and

(¢ ® @0)(Ao(a)(b® 1)) = (+ © p)(A(a)(b© 1)) = p(a)b = po(a)b.

Assumption 2.3. Ay C A and ¢4, # 0.

The assumption is sufficient to conclude that (Ay, Ay) is an algebraic
quantum group, as we have shown. We remark that the second
condition is automatically fulfilled if (Ag,Ag) is a multiplier Hopf *-
algebra (with the same *-involution as in A).

We now show that A, itself possesses an analytic structure, thus
generalizing the results in [9].

Proposition 2.8. Let 0 be the modular element of (A,A), and &y
the modular element of (Ag, o). Then every a in Ay is a left and a
right multiplier for 6 such that ad = ady and da = dga. Moreover, we
have that Ay = Ay and Aydé* = Ap.

Proof. Choose a fixed b in Ay with ¢(b) # 0. Choose a in Ayg. Then
a®b=> A(p;)(g;®1) for certain p;, q; in Ay. Multiplying to the left
with 6% @ 6%, we get that
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5a @b =Y A(6"p;) (g ® 1).
Now, for any ¢ € Ay, we have that §c will be in .#,. Namely, choose
e € Ap with ce = ¢. Then d = ¢*6~* will be in AN(0;/2), and e*d = d.
Hence, by Lemma 2.5, d € A4, and so §*'c = §''ce € NN, = M,. So
in particular, we can apply ¢t ® ¢ to each side of the above equation,
and we get

©(6%b)0"a = Z @(6"pi)g; € Ao.
Denote by L the finite-dimensional vector space spanned by the g;.
Since t — ¢(8%b) is a continuous function and ¢(b) = 1, we can choose
t small such that ¢(6%*b) # 0. For such t we have §a € L. A similar
argument as in Proposition 2.3 lets us conclude that the linear span of
the §a with ¢t € R is a finite-dimensional subspace of Ag. This easily
implies that a is a right multiplier of § and da € Ay, since t — 6%a
has an analytic extension to the complex plane. So every element of
Ay lies in the domain of left multiplication with any 6%, z € C, and
also Ay = Ap. Since the space By = {a € A | a* € Ay} also
has the structure of a multiplier Hopf algebra, and ¢ g, # 0, we can
conclude that By consists of right multipliers for §. So Ay consists of
left multipliers for §, and Ayd* = Ap.

Choose a fixed a € Ay with ¢(a) # 0. Let b, ¢ be elements in Ag. By
Result 7.6 of [11], we know that

(/20 (6), 612 Ay (7))

P((t® (-Ayp(b), Ap(c*)))A(a)) = ¢(a)
= p(a){Ay(b), Ap(dc"))
= @o(a)po(cod).

On the other hand,

P((t @ (-Ap(0), Ap(c")))A(a))

(p@e)(1®c)A(a)(1®D))
= (o ® o) ((L® ) Ap(a)(1 ® b))
wo(a)po(cdob).

Since g is faithful, §ob = db and bdy = bo for all b € Ay. |

Remark. In general, i.e., when Ay C M(A), we do not have to expect
nice behavior of Ag with respect to . Consider, for example, the trivial
quantum group C1 in M(A).
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As we have remarked, invariance under the one-parameter groups of
Ay follows easily.

Proposition 2.9. 7,(A4p) = 0,(Ap) = R(A4y) = Ay, for all z € C.

Proof. We have 04.(a) = § *(0.0,(a))6**. But oo, and § % - §%*
leave Ay invariant. Hence o,(Ay) C Ap. Then also 7, = (1,0_,) o0,
leaves Ap invariant. Since R = S o 7;/5, we have that R leaves Ag
invariant. O

Gathering all we have proven so far, we obtain the following theorem:

Theorem 2.10. Let (A, A) be a reduced C*-algebraic quantum group
with left invariant weight p. Let (Ao, Ag) be a regular multiplier Hopf
algebra in A, such that

Ao(a)(1®b) = Aa)(1 @),
Ap(a)(b®1) = Afa)(b@1),
(@@ 1)Aq(b) = (a ® 1)A(D),
(1©a)Ao(b) = (1© a)A(b),

for all a,b € Ay. Then Ay will consist of integrable elements for ¢. If
©1a, # 0, then (Ao, Ao) will be an algebraic quantum group with left
invariant functional po = p|a,. Moreover, Ay will consist of analytic
elements for the modular automorphism group, the scaling group, the
unitary antipode and left and right multiplication with the modular
element of (A, A). Ao will be invariant under all these actions. Further,
o—; will then restrict to the modular automorphism o for ¢g, T7—; will
restrict to Sg, and §, considered as a multiplier for Agy, will coincide
with &g. In particular, ¢ will restrict to a right invariant functional 1)
on Ap.

As a corollary, we have

Corollary 2.11. Let (A,A) be a reduced C*-algebraic quantum
group with a dense, properly imbedded reqular multiplier Hopf * -algebra
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(Ag, Ag). Then (Ag,Ag) is a *-algebraic quantum group, with associ-
ated C*-algebraic quantum group (A, A).

Proof. From the foregoing, we know that (Ag, Ag) is a *-algebraic
quantum group with left invariant functional ¢g = ¢4,. The only
difficult step left to show is that Aq is actually a core for the GNS-map
A,. The proof of this follows along the lines of Theorem 6.12 of [13].

Let Ao be the closure of the restriction of A, to Ap. Choose a
bounded net (e;) in A¢ converging strictly to 1. We can replace e; by
1/y/7 [ exp(—t?)oy(e;) dt, since each will be an element of Ay (because
{o¢(e;) | t € R} only spans a finite-dimensional space in Aj), and the
net will still be bounded, converging strictly to 1. Moreover, now also
o;/2(ej) will be a bounded net, converging strictly to 1.

Let « be an element of .4;,. Then ze; — x in norm. Moreover,
Ay(zej) = Joj/a(e;)*JAy(x), where J denotes the modular conjuga-
tion operator for . Because o;/(e;) also converges *-strongly to 1,
we have A, (ze;) = Ay(x). Now if z is the norm-limit of (a;), with
a; € Ag, then Ag(aie;) = aiMy(e;) = xAy(ej) = Ay(xe;) for each e;.
Since Ay is closed, each ze; and hence z is in the domain of Ag. So
Ao = Ay, and Ay is a core for A,,.

The corollary follows, since the multiplicative unitary of A and the
multiplicative unitary of Ag on S, ® J, = J€,, @ H,, coincide, and
their first leg constitutes, respectively, A and the C*-algebraic quantum
groups associated to Agp. O

In our last proposition we will say something about the dual of
(Ag, Ag) when Ay C A is a properly imbedded regular multiplier Hopf
algebra with ¢4, # 0.

Proposition 2.12. Let (2,3) be the dual locally compact quantum
group of (A, A), and let (Ag,Ag) be the dual algebraic quantum group
of (Ag,Ay). Then

ji Ay — A:po(-a) — (p(-a) ®1)(W)

is an injective (*-)algebra homomorphism, such that
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(7 @ (AP (w1)(1 ® wa)) = Aj(w1)) (1 ® j(w)),
(7 @ ) (w1 @ DA (w2)) = (j(wa) @ DA(j(w1)),
(7 @ §)(AP (W) (w2 ® 1)) = Aj(w1)) (j(w2) ® 1),
(G @ N1 ®w)AP(w2)) = (1® ji(w1))A(j(w2)),

for all wy,ws € 1/4\0.

Proof. We remark that by ﬁgp we mean the comultiplication on
the dual space A determined by (AP (w))(z ® y) = w(yz). The only
reason why it appears is by a difference in convention about the dual
for algebraic quantum groups and locally compact quantum groups.

Recall that W denotes the multiplicative unitary of the left regular
representation. We remark that the expression

(o(-a) @ )(W)

makes sense, since a is in the square of the Tomita algebra; hence, ¢(-a)
has weak*-continuous extension from 4, to M. It is also easily seen
that j is injective.

*

We first check that j preserves the *-operation, in case Aj is a *-
algebraic quantum group. First we remark that if w € M, is such
that wo S~ is bounded on 2(S~1), then by definition of the antipode,
(W) (W)* = (w* ®¢)(W) where w* is the closure of x — w(S—1(z*))
with z € 2(S). But if we denote by w, the functional ¢(-a), then w,
satisfies this condition, since for z € 2(S~1), we have, using that the
scaling constant of A equals 1 and that thus ¢ is 7y-invariant,

wa(S7H () = p(S7H()a)
= ¢(R(2)7i/2(a)),
s0 w, 0 S~! is bounded. So we are left to prove that j(p(-a)*) = w.

But for z € M with z a right multiplier of 6'/2, we have, again using
that the scaling constant equals 1,

w (z) = ¢(7_i/2(a)"R(z))
— (p(61/2xs(a)*51/2)
¢(x5(a)%0),
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and so, because such z are o-weakly dense in M, we get, since
wo(-a)* = po(- So(a)*do), that j preserves the *-operation.

Now we show that j is an algebra morphism. Choose a,b € Aj.
Choose p;,q; in Ag such that a ® b = > Ao(pi)(¢; ® 1). Then
wo(-a) - po(-b) = > ¢(¢)po(-pi). Now as for wy,ws € M,, we have
(w1 @) (W) (w2 ®)(W) = (w1 w2 ®¢)(W), where wy -ws = (w1 @wa)oA,
we only have to check if p(-a) - ¢(-b) equals > ¢(q;)p(-p;). But,
evaluating this last functional in z € M, we get (¢ ® ¢)(A(z)(a ® b)),
which equals > (¢ ® ¢)(A(zp;)(g; ® 1)) = > v(g:)e(zp;), so indeed
both functionals are equal.

Now we show that j flips the comultiplication. Denoting @ =
J(po(-a)) for a € Ay, we have

(A ®A)BG)@® 1) = SWS(A(@ )®A;( )
= SWS(A, () © Ay (b)),

with ¥ denoting the flip. Writing b ® a as Y A(p;)(¢; ® 1) with
Di, ¢i € Ao, thisreduces to Y Ay (p;)®A,(gi). As ASP (0o (- b)) (po(-a)®
1) = > wo(-pi) ® vo(-q;), we have proven the third equality of the
proposition. The other equalities can be proven in a similar way (by
using the appropriate representation). ]

Remark. The previous proposition says that the dual ;1\0 will be
properly imbedded in A if Ay is properly imbedded in (A4, A). This
implies that, under the given conditions, the dual :4\0 of Ay will also
have an analytic structure.

3. Structure of *-algebraic quantum groups. We apply the
techniques of the above section to obtain some interesting structural
properties of *-algebraic quantum groups. While many of the results
follow easily from the previous section, we have decided to give new
proofs, using only algebraic machinery. As such, we can give a purely
algebraic proof of the existence of a positive right invariant functional
on a *-algebraic quantum group.

We fix a *-algebraic quantum group (A4, A) with antipode S, positive
left invariant functional ¢, modular automorphism ¢ and modular
element §. As a right invariant functional (not assumed to be positive)
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we take ¢ = 905, with modular automorphism ¢’. We adapt the proof
of Lemma 2.1 to show that A is spanned by eigenvectors for kK = o152,
We need an easy lemma.

Lemma 3.1. If b is a nonzero element in A and n is an even integer,
then b*((0')"S?™)(b) # 0.

Proof. Suppose that b € A and n € 2Z are such that
b*((0")™S*"(b)) = 0.

Then
((0")/28™(b))*((o")"/*S™ (b)) = 0.

So (¢')™/28™(b) = 0 by the faithfulness of ¢, and hence b = 0. o

Lemma 3.2. Ifa € A, then the linear span of the ™ (a), withn € Z,
1s finite-dimensional.

Proof. We can follow the proof as in Lemma 2.1:

Let b be a fixed element of A. Choose a nonzero a € A, and write
a®b=>Y_ Alp;)(1®aq)
i=1
with p;,q; € A. Then
" (a) @ p~"(b) = ZA(pi)(l ® p~"(q)), for all n € Z,

where p = ¢/S2. Multiply this equation to the left with 1 ® b* to get

K™Ma) @b " (b) = ) (1@ )AM:) (1@ p " (a:).

Choose a;j,b;; € A such that

(1@ b)A(p) = ai; @ by,
j=1
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and let L be the finite-dimensional space spanned by the a;;. We see
that k™(a) @ b*p~™(b) € L ® A, for every n € Z. Using the previous
lemma, we can conclude that x™(a) € L for all n € 2Z. But this
easily implies that the linear span K of all k"(a), with n € Z, is a
finite-dimensional, k-invariant linear subspace of A. O

Denote by (ﬁ, 3) the dual *-algebraic quantum group of (4, A). We
can regard A and M (A) as functionals on A. We know from [9] that

0 = e ok, which is proven in an algebraic (and more general) setting in
[3]. Then

~

(Wi, z) = (w ® (er), Alz)) = (w, K(2)),

for each w € A and z € A. If w is of the form ©(-a), this means go(-a)g
is a scalar multiple of ¢(-k~(a)). By the previous lemma, this implies
that, for w fixed, the linear span of the wd™ is finite-dimensional. The
same is of course true for left multiplication with 4.

By duality, we conclude that for each a in A, the linear span of the
d"a is a finite-dimensional space K. (We could also prove this along the
lines of Proposition 2.8.) Since § is a self-adjoint operator on K, with
Hilbert space structure induced by ¢, we can diagonalize §. Hence, we
arrive at

Proposition 3.3. Let (A, A) be a *-algebraic quantum group. Then
A is spanned by elements which are eigenvectors for left multiplication
by 6.

We can use this to settle an open question, cf. [13]:

Theorem 3.4. Let (A, A) be a *-algebraic quantum group. Then the
scaling constant p equals 1.

Proof. Choose a nonzero element b € A with db = Ab, for some
A € Ry. Then ¢(bb*6) = Ap(bb*). But the lefthand side equals
wup(0bb*) = prp(bb*). Since @(bb*) # 0, we arrive at pu = 1. O

Proposition 3.3 can be strengthened:



IMBEDDED MULTIPLIER HOPF ALGEBRAS 1175

Theorem 3.5. Let (A, A) be a *-algebraic quantum group. Then A
is spanned by elements which are simultaneously eigenvectors for S%, o
and o', and left and right multiplication by 6. Moreover, the eigenvalues
of these actions are all positive.

Proof. We know that A is spanned by eigenvectors for left multiplica-
tion with &, and the same is easily seen to be true for x and p = ¢’ S2.
But all these actions commute. Hence, we can find a basis of A con-
sisting of simultaneous eigenvectors. Since 0,0’ and S? can be written
as compositions of the maps «, p and left and right multiplication with
d, the first part of the theorem is proven.

We show that left multiplication with § has positive eigenvalues. Fix
a € Ag. If X is an eigenvalue, choose an eigenvector b. Consider
z = A(a)(1®b). Then (p®¢p)(z*z) will be a positive number. But this
is equal to p(a*a)p(b*db) = Ap(a*a)p(b*b). Hence, A must be positive.
As before, duality implies that x and p have positive eigenvalues, hence
the same is true of 0,0’ and S2. O

With a little more effort, this result can be shown to hold true also
for the *-algebraic quantum hypergroups, introduced in [3].

This theorem explains why there exists an analytic structure on a
*-algebraic quantum group (A4, A): the actions are all diagonal with
positive entries. Hence o,,0%,7, and multiplication with §'* are all

well-defined on A.

Corollary 3.6. The functional v = ¢oS is a positive right invariant
functional.

Proof. We already know that it is a right invariant functional. As for
positivity, note that ¥ (a*a) = ¢(a*ad) = o((ad'/?)*ad'/?) > 0 for any
a € A. Here we use that ¢(6'/?) = §'/2, which is easily proven using
an eigenvector argument. u]

Finally remark that the extension of ¢ to M, with M the von
Neumann-algebraic quantum group associated with A, is an almost
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periodic weight, since the modular operator V implementing o on J&,
is diagonalizable.

4. Special cases.

4.1. Compact and discrete quantum groups. Let (4,A) be
a discrete locally compact quantum group (see, e.g., [25]). Then A is
the C*-algebraic direct sum of matrix algebras M, (C). The algebraic
direct sum & = &, M, (C) has the structure of a multiplier Hopf *-
algebra. So it is easy to see that §, being a positive element in [ M,,_,
is diagonalizable with respect to &/ Then the same will be true for
52, the square of the antipode, since in a discrete quantum group we
have S%(a) = §1/2ad'/2. Lastly, o is diagonalizable since o = S2 in a
discrete quantum group.

Suppose now that (Ap, Ag) is a *-algebraic quantum group, properly
imbedded in (A, A). Suppose a is a nonzero element in Ay such that
a ¢ o/. We know that Ay has local units, so there exists an e € Ay
with ae = a. Then aee*a® = aa™, and this implies that infinitely many
components of ee* have norm greater than 1. But this is impossible,
since ee* € A. So Ay C 4.

The same argument implies that Ay is again a *-algebraic quantum
group of discrete type, since Ay itself will be an algebraic direct sum
of matrix algebras. In particular, Ay, has a co-integral hg, which
will be a group like projection in & (A grouplike projection in a
*-algebraic quantum group is a (self-adjoint) projection p satisfying
A(p)(1 ®p) =p ®p. See [15] for more details.)

The dual side is also easy to treat. Namely, let (A, A) be a (reduced)
compact locally compact quantum group. We know then that A con-
tains a dense Hopf *-algebra &/ Suppose that (Ag, Ag) is a multiplier
Hopf *-algebra imbedded in (A, A). Since the left invariant weight ¢
is everywhere defined, the elements of Ay are automatically integrable.
Then (Ap, Ag) will be a *-algebraic quantum group. We know that A
is a discrete quantum group properly imbedded in A. Hence Ay C &
and (Ag,Ag) is a *-algebraic quantum group of compact type, i.e., a
*-algebraic quantum group with unit. Note that we could also have
used Theorem 5.1 of [2], by considering the Hopf algebra generated by
&/ and Apy. The dual p of the co-integral hgy of :4; in o will be a group
like projection in &7 It will be a unit for Ay.
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4.2. Locally compact groups. Suppose G is a locally compact
group. Let (Ag,Ag) be a regular multiplier Hopf *-algebra imbedded
in (£*(G),A), where A is the usual comultiplication determined by
A(f)(g,h) = f(gh). Then Ay C M(Co(G)) = Cy(G), so Ag consists of
bounded continuous functions on G. Let Ay be the normclosure of A¢ in
£°°(G). Then A restricts to a *-algebra morphism Ay — M (Ay® Ap).
Since Aj is abelian, this induces a locally compact semigroup structure
on the spectrum X of Ay. Since S is now just an involutive *-
morphism ¥ (G) — £*(G), coinciding with Sy on Ag, it restricts
to a *-morphism S : Ay — A. This induces a continuous map
X — X :x — T. Using the fact that m((So ®¢)(A(f)(1®9))) =<(f)g
for f,g € Ao, we see that f(zz)g(z) = e(f)g(x) for all f,g € Ap. Since
Ay separates points, e(f) = f(zz) for all f € Ay and z € X, so that
there exists e € X with Tz = e for all z € X. Now e is easily seen to be
a unit for the semi-group X, and T will be an inverse for x. This makes
X alocally compact group. But this means that X has a Haar measure.
So (Ag,Ay) is properly imbedded in the C*-algebraic quantum group
(Co(X),A), hence is itself a *-algebraic quantum group.

We remark however that the invariant functional on Ao can be
different from integration with respect to the Haar measure on G.
Consider for example the linear span Ay of the functions f, : t — €'*®
in Z*(R), with z € R. Then Ay is a Hopf *-algebra, but none of its
nonzero elements are integrable with respect to the Lebesgue measure.
It is easy to see that the left invariant functional pg on Ag is given by
©o(fz) = 04,0, and that the space X equals the Bohr compactification
of R, i.e., the dual of R with the discrete topology, ¢ being integration
with respect to its Haar measure.

The dual case is not so clear: suppose G is a locally compact group,
and (Ap,Ap) is imbedded in (Z(G),A), where A is determined by
A(ug) = ug @ uy on the generators of Z(G). Will the C*-algebraic
closure Ay with the restriction of A be of the form (C*(X),A) for
some locally compact group X? This will of course be true if Ay is
properly imbedded in C*(G), since then we can apply the theory of the
second section to conclude that Ay is a cocommutative C*-algebraic
quantum group, hence of the form (C(X),A).

Let us now look at the results of the third section in the commutative
case. Let GG be a locally compact group with a compact open subgroup
H. Consider the regular functions on H, i.e., the functions generated



1178 K. DE COMMER AND A. VAN DAELE

by the matrix-coefficients of finite-dimensional representations of H.
We can see them as functions on G. The linear span of left translates
of these functions by elements of G is denoted by Py(G). In [14], it
is shown that Py(G) forms a dense multiplier Hopf *-algebra inside
(Co(G),A), with the usual comultiplication, and that every commu-
tative *-algebraic quantum group is of this form. In this setting, the
only nontrivial object is the modular function §. According to our re-
sults, it should be diagonalizable. This is easily seen to be true. For
example, the characteristic function of H will be an eigenvector for left
multiplication. Indeed, the Haar measure on H is the restriction of the
Haar measure on GG. Hence 6y is the modular function of H. Since
H is compact, §|z = 1. So every regular function on H is invariant
for left multiplication. Then the translates by some element g of such
functions will be eigenvectors with eigenvalue 6(g), and the linear span
of all such translates equals Py(G).

4.3. The case of the quantum groups U,(su(2)) and SU,(2).
Finally, we consider a particular, nontrivial example of a Hopf *-algebra
(Ao, Ap), imbedded in the multiplier algebra of a discrete *-algebraic
quantum group (&% A). This is not a situation we have discussed, since
this multiplier algebra contains unbounded operators (when acting on
the Hilbert space closure of & by left multiplication). We will see which
of our results are still true in this case.

So as (Ag, Ap), we take the quantum enveloping Lie algebra U, (su(2)),
with ¢ nonzero in |—1,1[. It is the unital *-algebra generated by two
elements £ and K, with K invertible and self-adjoint, obeying the
following commutation relations:

{ EK =q 'KE
[E,E*]=1/(qg — ¢ ")(K*>~ K?).
The comultiplication on the generators is given by
Aog(K)=K®K
{Ao(E) =FQK+K 'QE.
To see that this comultiplication is well defined, it is enough to check

that it respects the commutation relations, but this is easily done. The
antipode is determined by
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As our *-algebraic quantum group (& A), we take the *-algebraic
quantum group /93’?, where 4 is the compact *-algebraic quantum group
associated with SU4(2), Woronowicz’s twisted SU(2)-group. We have
that £ is the unital *-algebra generated by two elements a and b, such
that

ab = qba

ab* = qgb*a

[b,6*] =0
a*a=1—q 2b*b
aa* =1— b*b.

The comultiplication Ais given by:

Ala)=a®a—q b®b*
Ab)=a®b+b®a".

The antipode S is given by

S:(a) =a*
S(a*)=a
S(b) = —q~ b

We will not need the concrete description of the left invariant func-
tional, but we need to know the modular group, which we now denote
by (pt). To be complete, we also provide the scaling group, which we
will denote by (6;):

The modular element will of course be trivial, since the quantum group
is compact.

—

The easiest way to see that Ay can be imbedded in M(%), is by
creating a pairing between % and Ay (for the notion of a pairing, see
e.g., [26, Section 4]). For, since % is compact, it is known that M(/Q(??)
can be identified with the vector space of all linear functionals on %
(see, e.g., the remark after Proposition 4.2 of [26]). The fact that
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there is a pairing, implies that the inclusion of Ag in M (/93?) will be a
morphism. The concrete pairing is as follows:

(K,a) = ¢~ 1/2 (E,a) =0
(K, a*> =q'/? (B,a*) =
(K, b) = (E,b) =0
(K, b*> = (B,b*) = —q

Since on the dual of a compact algebraic quantum group the modular
group (o) and the scaling group (7;) coincide, we find the following
behavior of Ag:

o (K)=1.(K)=K
{ 0.(E) =1,(E) = ¢**E.

But although there is general invariance under the scaling (and thus
the modular) group, we no longer have that Ay is invariant under left

multiplication by 6%, with § the modular element of . For this would
imply that actually 6° € Ay, since Ap is a Hopf algebra. We remark
that this §” is easily computable, for it is given as a functional by €0 p;.,
with ¢ the co-unit of 8. We find that applying § is the same as pairing
with K% = (K*K) 2, so uniqueness gives us that 6 = K %t It
is clear that this is no element in Ay. Remark also, that right or
left multiplication with § is no longer diagonal. This is easy to see,
using that Ag has {K'E™F" |l € Z,m,n € N} as a basis. In fact,
since EEan{K 4n X} has infinite dimension for any X € Ay, we get that

Ao N % = {0}.

We note that in this example we are in a special situation: (@), 5)
is the C*-algebraic quantum group generated by K, K—! and E, in the
sense of Woronowicz. Moreover, the multiplier Hopf *-subalgebra is
linked by a pairing to a *-algebraic quantum group. This could explain
why we still have invariance under 7; and o;. For example, the same
type of behavior occurs with the quantum az + b-group. We remark
that in these cases, the corresponding Hopf *-algebra can be viewed
as the infinitesimal version of the quantum group. We do not know
if it is a general fact that the one-parameter groups descend to the
Hopf *-algebra associated with the quantum group, if such an object is
present. In any case, the connection between a locally compact quan-
tum group and a Hopf *-algebra representing the quantum group at
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an infinitesimal level, is at present not well understood in a general
framework.
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