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AN ALGORITHM TO COMPUTE
THE KAUFFMAN POLYNOMIAL OF 2-BRIDGE KNOTS

BIN LU AND JIANYUAN K. ZHONG

ABSTRACT. The 2-bridge knots are a family of knots with
bridge number 2 [1, 13]. In this paper, we compute the
Kauffman polynomial of 2-bridge knots using the Kauffman
skein theory and linear algebraic techniques. Our calculation
can be easily carried out using Mathematica, Maple, Mathcad,
etc.

1. Introduction. The 2-bridge knots (or links) are a family of
knots with bridge number 2. A 2-bridge knot (link) has at most 2
components. Except for the knot 85, the first 25 knots in the Rolfsen
knot table are 2-bridge knots. A 2-bridge knot is also called a rational
knot because it can be obtained as the numerator or denominator
closure of a rational tangle. The rich mathematical aspects of 2-bridge
knots can be found in many references such as [3, 4, 5, 7, 13-15].
The regular diagram D of a 2-bridge knot can be drawn as shown in
Figure 1 [13].

FIGURE 1. Regular diagram D of a 2-bridge knot.
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In the diagram, di,ds2,... ,d, and b1,ba,... ,b,41, are nonzero inte-
gers whose absolute values indicate the number of crossings. The con-
tinued fraction notation for D is F(D) := [by,d,ba,d2, ... ,dn,bpi1]

[6]. We will work with the above diagram to calculate the Kauffman
polynomial of 2-bridge knots. Specific information about twists (cross-
ings) is necessary to identify a 2-bridge knot. If d; (or b;) is positive,
it indicates d; (or b;) crossings look this way

the crossings are changed otherwise.

For example, the Whitehead link is a 2-component 2-bridge link with
a regular diagram given by

The continued fraction notation for the Whitehead link is F(W) =
[-2,1,-2].

Let Q(a, s) be the field of rational functions in «, s. By a framed link
we mean an unoriented link equipped with a nonsingular normal vector
field up to homotopy. The links described by figures in this paper will
be assigned the vertical framing pointing towards the reader.

There are various versions of the Kauffman polynomial in the litera-
ture [12]. Here we adopt the version, sometimes called the Dubrovnic
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polynomial [8]. Hence, the Kauffman polynomial of a framed unori-
ented link L is the unique two-variable rational function (L) in «,s
defined by the following:

(i)<X)—<X>:s—s )( )), where the four

diagrams are exactly the same except near a p01nt where they are
shown;

(i)

(iii

(y=al [ )
LU Q>—6<L> where § = ((a —a™1)/(s — s~ 1)+ 1);

)
(iv) (@) = 1, where @ represents the empty link;

(v) (L) is unchanged by Reidemeister moves of Type II and III on
the diagram of L.

(A
{
(@
(L

If an oriented link L is represented by a diagram L; by forgetting
the orientation, the Kauffman polynomial of L is (L)* = a~*(*1)(L,),
where w(L1) is the writhe of diagram L.

In Section 2, we study the Kauffman skein space of the 3-ball B3
with possible boundary points. In Section 3, we define linear skein
maps on the Kauffman skein space of the 3-ball B® with four boundary
points and compute the matrices of these linear maps. In Section 4, we
present our main theorem of calculating the Kauffman polynomial of a
2-bridge knot by decomposing it as compositions of linear skein maps
from Section 3. In Section 5, we calculate the Kauffman polynomial of
the Whitehead link as an example.

We acknowledge here that the original idea of calculating link poly-
nomials via linear skein theory is due to Lickorish [9], Lickorish and
Millet [10], while our method of using an orthogonal basis in the skein
algebra makes the calculations much easier.

2. The Kauffman skein space of the 3-ball B3.

2.1. The Kauffman skein space of the 3-ball B3. The Kauffman
skein space [2, 16] of the 3-ball B3, denoted by K(B?), is the Q(a, s)-
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space freely generated by framed isotopic links L in B3 quotient by the
subspace generated by the Kauffman skein relations:

)X = X =6-sHOC - X)

i o =a [,

@ru()= 6 L,

where § = ((a —a™!)/(s —s71) + 1).

Given any framed link L in B3, it can be simplified to (L)& by
applying the Kauffman skein relation, where (L) is the Kauffman
polynomial of L. Hence, the Kauffman skein space K (B?) is generated
by the empty link &.

2.2. The Kauffman skein space of B® with four bound-
ary points. We place a distinguished set of four coplanar points
{N,E,S,W} on the sphere S?, the boundary of the 3-ball B3. A
framed link in (B3, NESW) is a collection of closed curves and arcs
joining the distinguished boundary points N, E,S,W. Two framed
links are equivalent if one can be obtained from the other by iso-
topy. We define the Kauffman skein space K (B3, NESW) to be the
Q(a, s)-space freely generated by framed links L in (B3, S?) such that
LNS? =0L = {N,E,S,W}, considered up to an ambient isotopy
fixing S2, quotient by the subspace generated by the Kauffman skein
relations. A skein element in K (B, NESW) is illustrated below.
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There are two natural multi-linear multiplication operations in K (B3,
NESW):

(1) Concatenation. By stacking the first on top of the second
through gluing points W, S in the first with IV, E in the second,

N E N E p .

w S w S w s
(2) Juxtaposition. By putting two skein elements next to each
other through gluing points E, S in the first with N, W in the second,

N E N E
® : @ ® @ B @ ‘
w S w S " S
Note that the skein element >< is the identity with respect to the

® operation, and the skein element >< is the identity with respect
to the ® operation.

The Kauffman skein space K (B, NESW) is three-dimensional and
has a basis {e1, e2,e3} [2] given by

1 _ C1o1, ee1.—
a=———6"" D + X @ 6T X
S+ s
1 _ 1
e2=———(s )( = X +(=07"s+67a) X))

63:6_1 ><



982 BIN LU AND JIANYUAN K. ZHONG

In the remaining part of this section, we study properties of these
basis elements which are crucial in constructing our calculation tech-
niques.

Proposition 1. With respect to the ® operation,

(1) the basis elements eq, ey, e3 are orthogonal, i.e.,

e1 ey =exOe; =0,
e1Oe3=e3@e =0,
e2 ©e3 =e3®ex =0;

(2) the basis elements ey, es and e3 are idempotents, i.e., e;Oe; = ey,
€2 Oex = ez, e3©e3z = e3;

(3) the basis elements ey, ea, e3 add to the identity with respect to the

® operation, i.e., e1 +e2 + ez = >< :

(4) Let o = \/\ . Theno®ei =e Qo =s5e,00e =e3 Do =
—sley, 0@e3 = e300 = a les. It follows that o1 Oe; = e @0t =

87161, o 1o eg = €2 ® ol = —Sea, o 1o es3 =e3© ol = aes.

Let o} represent n copies of o multiplied through the “®©” mul-
tiplication structure, it follows that o, ® e; = e; ©® of = s"ey,
o Qe =€ Oog = (—s7Hmeq, o3 Oes=e3O0f =a "es.

Proof. The proofs follow by linearity of the ® operation and (repeat-
edly) applying the Kauffman skein relations and substituting
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Here we show e; ® e = 0 as an example.

61662:H%<—1><+\/ 1_1+51_1)X>

© (s Y( = M+ (=6ts 46 ><)

- (D s A ea s ta ) X

s—l—s—1

+ ((5_18_1 +6_10[_1)O(_1 x

(s 5 ta Y (<t + 6t b)e ><):0. o

If we rotate the basis elements e, e2, e3 in the plane by 90°, we obtain
another basis for K (B3, NESW). We present the basis elements e,
€2, e3 using subscripts h (vs v) to indicate the basis elements after (vs
before) the rotation:

€1, = €1 = st >< + \/\ (5171+(5171)\/-<);

s—i—s—1
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€2y = €2 = m(s >< — \/\ + (=0 ts+ 5 tat) >< );

-1
63,0:63:(5 7\ -

1 _ 1 1
elh:m(s X+ X — (st 4o tah) D)

1 _ 1 —
egh:m(s >< — \/\ + (=6 s+ 'a 1) >< );

e3p, =01 )( .

With respect to the ® operation and the basis elements e;},, €3, and
espn, similar properties of the basis elements given in Proposition 1 still
hold, which we state as a corollary below.

Corollary 1. (1) e;,®e2;, = eap®e1p, =0, e1,®e3;, = e3p®eqp, =0,
ean @ ez = €3, @ €2y, = 0;

(2) e1p ® €1y = €1p, €25 ® €25, = €2y, €3, @ €3, = €3
() Y( =ewn+ e +eap;

7/
(4) let o, = x . Then o, @ ey}, = e, ® o = Se1p, Op Q €2, =
1 _ _ -1
eap ®0p = —S “eap, Op ®ezp = ez Qop = €3y

It follows that ong @ e1, = e @ ong = s"eip, Opyg @ ez, =
eap @Ol = (—s™1)"eq;, and Ohiy @ e3p = €3, ® Opf = o "esp, where
o represents n copies of o multiplied through the “®” operation.

The following are additional properties of the basis elements ey, €2,
€3y, €11, €21, €3, With respect to the ® operation.
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Let M be the 3 X 3 matrix given by

M =
s+_ls_1(s*1,5*1571,5*1(1*1) s+ls—1(*57176*15+671a71) st
s+_1s,1'(—s—§*ls*1_571a’1) m(s—5’13+571071) st
S+s*1(5_16+06*6—15—176_1(1_1) +371(55*07(5—1S+5_10¢_1) st

Proposition 2. For 1 <14, j <3, e, @ €j, = mgjep.

Proof. Here we prove the case when ¢ = j = 1 as an example; the
rest can be proved in a similar fashion.

eip ®ely
1 _ 1 1
= e )+ X - 5 X)
1 _ -
:m(s e, ® >< e ®@on

— (5—18—1 +6—1a—1)elh ® X)

1 _ 1 - 1 -
= 57 O s7len = (0777 + 07 a T ern)
1
= m(sil — (571571 76710{71)61;1 = Mmii€ip. [}

Remark. Notice that the matrix M is the base change matrix between
the basis {e1,, eap,espnt and {e1,, €2y, €3, }, €.,

(elva €24, 631)) = (elha €2p, €3h)M) (elha €2h, e3h) = (elva €24, €3U)M‘

It follows that M2 = I, the 3 x 3 identity matrix.

Remark. If we change ® to ® and exchange the subscripts v and h
in Proposition 2, the identities still hold. We state these in the next
corollary.

Corollary 2. For1<1i,5 <3, ej, © €5, = Myj€;,.
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3. Linear skein maps on K (B3 NESW) and their matrices.
A wiring of a space F into another space F’ is a choice of inclusion
of F into F' and a choice of a set of fixed curves and arcs in F' — F.
The wiring of F into F’ induces a well-defined linear map from the
skein space K(F) to K(F') [11]. In this section we’ll consider four
wirings of B? into itself, three of which induce linear skein maps
K(B3,NESW) — K(B3 NESW), while the fourth one induces a
linear skein map K (B3, NESW) — K(B®). Since K(B3>, NESW)
and K(B?) are vector spaces over Q(a,s), these linear maps are
linear transformations of vector spaces. In the following, we choose
{e1n, €an, €31} as the basis of K(B*, NESW) and represent these linear
transformations by matrices with respect to this basis.

3.1. The linear map Bj(b;) and the matrix Bj(b1). Let by be
a nonzero integer. Then the linear map Bi(b1) : K(B*, NESW) —
K(B3 NESW) is induced by the following wiring, also called Bi(b1),
for convenience

Bi(b) : . g

where b; indicates the number of crossings; it is positive if the crossings
form lefthand twists, it is negative if the crossings form righthand
twists.

Lemma 1. By(by)(zeyp, +yeap +zesp) = (my1s® +mya(—s 1) +
miza” ey + y(ma1s® + mag(—s7H)P + maza™b)eay, + 2(ma1stt +
mgg(fsil)bl + m33a7b1)63h.
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Proof. Let s1 € K(B3 NESW) — K(B3 NESW). Then By (b1)(s1) =
51 ® (Ugl). Note that

o =02 0()() =00 (e1,+e2, +e30)
b
:Ul®elv+0® ®€2v+0(§1 ®e3v

b —1\b -b
=S 161v+(_8 ) 162v+a 1631)

from Proposition 1.

Now

By (b1)(ze1n + yean + zesp)
b
= (we1p + yeap + 2e3;) @ 0
b “1vb —b
= (ze1p + yean + 2e3,) ® (s e1, + (s H)e2, + @ Mes,)
b Z1vb b
=ze1, ® (5" er, + (=57 1) ez, + @ Mes,) +yeay,
® (Sblelv + (7871)1)1621) + a7b1€3v) + Z€3p
1 _
® (Sblelv + (—8 )bleZv + « ble3v)
_ bl -1 bl *bl bl
=xster, ®ey, +x(—5 ") er, @ ez, +xa ey, ®es, +ysteay,
Z1vb b b
®e1, +y(—s )" ez, ®ea, +ya Tea, ® ez, + 25 €3y
1 _
®e1, +2(—s7")esy, ® €2, + za ez, ® €3,
= zsPmyrery + (=5 1) miser, + za P mager), + ysmaren,
“1vb —b b Z1vb
+y(—s ") maser;, +ya tmazesy, + 25" maresy, + 2(—s )" mazesy,
—b
+ za” *massesy,
b ~14b
= x(m115™* + mia(—s7)" + maz)ery
by —1\by —01
+ y(ma18™ + maa(—s 1) + maza "t)eay,

+ 2(mg1s™ + mgy(—s~1)" + mgza " ey, o

b

We define the corresponding matrix Bj(b1) = (bi;), 1 <4, j < 3, by

mirs® 4+ mip(—s7")" Fmza™™ ifi=j=1
bii = mglsbl + ng(—s_l)bl + mgga_bl if 7 =7=2
Y mglsbl + m32(—s_1)b1 + ’rn3304_b1 ifi=5=3

0 otherwise.
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3.2. The linear map D(d;) and the matrix D’(d;). Let
d; be a nonzero integer; the linear map D(d;) : K(B* NESW) —
K(B3 NESW) is induced by the wiring

N E
D(d;) : ! “‘ .
W@S W.S

Similarly d; indicates the number of crossings: it is positive if the
crossings form lefthand twists; it is negative if the crossings form
righthand twists.

Let D'(d;) be the matrix defined as

sdi 0 0
D'(d)=| 0 (=sH% 0
0 0 a~%

Lemma 2.

D(d;)(zery, + yeap, + zesp,) = wshier, +y(—s ) %eay, + za Yegy,

xXr
= (e1p, e2p e3p)D'(di) | v
zZ

Proof. Note that ah‘f@" = ah‘é" ® ( X )= Uh%" ® (e1p + e2n +e3p) =
stiery, + (—s 1) %ieg), + a~%ez, by the idempotent properties of the
basis elements. Now by substitution, D(d;)(ze1), + yeas + z€3,) =
(zern + yezp + ze3p) ® (Uhg;f) = (werp + yeay, + zesp) @ (s%ery +
(—s™ 1) iy, + a~diegy) = zsdiery + y(—s 1 dieq, + za"dies,. O
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3.3. The linear map B(b;) and the matrix B'(b;). Let
b; be a nonzero integer. The linear map B(b;) : K(B3, NESW) —
K(B3 NESW) is induced by the wiring

where b; indicates the number of crossings. It is positive if the crossings
form lefthand twists; it is negative if the crossings form righthand
twists.

Let B'(b;) be the matrix defined by

sbi 0 0
B'b)=M| 0 (-sH% 0 |M
0 0 a~bi

Lemma 3. B(b;)(ze1p+yezn+zesy,) = (e1p eap, esn) MB' (b)) M <y>,

z
where M is the base change matriz between the basis {e1,, €ap, e3n} and

{611”621)7631)}'

Proof. Note obd' = O'bQi O] >< = Uléi © (e1, + €2, + €3,) =
Sblelu + (*571)b162u + aible?wa

B(b;)(we1p + yeap, + zesy)

= (ze1, + yeap + ze3,) © (U%’)

= (ze1n + yeon + zesp) © (s er, + (=57 ) ez, + a3,
= (zeyp + yeay, + zezp) © (s €1y + “hbre,, + a’bleg,v)
= (verp, + yezp + ze3p) © s"er, + (xelh + yeay, + zesy,)
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® (—s ) es, + (zery, + yean + 2e3) © @ ey,
= (zmy1 + ymaa + Zm13)3b161v + (zma1 + ymas + Zm23)(—8_1)b162v

+ (zmay + ymaz + zmaz)a ey,

sbi 0 0 T
=(e1p €20 €3,) | 0 (=sH) 0 My
0 0 a b z
s 0 0 T
=(ewp eap esn)M [ 0 (=s7H) 0 Mly],
0 0 b z
as (e1, €2y €3,) = (€1 €2p e3p) M. 0

3.4. The closure-map C and the matrix C’. The linear map
C: K(B3 NESW) — K(B?) is induced by the closure wiring:

&

C(zeyy, + yeap + zesp) = 209,

Lemma 4.

where @ represents the empty link which generates K (B?).

Proof. The closure of ey, is zero, and the closure of ey}, is also zero

by the orthogonal properties. The closure of e3;, can be simplified as
01620 = 6o. O

We therefore define the matrix C' = (0,0, 6).

4. The Kauffman polynomials of the 2-bridge knots. The 2-
bridge knot with continuous fraction notation [by,d1, be,ds, ... ,dn,bpi1]
is an image of the compositions of wiring maps defined in last section.
We summarize our main results in:
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Theorem 1. Let F(D) = [by,dy,ba,da, ... ,dn,bpt1] be the 2-bridge
knot given in Figure 1. Then the Kauffman polynomial of D is

(D) = (0,0,0)B'(bn+1)D'(dy) - - - B'(bi1) D' (d;)
1
-+ B'(ba)D'(d1)By(b1) | 1
1

where B{(b1), B'(b;) and D'(d;) are matrices defined in the previous
section.

Proof. Using the linear maps defined in the previous section and their
compositions, the 2-bridge knot D = C'oB(by,41)oD(dy)o---0B(bj11)0
D(dl) O---0 B(bg) o D(dl) o Bl(bl)( X )

As each of these maps is a linear transformation between vector
spaces, it can be represented by its matrix with respect to the basis

{e1n, e2n,esn}. Note that x = e1p, + €2y, + €3, SO

D = CoB(bny1) o D(dn) o0 B(biy1) o D(d;)
o---0B(by) o D(dy) o Bi(b1)(e1p, + e2n + €3p),
=C o B(byt1) o D(dy) o0 B(bit1) o D(d;)

1
o---oB(bg)OD(d1)((€1h ean e2n) By(b1) i )

—C<(61h e2n, €2y ) B'(bnt1)D'(dn) -+ B'(biy1) D' (ds)

1
-+ B'(b2)D'(d1) By (b1) | 1
1
_ (0, 0, 5@)Bl(bn+1)D,(dn) . Bl(bi—',-l)Dl(di)
1
-+ B'(b2)D'(d1)Bi(b1) [ 1 ],
1

by Lemma 4.
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Take the Kauffman polynomial. We have

(D) = (0,0,0)B'(bi+1)D'(dy) - - - B'(bi+1)D'(d;)
1
-+-B'(bg) D' (d1)By(b1) | 1
1

since the Kauffman polynomial of the empty link @ is (@) = 1. O

5. An example-The Kauffman polynomial of the Whitehead
link. Here we demonstrate how to calculate the Kauffman polynomial
of the Whitehead link using linear maps and matrices. We choose
diagram W with the continued fraction notation F(W) = [-2,1, —2]
for the Whitehead link. One can easily write down the corresponding
matrices.

According to Theorem 1, the Kauffman polynomial of W is

(W) =(0,0,0)B'(-2)D'(1) By (-2)

— = =

= ﬁ(—a2 +a* —als+a’s + 52+ a?s?
adst(—1+ s?)
—a*s? —abs? + as® +2a%s% — 2a°s% — a's?
— 25t + atst + 2085 — as® — 3a%s° + a®s° 4+ 3a7s°
+3s% — 2025% — ats% — 20855 + as” + 30357
—a’s" —3a"s" — 258 + a*s® 4+ 2a8s% — as®
—2a%5% +20%5% + a7s? + 510 4 o210

— o510 — af510 4 35!t — oPsMt — 2512 4 ofsl2).

Our calculations are carried out using Mathematica.

Remark. An unoriented 2-bridge link may correspond to possibly
two different oriented 2-bridge links. If one is interested in the Kauff-
man polynomial of an oriented 2-bridge link, one can find it using the
writhe adjusted formula (L) = a~*(*1)(L,) according to the particular
orientation given on the diagram L; to obtain L.
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