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FINITE SYMMETRIC TRILINEAR INTEGRAL
TRANSFORM OF DISTRIBUTIONS. PART III

G.L. WAGHMARE

ABSTRACT. In this paper we extend the finite symmetric
trilinear integral transform to distributions and establish an
inversion formula using Parseval’s identity. The operational
calculus generated is applied to find the temperature inside
hexagonal prism of semi-infinite length.

1. Introduction. Sen [5] with the help of trilinear coordinates
has solved different types of boundary value problems relating to
boundaries in the form of an equilateral triangle. Any plane in the
space is described by the set

E ={x = (z1,22,23) /1 + 22+ 23 =p, x; €R, i=1,2,3}
where z1,zs and x3 are the trilinear coordinates of a point and p is
height of an equilateral triangle. If a = (k/q)p, where k, q are integers
and k < ¢, then the subset of F,

Hg={z€E/0<z;<a, 1=1,2,3}
describes a hexagonal region (Figure 1) if a < p and an equilateral
triangular region (Figure 2) if k = ¢ = 1.

Sen [5] has also expressed two-dimensional Laplace operators in
trilinear coordinates as
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are the derivatives along the outward normal at ;1 = 0, 3 =0, 3 = 0,

respectively.

Later Patil [3] developed the symmetric integral transform of function
of trilinear coordinates, which is defined on Hgq as
(1.3)

N(f)(n) = F(n) = /0“ /0“ /0“ (w1, 22, 23)0n q(21, T2, x3) d1 do d3,

where @, ¢(@1, T2, Z3) = €OS A\, qT1 + COS Ay qT2 + COS Ay, ¢T3, are eigen-

functions corresponding to the eigenvalues A, , = (¢2nm)/p, n =
1,2,3,..., in an eigenvalue problem
(1.4) Lo+ Xp=0

subjected to the Neumann type of boundary conditions

¢ _

817_0
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at
z1=0, x1=a

zo =0, x3=a
z3 =0, x3=a.
If f(z1,x2,z3) is continuous, has piecewise continuous first and second

order partial derivatives on Hq and satisfies the above Neumann type
of boundary conditions, then the inverse transform of (1.3) is given by

o0

(15) f($1,$2,x3) = ZF(n)Cn,qﬂon,q(ﬁlamZ,iBS)
n=1
where
1 Y Y 3¢ 3 (kp\®
— = dridrodrs = — = = —
o AT LRSS C
[3, page 129].

In [6, 7], we consider the testing functions as smooth complex-valued
functions ¢ defined on 7" such that

sup |L™¢(x)| < oofor each m =0,1,2,...,
zeT

where T is an equilateral triangular region described by the set
{z = (z1,22,23) /01 + 22+ 23 =D, 0< m; <p, ¥ € R, i=1,2,3}.

In [6] the finite symmetric trilinear integral transform is extended to
distributions by using L; convergence. In [7] the testing functions (to-
gether with all their images under Laplace operator of any order) fur-
ther satisfy Dirichlet-type boundary conditions, and the finite symmet-
ric trilinear integral transform is extended to distributions analogous
to the method employed in [1].

In this paper we consider the testing functions as smooth complex-
valued functions ¢ defined on Hq which together with all their images
under Laplace operator of any order satisfy von Neumann-type bound-
ary conditions. We extend the finite symmetric trilinear integral trans-
form to distributions analogous to the method employed in [7]. At the
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end we find the temperature inside a hexagonal prism of semi-infinite
length.

2. The testing function space Fq. Let Eq denote the set of
all infinitely differentiable complex-valued functions ¢ defined on Hgq
which satisfy the following two conditions:

(i) L™¢ satisfy von Neumann type boundary conditions on Hgq
for each m =0,1,2,....

(2.1) (ii) Qm,q(@) = supep, |IL™¢(z)| < oo for each m =0,1,2,....

We note that Eq is nonempty and for each n € N, eigenfunction ¢,, ()
isin Eq. Eq is a linear space. The topology of Eq is that generated by
the countable multi-norm {4 }5°_.

Theorem 2.1. Eq is complete and therefore a Fréchet space.

The proof of this theorem is similar to the proof of Theorem 3.1 in
[6].

For every ¢ € Eq, the finite symmetric trilinear integral transform

22 2= [ [ [ 6enato)do doadoy

exists and by (1.5), one has
(23) 6(z) = Y _ e gR(®)(1)pn q(2).
n=1

We call the sequence (X(¢)(n))nen the finite symmetric trilinear inte-
gral transform R(¢) of ¢. Therefore,

(2.4) R(9) = (R(®)(1))nen-
The expression (2.3) can be seen as an inversion formula for the said
transform. The map ¢ — N(¢) is a continuous linear transformation
from Eq into [*°.
Let Ly(H,) denote the set of complex-valued functions ¢ defined on
Hgq such that
2

(2.5) ||¢||—[/0/0/0|¢(x)2d3:1dw2d9c3 < 0.
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An inner product in Ly(H,) is defined by

(2.6) (¢,%) = ///¢> ¥(x) dey dwg ds,  ¢,¢ € Ly(Hy)

where (z) denotes the complex conjugate of ¥(z).

Proposition 2.2. If ¢ € Eq, then

2.7) R(L™)(n) = (~1)™ATeR()(n),
' foreveryne N, m=20,1,2,....

Proof. From (2.2), we have

n):/ / /(Lqﬁ)(:c)gon,q(a:)dmlda:gd:vg
( 0 0¢(x 0 0¢(zx) 0 8¢(m)>
/ / / 0z 87]1 3932 on +3—$3 ons
X ¢n q( )dml d$2 daﬁg, by (1.1),
{/ / / 831 agn ©On,q(x) dzy dzo das
0 0¢(
/ / / 3:62 (;772 ©On,q(T) dry dzs das

/ / / 823 8;7 ©On,q(2) dry dag dazg}.

Integrating the first integral by parts, we have

0 0¢(z
/ / / pr 37] n q(x) dzy dzs drs
// (3771 n.q .’13):|0d$2d.’173
3g0nq )
/ / / om0 4oy doz drs




s G.L. WAGHMARE

830”)‘1( )
/ / 87]1 61;1 dx d$2 d$3,

(by using boundary conditions)

dxl d$2 d.’,EB’

/// <3—$1 %%%a%)qs(x)w

(by using (1.2)),

/// 6931 8805;1 )d 1 dzo dxs
_%/ / 8m2 &pggl( ) dy dy dasg
_%/ // “ows 8505;1 ) 4y dos das
_/Oa/oa (qﬁ(:v)&pg’—;l()]odwgdx?,
_/a/a/aqs(m)wdmldmdws
o Jo Jo
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o

d"'vl dmZ d.’lfg

_|_
Wi~ O~ o~ N

dacl d$2

PN
-
—~~
v

0

IS)

CNC\C\QC\
ﬁ%ﬁ%
o\ C\

62()0”7 (LE)
o)

d"'vl dmZ d.’lfg,

_|_

Similarly, we have

9
9 99(x)
/ / / 31‘2 877 Pn, (x)dﬁ;l dxo dxs

(2.9)

// ( 8905;2 )] dz, dxs
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a a a 2
—/ / ¢7(m)7a Sgr;g(fﬂ) dx1 dzs dxs
o Jo Jo 2
a a a@nq(x)]a
o\ |\ 0 d
| (o254 oy

/
/oa /0/0 ‘M% day day dey
/
/

+

’ /0 <¢( )a“’g;; )]de2 dzs

cre 0? Pn,q(T)
/0 /0 ¢(m)78x18m2 dzy dzo dxs

+

(2.10)

/ / / 8i3 agng Pn,q(2) dz1 das dos
/ / ( 8¢g;3 )]0 dzq dzo
- /o /0 /0 ¢(m)6%n—g() dxq dxo das

* Opn,q(x)]"
— /0 A ((]5(32) 8;1;13 1y d.’EQ d.’Eg

¢ 0*pn,q(2)
(ZS(Q:) 81,'18(E3

a a 6(pn7 (x)' a
— /0 /0 <¢(m) —8;3 |, dzq dzs

dﬂﬁl dil?g ditg

+

| = NI~ N N
o\g
c\g
S~

2
Using (2.8), (2.9) and (2.10) we have

‘e 0%¢pn,q(x)

345

) = ~{ [ [ (060 (g~ sy o o) dan i

a ra 9 10 19 a
+/0/0 <¢(x) (3:162 _58—1:1_5817 >L‘0”:‘1(m):| dzy dzs

[=}

(2) (i A J%) ¢n,q(m)] :d:vl des
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”
/// <82+ax2+a—xs

62
8$18.’132 8$18.’1§3 63:28563 > (pn,q(m) dxl dmZ d$3}

[ (o251
+/o /0 ( a% )] da des

0
+/o / ( ‘9@5;3 )]:dﬂcl diy
///(ZS ) Lipn,q(x) dzy dxs dxs,

(using (1.1) and (
Using boundary condltlons and (1.4), we get

(2.11) R(Lg)(n) = (=1)A7 ,R(¢)(n), for every n € N.
Using (2.11), it is quite simple to obtain (2.7). O

Proposition 2.3. Let ¢ € Eq. Then the series

(2.12) Y cngREL™ ) ()|

n=1

converges and Bessel’s inequality
(2.13) Y cnaRE™P)(n)* < | L7* < oo
n=1

holds for each m =0,1,2,3,... .

The proof is similar to that of [7, Proposition 2.4].

Proposition 2.4. If ¢ € Eq, then the series

o0

(2.14) D (D) en ATIR(9) () png(z), m=0,1,2,...

n=1

converges absolutely and uniformly over Hq.
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Proof. The proof can be given by using Proposition 2.2 and following
the pattern of proof of [7, Proposition 2.5].

Proposition 2.5. If ¢ € Eq, then
(2.15)

L™¢(z) = Z(—l)mcn,q)\i’z}l(qb)(n)gan,q(x), m=0,1,2,...,
n=1
and the series converges uniformly over Hq.

Proof. Employing (1.5), we arrive at
L™$(x) = Y cngR(L™$)(n)0n,q(2)-
n=1

Upon using Proposition 2.2, we obtain (2.15).
From (2.15) and Proposition 2.4,

n

S D) NIRG) (Pprg — L™

r=1
uniformly on Hq can be easily proved. ]

The following is an immediate consequence of Proposition 2.5.

Corollary 2.6. For all $ € Eq, ¢, — ¢ in Eq, where ¢,(z) =
Dkt Ch,gR (D) (k) rq(2)-

Theorem 2.7. For every ¢ € Eq, Parseval’s identity holds, that is,

(2.16) Y cadR@) )P = [l

Equivalently,

(2.17) (R(1),R(62)) = D cngR(@1)()R(62) (1) = (61, b2).
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Proof. Expanding the inner product and using the fact that {¢, 4}
is an orthogonal set, one has

16— nll> = 1611* = D cr.aR(¢) (k) %,
k=1
where

z) =) crgR(9) (k) or.q().

But

6-6ull? = [ [ [ 161e)~én(o) s daz das < a6 )0’

Hence,
0 < [I8[1* = > ek glR(B)(R)]* < [a0,4(¢ — ¢n)]?a®
k=1
Taking the limit as n — oo and using Corollary 2.6, we get (2.16).

By using polarization identity we get (2.17). i

3. The space of rapidly decreasing sequences. Let Bg be the
set of all complex sequences (a,)nen satisfying

(3.1) Z cn7q)\3l’j;|an| < oo, forallm=0,1,2,....

n=1

Bgq is a linear space and
(32) Bm,q an nEN ch,q z‘a”" m = 0,1,2,... y

defines a countable multi-norm on Bq. Bq is complete and therefore a
Fréchet space.
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Theorem 3.1. For each continuous linear functional f defined on
Bq, there exist a positive constant C' and a nonnegative integer r such
that for every (an)nen € By,

(3-3) (£5 (@n)nen)| < Cogii<, Br.g((an)nen)-

Proof. The proof is similar to that of [8, Theorem 1.1.8]. Let
Prg = max {B0,g; B1,q5- - - s By,q}- Then {p, 4}52 is a countable multi-
norm on B,.

Assume that there are no values of C' and r for which the inequal-
ity (3.3) holds for all (a,)nen € Bgq.This means that for each posi-
tive integer v, there exists a sequence a”, where a¥ = (ag))neN =

(a§"),a§”), ...), in Bq such that

(3.4) |(f,a”)| > vpy,q(a”).

Since p 4 is a norm, py 4(a”) > 0. a” cannot be the zero element in
Bg (otherwise we would have equality in (3.4), since both sides there
would be zero).

Set

VPry.q(a”)

With £ being an arbitrary but fixed nonnegative integer, we have for
v >k,
(a”)

v v Py,q 1
Pr,g(d”) < pyq(d”) = ——5=— —0asy— .
(I( ) ’Y‘I( ) 'Y,O'y,q(a ) v

Since the topology generated by (p4,4) is equal to that generated by
(By,q), it follows that d” — 0 in Bq. Consequently, (f,d”) — 0 because
f is a continuous linear functional on Bq. But from (3.4) we have

w8l
|<fad >| - ’yp%q(a,,) > 1

This contradiction proves the theorem. a
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Theorem 3.2. Let f € B('J. Then there exists a sequence (Qn)neN
of slow growth such that

oo

<fa (an)n€N> = Z Cn,qQnln, fO’I" every (an)nEN € Bg.

n=1

Proof. By Theorem 3.1, there exist a positive constant C' and a
nonnegative integer r such that, for every (a,)nen € By,

|(f, (an)nen)| < C(r)ngal)ccgrﬁhq((an)neN) = CZ Cn,q/\zlfqmn‘ < oo.

n=1

Take (o, )nen such that
o 2r
|| < C)\ffq = C(q—> n®", for every n € N. o
' p

Theorem 3.3. The finite symmetric trilinear integral transform X
is a homeomorphism from Eq onto the space Bq.

Proof. For any ¢ € Eq, by Proposition 2.4,

Z cnyq)\im?‘t(qﬁ)(nﬂ < oo for every m =0,1,2,....
n=1

Define the mapping X : Eq — Bgq by R(¢) = (X(#)(n))nen- It follows

from (2.3) that X is one-to-one.

Let a = (an)nen be an arbitrary member of Bq. Take

(3.5) ¢(z) = Z Cn,qansan,q(x), x € Hg.
n=1
For each m =0,1,2,...,
(3.6) (—l)mAif';cn,qan¢n7q(m) < 32 Cn,qu:Z|an| < o0.

n=1 n=1
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By the Weierstrass M-test, the series on the lefthand side of inequality
(3.6) converges absolutely and uniformly over H.

¢ (infinitely differentiable) together with all its images under L of
any order satisfies the Neumann-type boundary conditions. Further,

00
am,q(¢) = sup |L ‘ = Ssup Z 7qcn,qan()On q( ) <o
z€H, z€H, | —

for each m =0,1,2,....

This implies ¢(z) € Eq. Multiplying (3.5) by ¢ 4(x) and integrating,
we have

/oa /0“ /0“ ¢(2)pr,q(z) dz1 dz2 drs

= Z Cn,qOn / / / Pn,q (I)(phq(l') dxl dl‘g dl‘g = ag
— o Jo Jo

N(¢)(k) = ay, for all k € N
N(¢) ( n)neN'

Hence, R is onto. 8! : B, — E, exists and is given by

R (a)(z) = R ((an)nen) Z Cn,gOn¥n,q(z), x € Hy,

for each a = (ap)nen € Bg.
Assume that (¢x)keny — ¢ in Eq as k — co. By Proposition 2.2,

X R(¢) (n) = R(¢)(n))]
= [R(L™(¢r — ¢))(n)]

///'Lm ¢k =) (2)|l¢n,q(2)| dz1dzades

< 3a8 m q(Pr — @) — 0 as k — oo,

foralln e N and m=0,1,2,....
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Bma(R(8k) —R(B)) = D _ cn g A R(1) (n) =R($)(n)| — 0 as k — oo,
n=1
for each m = 0,1,2,... . This proves R is continuous.

Let a* — a in Bq as k — oo, where af = (a%k))neN, a = (an)nen-

R~ (a* —a) ch,q ) — an)png(z), =€ H,
870 = @) = sup | 321" N0 — an) (o)
z 71 n=1

o
D A
n=1

= 3Bmq((aff) — a)nen) — 0

as k — oo for each m = 0,1,2,.... Thus, R~! is continuous and the
proof is complete. |

4. Distribution space. In this section we will introduce the space
of distributions.

Definition 4.1. A linear functional U on a Fréchet space FEgq,
U : Eq — C is called a distribution if there exists a sequence ((p)nen
in Fq such that

(4.1) (U, ¢) —nll)rr;o/ / / Cn(2) () dzy dao das

exists for each ¢ € Eq.

The set of all distributions is a complex linear space, and it will be
denoted by E;. The map ¢ — &4(f) = [(f, )| is a semi-norm on
E;. The family of semi-norms {;}4cr, is separating and generates a
topology on Ey. It is clear that Fq is a subspace of E; and the topology
of Eq is stronger than that induced on it by E('Z.

Define

oo

B 1 O, (¢*¢)
U9 = 2 3T  ama (=0
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Then d is a compatible translation invariant metric on Fq [4, page 27].
Furthermore, (Eq,d) is a complete metric space.

Theorem 4.2. Every distribution is a continuous linear functional
on Eq.

The proof is similar to the proof of Theorem 3.143 [2].

Proposition 4.3. E(I; is the dual of Eq, that is, E(’Z is precisely the
collection of all continuous linear functionals from Eq into C.

Proof. Let f : E; — C be a continuous linear functional. For
each ¢ € E,, by Corollary 2.6, ¢, — ¢ in E,;, where ¢,(z) =
D=1 X () (B)pr g (7).

We have

n—roo

= nll)ﬂ;o Z Ck,qN(¢)(k) <f7 ‘pk,q>
k=1
= nlingo/o /0 /0 ¢(z) [;Ck7q<fa ‘Pk,q>%0kvq(x)] dzy dzy drs

= lim/ / / ¢(z)Xn(z) dzy dao das.

Thus, the condition in the definition of distribution is satisfied with

Xn(z) = Z Chyg{fs Ph,q) Phya(T)- s
k=1

Let D(Hq) denote the space of all complex-valued smooth functions
with compact support in Hq provided with the topology induced by
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the family of semi-norms

Ye(¢) = sup |D*¢(z)|, ¢ € D(Hg),
zEHq

where

8k1+k2+k3

Dfk=_~-—_
k1 ko ks ®
0z Oxy*0x3

D(Hgq) is a subspace of Fq [6, page 146]. The topology of the space
D(Hgq) is stronger than the induced topology on it by Eq and the
restriction of any f € Ej to D(Hgq) is in D'(Hg), the space of Schwartz
distributions.

Let Ay denote the set of all functions f(z) which are continuous, has
piecewise continuous first and second order partial derivatives on Hgq
and satisfies the Neumann type of boundary conditions on Hg.

Proposition 4.4. Let f € Ag. Then the formula
(4.2) Uf ¢ / / / f da:l dzoydzs, ¢ € Eq
defines a distribution Uy on Eq. Ay can be embedded in E(’I,

Proof. Uy is clearly linear.
Define

2) = ek gN(f)(k)pr.q(2)-
k=1
Then X,, € E, for all values of n. Moreover, X,, — f uniformly on Hgq.
Uy, ¢) / / / hm Xn(z ) ¢(z) dzy dzo dzs
n—oo
= lim / / / Xn d:l?l drs dxs.
n—oo

The map f — Uy is linear.
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Let, if possible, Uy = U, for some f,g € Agy; then

Wi = [ [ [ 9ot dor s dna 0,

for every ¢ € E,. This implies f = g on E,.
If f, — f uniformly on Fgq, then

gt = [ [ [ = Di@)6(0) a1 dnz
Sao,q(fﬁ)/oa/oa/oa(fnf)($)|d$1d$2d$3 0

as n — oo, for all ¢ € Eq. This proves the map f — Uy is continuous.
Finally, if Uy, — Uy in the image of Ay, then

/Oa /0“ /Oa(fn — )(z)é(2) dzy dzo dxy = Uy, — Us, ¢) — 0

as n — oo for all ¢ € Eq.
This implies f,, — f as n — oo. Thus, A can be embedded in Ej. O

There are distributions that do not have the form (4.2) with f € A,.

Example 4.5. Dirac function J, centered at x € Hq

(4.3) (02, ¢) = ¢(z), ¢ € Eq.

It is easy to prove 4, is linear. Take

Xn(¥) =Y ckqPha(@)Prg(y),
k=1

z,y € Hq and x is fixed. Then X,, is in Fq for each n € N.

tim [ [ o) don i ds = lim S 0) (o0

n—00
k=1

=¢(z) = (0s,¢). O
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Proposition 4.6. For each f € Ezlp there exist a nonnegative integer
r and a positive constant Cy such that

(44) (6] < Co max am.q(9)-

Here Cy and r depend on f but not on ¢.
The proof is similar to the proof of Theorem 3.1.

5. Generalized finite symmetric trilinear integral transform.
The generalized finite symmetric trilinear integral transform R’ of
f € Ey is defined by
(5.1)

<N,(f)7 (an)n€N> = <f(£l?), Z Cn,qan‘pn,q(m)>7 (an)nEN S Bq
n=1

If ¢(z) = Dooo | Cng@nPn,q(z), then by Theorem 3.3, (an)nen =
= N(¢) and (5.1) can be written as

(5-2) (R'(f),R(9)) = (£, 0)-

Theorem 5.1. X' is a homeomorphism from E(’l onto the space B('].

Proof. ¥’ is a mapping from Ej into the space B;. Indeed, for any
(an)nGNa (bn)nEN S Bq and aaﬁ € Ca

<lea a(an)nEN + B(bn)n€N> =(f Z Cn,q(aan + /an)‘pn,q>
n=1
06<le, (an)nEN> + ﬁ<le7 (bn)n€N>7

which shows XN'f is a linear functional on B,. Furthermore, let

(a$)nen converge in B, to zero. Then, as v — oo,

R (@) nen) = Y €ngal ¢ng — 0 in E,

n=1
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and

(N £, (@) nen) = <f > Cn,qaﬁ“)w> -0
n=1

Thus, N'f is a continuous linear functional on B.
We now prove ¥ is linear, one-to-one and onto.
Let (an)nen € By; f,9 € E; and a,3 € C. Then,

<Nl(af + Bg)’ (an)n€N> = <Oéf + Bga Z cn,qa'n<pn,q>
n=1

= <05le + /BN’ga (an)n€N>7
which shows N’ is linear.

If <N/fa (an)n€N> = <nga (an)n€N>a for every (a'n)nEN € Bq, then

o0 (oo}
<fv Z Cn,qan%@n,q> = <g, Z Cn,qan¢n,q>-

n=1 n=1

Since N is a homeomorphism, this is equivalent to

(f,¢0) = (f,¢), for every ¢ € Ey,

which proves X’ is one-to-one.

Let i be an arbitrary member of B;. By Theorem 3.2, there exists a
sequence (o, )nen of slow growth such that

oo
(R, (an)nen) = Z Cn,qOn G, for every (an)nen € Bg.

n=1
Define f : E; — C by the formula

o0

(£,8) =D cnqanX(@)(n).

n=1

(f,¢) = lim > cr qarR(e)(k)
k=1
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lim Ck, ak/ / / O(x) ok, q(x) dz1 dzo dag
Jim > enacn || f ’

:nli)ngo/o /0 /0 ¢(x)<;ck7qakapkvq(x)> dx1 dxo dzs
= Jim [ [ [ 6(@)in(e) dos dey das

where ¥y, (z) = D7 _; Ch,qQkPr,o(T).
This implies f € E;. Further,

N'f, (@n)nen) = <f > cuatnnale )
_ch,qan (Zg) >()

S [ [ [ (o)

X @n,q( ) diL‘l d:l?g d$3
o0
= Z Cn,qQn 0y (using orthogonality relations)
n=1

= (B, (an)nen)s

1

which proves X’ is onto. Hence, (X')™! exists.

We now prove X’ and (R')~!

for every (an)nen € By,

are continuous. Let f, — 0in Ej. Then

(X' fy, (an)nen) = <fva Z Cn,qan‘Pn,q> — 0.

n=1

That is, X' f, — 0 in B;. Consequently, X' is continuous.
Let g, — 0 in B;. Then, for every ¢ € Eq,

<(N')lgv,¢>—< R') gv,ch,q son,q>
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(by Corollary 2.6)
= <gua (N(¢)(n))n€N> — 0.

This implies (X’)~! is continuous.

Proposition 5.2. The finite symmetric trilinear integral transform
N is a special case of the generalized transform N'. That is, X'f = Rf
for every f € Eq.

Proof. Since Eq is a subspace of E(’Z, for every f € Eq we have

<N’f7 (an)n€N> = <fa Z Cn,qan(pn,q>

n=1

M

Cn,gR(f)(n)an

R(f)(n))neN, (an)nen),
"(f) = (R(f)(n)nen in the sense of

3
Il
—

Il
z =

(an)neny € Bg. This implies
equality in By. O

Motivated by the above result, we define generalized integral trans-
form X' f of f € Ej as
N'(f) = ({(f (), en.q(@)))nen,

and we set

(53)  N(f)(n) = (f(2),0ng(®)), Png € Bqandn e N.

We now state and prove an inversion theorem for the elements of E(’Z
that can be seen as an inversion formula for the X'-transformation.

Theorem 5.3. Let f € E;. Then

(5.4) f= nh_{I;o kz ck,g{ S, Pr,a)Ph,q
=1

where the limit is taken in the sense of El'l.
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Proof. Let

Fp(z) = Z ck,q{f, Pr.a)Ph,q-
k=1

Since F,, € Eq for every n, by Proposition 4.4,

(5.5) (Fray 0m.q) = { (fyom,q) iEm<n
e 0 if m > n.

By using Theorem 2.7, Parseval’s identity, we have

<Fna ¢> = Z Ck,q<Fna Sak,q>N(¢)(k)
k=1

I
NIE

ck,q{fs Pr,a)R(9)(K), (by (5.5))

fyGn(9)) for every ¢ € Eq,

—~

where
Gn(9) = ckgN(8)(k)Pk.q-
k=1
By Corollary 2.6, G,,(¢) — ¢ for all ¢ € Eq. Therefore,

lim (F,,,¢) = lim (f,Gn(9)) = (f,6) for all ¢ € Eq. ©

n—o0

The following example illustrates the inversion theorem.

Example 5.4. The Dirac function ¢, centered at x € H, is given by

(02, 0) = 6(x), ¢ € Eq.

The finite symmetric trilinear integral transform of d,, is given as

N'(02)(n) = (02(t), n,q(t)) = ¢nq(@).
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By virtue of Proposition 4.4, for all ¢(t) € Eq,

< Y CmaPm,a(@)Pmq(b), ¢(t)>
- Z Cm,gN(B)(M)Pm,q(z) — ¢(z) as N — oo.

But ¢(z) = (6,(¢), #(¢t)). Therefore,

N—oo

N
65(t) = lim Z Cm,q{0zs Prm,q)Pm,q(t)- o
m=1

6. Operational calculus. Integrating by parts and using boundary
conditions, one can easily prove that if f € Ay, then

(Lf,¢) =(f,L¢) forevery ¢ € Eq.
This allows us to define for any f € E(’I
(Lf,¢)=(f,Lg), ¢¢€ Eq.

It is clear that Lf € Ej.

It can also be seen inductively that for any integer m

(L™f,¢) = (f,L™¢) for every ¢ € Eq and L™ f € E'q.

Therefore,

(L™ f, onia) = (Fs L 0ng) = (1) AT%(fs @)
That is,
(6.1) (L™ f)(n) = (=1)" AR (f)(n),

which gives an operation transform formula.
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Now consider the partial differential equation of the form

(6.2) AL =g

where given g and unknown f are required to be in E, and Q is a
polynomial such that

Q(-A2,)#0, n=1,23,....

By applying the operation transform formula (6.1) to equation (6.2),
we obtain

Q(—)\i’q)F(n) = G(n), where F(n) = (X' f)(n) and G(n) = (¥'g)(n)

G(n)
F(n) = ———.
"= o,
By applying the inversion theorem 5.3, we get
(6.3)
S G(n)
f= nzlcnyqﬂ(_—m%z,q, where Q(—A%yq) #0forn=1,2,....

7. Application. In this section we apply the present theory to find
the temperature inside a hexagonal prism of semi-infinite length. The
formulation of the problem is given below.

Find the conventional function v(z, z) on the domain

D = {(z,2) = (#1,22,23,2)/0 < z; < a, i =1,2,3,
x1+za+z3=p, 0<z< o0}

that satisfies the Laplace equation

0%v B0*v % 0%v 0%v 0%v 8%v

1) a5 +52t53— - - 922
(7-1) %—i_aw% 0z Ox10xy Oz10x3  Ory0z3 027

Ox =0

in D and the following boundary conditions:

(i) As 2 — 0+, —~K(0v(z,2)/0z) — f(z) € E; in the sense of
convergence in E('], where K is a positive constant.
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(ii)) As z; — 0+, z; —» a—, @ = 1,2,3, (Ov(x,z)/0n) converges to
zero uniformly on Z < z < oo for each Z > 0.

(iii) As z — o0, v(z,z) converges uniformly to zero on 0 < z; < a,
i=1,2,3.
Every section of the hexagonal prism by a plane perpendicular to the
z— axis is a hexagon with its centroid on the z-axis.

Set V(n, z) = N (v(z, 2)) = (v, ¢n,q). By applying the finite symmet-
ric trilinear integral transform X’ to (7.1), we arrive at

62
2 _
_)\n,qV(n7 Z) + ﬁV(TL, Z) = 0,
whose general solution is
(7.2) V(n, z) = A(n)e*2* + B(n)e *ma*,

where A(n) and B(n) do not depend on z.

In view of boundary condition (iii) it is reasonable to choose A(n) =0
and B(n) = (F(n)/KM\,, ) because of boundary condition (i). There-
fore,

(7.3) V(n,z) = Ky

Applying inversion theorem 5.3 to the above equation, we get

(7.4) ch,q T ot o).
n,q

We now verify that (7.4) is truly a solution of (7.1) that satisfies the
given boundary conditions.

From Proposition 4.6, it is clear that
|F(n)] < OXYg

where C' is a positive constant and [ is a positive integer. For Z < z <
oo where Z > 0, the nth term of the series (7.4) satisfies the condition

F(n) _y

3c
. — n
Cn,q K )\n,qe (’D"aq(x) >

410)\2! l=AnaZ
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Using
cnq = 2(a/kp)*/3,
An,q = (¢2nm/p) and
2l +2)!
S
An,j{2Z2!+2
we get
cngF(n)e~ ez, () . . (21 4+ 2)12C
: : h S e i
Ky < C 5, Where C k) 272K

By the Weierstrass M-test, the series on the righthand side of (7.4)
converges uniformly over D. The factor e~*»4* ensures the uniform
convergence of any series obtained by term-by-term differentiation of
(7.4) with respect to z;, ¢ = 1,2,3 or z. We may apply the operator
L + (02/02?) under the summation sign in (7.4). Since e *m4%¢,,  (z)
satisfies the Laplace equation, so does v. Thus, the differential equation
(7.1) is satisfied in the conventional sense.

To verify the boundary condition (i), we have

I R )

Now, for any fixed z > 0, the series (7.5) defines a function in Ay, and
by Proposition 4.2 we have for every ¢ € Eq,
(7.6)

<_ K%’ ¢> - /oa/oa/oa[ i c":qF(n)e_)\n’qz‘Pn,q (m)] ¢(x) dridzodrs
n=1

= ch,q “AmaER() (n).

The series in (7 6) converges uniformly for all z > 0. By taking the
limit as z — 04, one has

8 o0
zl—i>%1+ < — Ka—z, ¢> = n;l cn,qF(n)N(¢)(n)
N

= i, { E enat (0ona(e) 002))

(f, ¢) by virtue of Theorem 5.3.
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Next we verify (ii). For any z > 0,

Ov(z, z) > F(n) _) ,00n4(2)
(7.7) — = Cpqg—r——€ Mt
on 7;1 " K\ g on
The series in (7.7) converges uniformly on H,. So we may take the
limit as z; — 0, ; — a— under the summation sign and arrive at the
conclusion.

Finally, we have

o~ Cn _
(7.8) w(z,2)| <3)  —2L|F(n)|e e,
2 i,

The series in (7.8) converges uniformly on 0 < z < oo. By taking
the limit as z — oo under the summation sign, one verifies boundary
condition (iii).

Particular cases.

Case I. Regular hexagonal prism of semi-infinite length. The
domain is

2
D= {(:c,z) = (z1,22,23,2)/0 < x; < ?p, 1=1,2,3,
T, + T2+ 3 =P, 0<z<oo}.

The solution is

F(n) _,\ .,
(79) oe,2) = Y ng ke (o),
n=1 m,
where 5
2/(3
Cn3 =5\ 5> )
373 2p
Mﬁzgﬂ,n:Lz&”w
p

©n,3(21) = cos A, 321 + €OS Ay, 32 + COS Ay, 323



366 G.L. WAGHMARE

Case II. Equilateral triangular prism of semi-infinite length.
The domain is

D = {(z,2) = (z1,22,23,2)/0 < z; < p, i =1,2,3,
Ty + X2 +x3 =P, 0<Z<OO}.

The solution is

= F(n
(710) v(x,Z) - 'nglcn71 K)(\n,)l eiA"’lz(an(x)’
where
2 2nm
Cn,lzga )\n,IZT, n:1,2,3,...,

©n1(z1) = cos Ay, 121 + €OS Ay 122 + COS Ay, 13-

Acknowledgments. I am thankful to the referee for the valuable
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