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SOME PROPERTIES OF
BASE-MATROIDS OF ARBITRARY CARDINALITY

HUA MAO AND GANG WANG

ABSTRACT. On a set of arbitrary cardinality, this paper
introduces a new construction which is called the base-matroid
of arbitrary cardinality. After presenting the base axiom sys-
tem for a matroid of arbitrary cardinality, it discusses the new
construction with the base axiom system and obtains that the
new construction is a matroid of arbitrary cardinality. After-
wards, with the assistance of both lattice and matroid theo-
ries, it discusses the lattice construction of closed saturated
sets relative to a simple matroid of arbitrary cardinality.

1. Introduction and preliminaries. In this paper we will use
the techniques of finite base-matroid for reference to produce a base-
matroid of arbitrary cardinality. Initially, as a test for what can be
achieved by using this approach, we will study the base axioms for a
base-matroid of arbitrary cardinality. Welsh in [9] and Novetti and
White in [7] have identified the base axioms for a finite matroid. This
paper, however, is the first to show the base axioms for a matroid of
arbitrary cardinality.

Mao in [5] presents a method to consider the relationship between
a geometric lattice and the family of closed sets of a simple matroid
of arbitrary-cardinality. Additionally, [4] discusses the construction of
a Boolean lattice of closed saturated sets relative to a simple matroid
of arbitrary cardinality. Combining the ideas of [4, 5] this paper also
shows some results about the base-matroid of arbitrary cardinality for
a simple matroid of arbitrary cardinality.

We will begin by reviewing and presenting the knowledge needed to
continue. In what follows, F is assumed to be some arbitrary—possibly
infinite—set. For X C E,|X| denotes the cardinality of X.
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Definition 1 [1]. Assume m € Ngy and F C P(E). Then the pair
M := (E, F) is called a matroid of rank m with F as its closed sets, if
the following axioms hold:

(F1) E € F;

(F2) If Fy, Fy € F, then Fy N F € F;

(F3) Assume Fy € F and z1,29 € E \ Fy. Then one has either
{FEleoLJ:UlgF}:{FEfZF()UCEzgF}OI‘F]_mFQZFofOI‘
certain F1, F5 € F containing Fy U 1 or Fy U x2, respectively;

(F4) m = max{n € Np : there exist Fy, Fi,...,F, € F with
F,CcF,C---CF,=FE}

The closure operator o : P(E) — F of M is defined by o(A) :=
Nrer,acrF. The rank function p : P(E) — {0,1,... ,m} of M is
defined by p(A) := max{k € Ny: there exist Fy, F1,...,F; € F with
FyC Ky C"'CFk:J(A)}.

M is called simple, if any subset A C E with |[A| <1 lies in F.

Onecals Y e TI={ACE:zc Az ¢ o(A\{z})} an independent
set of M, where M is defined as in (1) and ¢ is the closure operator of
M [6].

In this paper, M = (E, F) defined in Definition 1, is called a matroid
of arbitrary cardinality and simply denoted by M. A basis(or base) of
M is a maximal independent set. Z always denotes the collection of
independent sets of M. F,o and p denote the set of closed sets of M,
closure operator of M and rank function of M, respectively.

Lemma 1 [1]. M has the following properties.

(1) For any family (F;)ic1 of closed sets in M, one has also F :=
NicrF; € F.

(2) For any A C E, the set o(A) is the smallest set in F containing
A. In particular, oc(A) = A if and only if A € F.

Moreover, o satisfies the following conditions, which characterize a
closure operator:

ACo(A)=0(c(A)) for all AC FE;
for ACY CE, one has 0(A) C o(Y);
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(F3) implies either c(AUx) = o(AUy) oro(AUz)No(AUy) =o(A)
as claimed.

(3) p(E) = m equals the rank of M.

Lemma 2 [6]. A collection T of subsets of E is the set of independent
sets of a matroid of arbitrary cardinality on E if and only if T satisfies
the following conditions:

(il) T # ;
(i2) fA€Z andY C A, then Y € I;

(i3) If A, Y € T and |A|,|Y| < oo with |A| = |Y |41, then there exists
an a € A\'Y which fits Y Ua € T;

(i4) If A C E and every finite subset of A is a member of I, then
AeT;

(i5) max{k € Ny: there exist Iy, I1,... , I € T such that Iy C I; C
- C I} < o0.

Let T be the collection of independent sets of M. Then for any
Ie€Z,|I < oo [6]

Let I C X C E and I € T be a mazimal one of T in X. Then
o(I) =o(X).

Let I, I € T with I} C Iy. Then o(I1) C o(I2).

A family B of subsets of E is the family of bases of an independence
space if and only if the following axioms hold [8]:

(bl) B # o;

(b2) B is an antichain in E, say By ¢ By for any By,Bs € B and
By # By;

(b3) For every X,Y C E, X CY, if there exist By, By € B such that
X C By and By C Y, then there exists By € B such that X C B3 C Y

(b4) If X is not contained in a basis, then some finite subset of X is
not contained in a basis.

If By and By are bases of an independence space, then |Bi| = |Ba|
(8]
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Remark 1. (1) We refer to Oxley [8] for fundamentals of independence
spaces and Grézter [3] for that of lattice theory.

(2) According to the definition of independence space (cf. [8, page
74]) and Lemma 2, one has that a matroid of arbitrary cardinality on
F is an independence space on E.

(3) By Lemma 2, the collection Z of independent sets of a matroid
of arbitrary cardinality M determines M uniquely. Therefore, in this
paper, sometimes M is denoted by (E,Z).

(4) By [6, Corollary 2], we have: let X C E and Ix C X be a
maximal independent set in X; then p(X) = p(Ix):

p(Y)< oo foralY C E; IeT << p(I)=]I

(5) By Definition 1, Lemma 1 and Lemma 2, we see that for M,
o(X) is the set by adding to X C E all elements e € E such that
p(XUe) = p(X). Moreover, aset X C E is closed if p(XUe) = p(X)+1
forallece F\ X.

Similarly to [4, Definition 1] and [2, Definition 1], we give the relative
definition for a matroid of arbitrary cardinality as follows.

Definition 2. A set # C F is called saturated with respect to a base
B of M, or B-saturated, if |0 N B| = p(8).

Remark 2. (1) Any B-saturated closed set 6 satisfies the relation
(8N B) = §. This is because Lemma 2 and |§# N B| = p(6) implies that
6N B is a basis of § = o(§), and finally, it follows o(# N B) = o(§) = .

(2) We simply call 6 saturated when it is clear from the context which
base is considered. Fp denotes the family of all the closed sets of M,
saturated with respect to a base B. We also say that Fp is relative to
M.

(3) Let Mp = (E,Ig ={X CE:|X N0 <p(0), for all § € Fg}).

The aim of this paper is to prove that Mp is a matroid of arbitrary
cardinality with Zg as its set of independent sets; additionally, when
M is simple, to discuss the relation between Mp and a Boolean lattice.
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2. Base axioms. In this section, we demonstrate a proof that Mp is
a matroid of arbitrary cardinality. This approach is different from the
way that is used directly to check that Zp satisfies (i1)—(i5). Firstly,
we present the base axioms for a matroid of arbitrary cardinality.

Theorem 1. B C P(E) is the set of bases of a matroid of arbitrary
cardinality on E if and only if B satisfies (b1)—(b4) and the condition
(b5): |Y] < oo for every Y € B.

Proof. Suppose B is the family of bases of a matroid M of arbitrary
cardinality on F with 7 as its independent sets. Then by Remark 2, M
is an independence space on E. So by Lemma 2, B satisfies (b1)—(b4).

Since every basis of M is an independent set of M. Combining this
reason with Lemma 2, (b5) is obviously correct.

Conversely, because Lemma 2 and B satisfy (bl)—(b4), one has that
B is the family of bases of an independence space M! on E. So by
Lemma 2, |B;| = |Bz| for all By, By € B.

Let Z={X CE: X CY for some Y € B}. By (b5) and the above,

one has |I| < oo for I € Z. Also by (b5) and the maximality of B € B,
one finds that (i5) holds.

We will check whether 7 satisfies (i1)—(i4) as follows.

From the definition of Z, B C 7 is derived. Considered this result
with (bl), one has Z # @. So (il) is satisfied by Z.

If A€ Z, then D C A. Because A € 7 shows that thereisa Y4 € B
satisfying A C Y4, one gets D C A C Yy, and so D € A. Thus, (i2) is
correct.

IfY,X € Z with |Y| = |X|+1, then there is a By, Bx € B satisfying
X C Bx andY C By. In view of (b5) and Lemma 2, |Bx| = |By| < o0
holds. Distinguishing two cases will finish the proof of the correctness
of (i3).

Case 1. When By = Byx. It isobvious that XUy C XUY C Bx € B
foranyye Y\ X. So XUy €T
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Case 2. When By # Bx. Similarly to the proof in [7, page
30,Proposition 2.1.1], one gets that (b3) is equivalent to

(b3.1): For all By, By € B and for all by € By, there exists a by € Ba
satisfying (B \ b1) Ubs € B.

Let X = {z1,...,2n}, Bx = {z1,...,Zn,b1,... ,b¢}, Y = {u1,...
Ym}, By = Y U{as,...,as}. By Lemma 2 and (b5), one has
n+q=m+s,and so s < q.

In view of (b3.1), for Bx \ by, there exists a z € By satisfying
(Bx \bg) Uz € B.

If 2z €Y, then X Uy € Z, and hence (i3) holds. Otherwise, put
((Bg \ bg) U z) \ by—1 = B'y. According to (b3.1), there is a 21 € By
satisfying By Uz, € B.

If 2y € Y, then (i3) is correct. Otherwise, repeat the process above
for (B’ Uz1) \ by—2 and so on. Because s < ¢t < 00, after at most s +1

steps, one can use an element in Y rather than b;, and hence (i3) is
satisfied by Z.

Next we prove that (i4) holds to Z.

Suppose A C E and every finite subset of A is a member of Z. If
A ¢ T, this means that for any B € B, A ¢ B is correct. Using
(b4), some finite subset of A is not contained in a basis. This is a
contradiction to the supposition. Hence, (i4) holds for Z.

Therefore, Z is the collection of independent sets of some matroid
M7z of arbitrary cardinality. Evidently, B is the set of bases of Mz.
According to Lemma 2, one gets Mz = M, and so B is the needed
family of bases.

For discussion with the properties of Mg, we now present some
preparations.

Lemma 3. Let Mg be derived from M, X € Ig, b€ E\ X and 0
be a closed B-saturated set satisfying |(X Ub) N O] > p(6). Then b € 6,
X N0 =p(0) and (X UD) NG| = p(8) + 1.

Proof. Since FE is a closed set of M and |[ENB| = |B| = p(B) = p(E),
one has E € Fp. Let X € Zp. Then |X N 6| < p(0) (for all § € Fp),
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especially, | X| = |X N E| < p(E) = |B| < 0. Hence, every element in
ZIg is finite.

X € Ip and 6 € Fp together shows us |[X NG| < p(f) < oo. In
addition, (X Ub)No = (X NO)U(BNDH) tells us (X Ub) NO| <
| X N0O|+]6N6| < p(#)+1. Furthermore, by the given [(XUb)NO| > p(h)
and the above, we get [(X Ub)NO| =|XNO+|bNb| =p0) +1. If
b ¢ 60, then |bNH| = 0. This induces | X NG| = p(8) + 1, a contradiction
to | X NG| < p(#). Thus, b € 6, and so | X NG| = p(0).

Corollary 1. Let X € Ig, {b1,bs,... ,bs} C E\X and 0 be a closed
B-saturated set satisfying p(8) < (X Ub;) N0, 1<i<s<oo. Then
[(X U{b1,ba,...,bs}) N O =p(f)+s.

Proof. X € I and 6 € Fp together shows us |[X N 6| < p(d) < .
By Lemma 3, b; € 6 and | X N0 = p(d), i = 1,2,...,s. Besides,
(XU{by,ba,...,bs})NE = (XNO)U({b1, b2, ... ,bs}NG). All these results
together yield |(XU{b1,ba, ... ,bs})NO| = | XNE|+|{b1, b2, ... ,bs}NO| =
p(8) +s. o

Let Bp denote the set of elements in Zp having maximal cardinality.

Lemma 4. Bp satisfies the following properties.
(1) Bp # @.
(2) Bp is an antichain in E.

(3) If X,)Y € Bg and v € X \Y, then there exists ay € Y \ X
satisfying (X Uy) \ = € Bp.

(4) Bg satisfies (b3).
(5) (b4) is correct for Bg.

Proof. (1) By the proof of Lemma 3, | X| < p(B) = |B| forall X € Zp.
On the other hand, |[BN6#| = p(#) for every § € Fp implies B € Ip,
and hence, B € Bp, i.e., Bgp # @.

(2) In light of the definition of Bp, the needed result is evidently
correct.
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(3) Let X, Y € Bg,X # Y and z € X \'Y. Then by (1),
|X1],]Y] < |B|] < co. Thus, both X \ Y and Y \ X are not empty.
Let Y\ X = {b1,b2,...,bs}. Then |Y \ X| < |Y]| < o0, besides,
s < oo. Henceforth, similarly to the proof of [4, Theorem 2|, the
needed consequence follows.

(4) A consequence of (3) above (or similarly to the discussion in [7,
page 30, Proposition 2.1.1]) is that (b3) is correct for Bp.

(5) Let X C E and X ¢ A for any A € Bg. Suppose for any finite
subset Y C X, there exists a D € Bg such that Y C D. Then Y € Zp
is evident.

X ¢ A hints | X N0a] £ p(64) for some 04 € Fpg, ie., | X N0Oa| >
p(04), and so |[A N 6Os] < |X NOy|l. Especially B € Bp follows
[BNOg| < |XN@p|l. Set S = X NOg. We can identify two cases
to discuss the properties of S.

Case 1. n = |B| < |S]. Let Z C S and |Z] = |B|+1=n+1.
Then Z C X N C X, and additionally, for any D € Bg, |D| < |B| <
n+ 1 = |Z|. This implies that Z, and further S, is not contained in
any element in Bg, a contradiction to the supposition.

Case 2. |S| < |B] = n. |S] £ n < oo means that S is a finite
subset of X, and so there exists Dg € Bg such that S C Dg. It
follows that |[SN O < |DsNé| < p(f) =|BNI| for every § € Fg, i.e.,
|S| = |SNég| < |BNIg| < |XNbg| =|S| by S = (XNbg)Nfp = SNbp,

a contradiction.

The above two cases show us that some finite subset of X is not
contained in a basis.

Theorem 2. Mp is a matroid of arbitrary cardinality with Ig as
its collection of independent sets. We call Mg the base-matroid of
arbitrary cardinality induced by base B.

Proof. Routine verification by Theorem 1, Lemma 2 and Lemma 4. O

We notice that our discussion for Theorem 2 is based on Theorem 1.
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By the definition of a finite matroid (cf. [9]) or Theorem 1 and [7], it is
easily seen that when F is finite, a matroid of arbitrary cardinality on
is a finite matroid on E. Additionally, from the base axioms of a finite
matroid (cf. [7, page 30]), we see that for |E| < oo, B C P(E) is the
set of bases of a finite matroid on E if and only if it satisfies (b1)—(b3).
Hence, all the discussions here are generalizations of that of the finite
cases. In addition, it is not surprising that per the generalizations of
finite cases, some proofs here are quite similar to that of finite cases.
Although [2, 4] refer to finite cases, the discussions in this paper are
correct for both finite and infinite.

3. Lattice of closed saturated sets. The lattice construction
of (Fp,C) is presented in this section, where Fp is relative to M’ a
simple matroid of arbitrary cardinality on E. In addition, the relation
between M’ and Fp will be more evident by the results presented here.
But we should notice that both Lemma 5 and Lemma 6 are correct
not only for a simple matroid of arbitrary cardinality, but also for a
nonsimple matroid of arbitrary cardinality. Beyond Lemma 6, below,
all the discussions are only for simple matroids of arbitrary cardinality.

Lemma 5. (1) p(@) =0.
(2) X CY = p(X) < p(Y).
(3) p(XUY) +p(X NY) < p(X) + p(Y).

Proof. By Definition 1, Lemma 1 and Lemma 2, it is obvious that
the rank function p of M satisfies (1) and (2).

Suppose that p(X UY) =t and p(X NY) = s. Let Ixny be an
independent subset of X NY with |Ixny| = s. By Lemma 2, s,t < 0o
are correct, and so considered with (i3) and Remark 2, there exists A
with Ixny C A such that A C X UY,|A| = t, and A is independent
in M. Thus, posit A = Ixny UV UW where Ixny,V,W are pairwise
disjoint and where V. C X \'Y and W C Y \ X. Then, in view of (i2),
IxnyUV is an independent subset of X and Ix~y UW is an independent
subset of Y. Hence, p(X) + p(Y) > |Ixny U V]| + |Ixny U W| =
A Txny| + VI + W] = 4] + [Ixny| = p(X UY) +p(XNY). 0
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Lemma 6. Let 61,05,0,,(a € A) be B-saturated sets. Then
(1) 61 U8, is a B-saturated set.
(2) 0, N6y is a B-saturated set.

(3) Both NacaBa and Uncabs are B-saturated. Nycabs € Fp when
0, € Fp for all o € A.

Proof. (1) Since |6; N B| = p(6;), (i2) and Remark 1 when taken
together show us that ;N B is a maximal independent set in 6;, ¢ = 1, 2.
In view of (6; Uf2) N B = (6, N B) U (f2 N B) and (i2), it follows that
(A1 U 62) N B is an independent set of M.

We assert that (§; N B) U (f2 N B) is a basis in 6; U 5.

Otherwise, by (i3) and Theorem 1, there exists an z € (61 U 62) \
((f1 N B) U (62 N B)) such that ((#1 UB2) N B) Uz € Z. We may also
suppose z € 61 \ 02. Considered with (i2), (61 N B) Uz € Z; thus, a
contradiction to the maximality of ; N B € Z in 6.

Hence, |(61 U62) N B| = p(61 U 62). Namely, 61 U 6, is B-saturated.

(2) In light of (i2), (1 NB2)NB € Z. So |(61N62) N B| = p((A1N2)N
B) = p(61N0s). By Lemma 5, p(61 N02) + p(61Ub2) < p(61) + p(B2) =
|61 N B| + |62 N B|. In addition, by (1), p(f1 N 02) + p(61 U 62) =
p(91 N 92) + |(91 U 92) N B| = p(01 N 92) + |(91 N B) U (02 N B)‘ =
p(01N02) +]01NB|+|(02\01)NB| = p(61N02)+p(61)+[(02\01)NB|, and
hence, p(61062)+|(62\01)03| S |02ﬂB| = |(02\01)DB|+\(6106’2)DB|,
further, p(01002) S ‘(61ﬂ02)ﬂB| Moreover, p(elﬂﬂg) = |(01 ﬂ02)0B|

Hence, 61 N 0y is B-saturated.

(3) (Ngeabs) N B C B and (i2) together hints (Npecabn) N B €
Z, ie., p(Nacabs) > [(Nacabs) N B|. Besides, [(Naeabs) N Bl <
|B| < oo shows that (Nacablo) N B = {b1,ba,...,b:} for some ¢t €
Ny. That is to say, there exists a finite subset J C A satisfying
(Naeabo) N B = (ﬂ‘j‘i‘lﬁj) N B. By induction and (2), ﬂlj‘illﬁj is B-
saturated. Since J C A tells us that Npec 4o C ﬂ‘j‘ilﬁj. Considering
(Naeabe) N B,(N716;) N B € T and (Naeaba) N B = (N,7,6;) N B
with |(ﬂ‘j‘i‘19]~) NB| = p(ﬂ‘j‘ill@j), one has that (Nac46,) N B is a basis
of Naecaba, i-e., [(Nacabs) N B| = p(Naecaby). Furthermore, Nye .46,
is B-saturated.
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By Lemma 1, Ngcaby € F when 6, € F for all a € A, and hence,
maeAea c fB.

According to (i2) and (Uge48s) N B C B, it follows that (Uge.46s) N
Bel

We claim that (Uac40,) N B is a basis of Uye 484

Otherwise, there exists an z € (Uge 4ba) \ ((Uacaba) N B) satisfying
((Uaeabo)NB)Uz € Z. We may also suppose x € 8, for some a; € A.
This implies (f,, N B)Uz € T by (i3) and (64, N B) Uz C 0,,; thus, a
contradiction to |6y, N B| = p(y,).

Hence, |(Ua€A0a) n B| = p(UaEAea)'

In what follows, let M’ be a simple matroid of arbitrary cardinality
on E. Next we will construct the lattice of Fg which is relative to
M'. Let X C E; we denote by sc (X) and call B-saturated closed set
generated by X the minimum B-saturated closed set which contains
X. By Lemma 6 and X C FE € Fp, sc(X) is well defined. Clearly,
sc (@) =g, sc(F) = E, @ = min(Fp,C), and F = max(Fp,C). The
atoms of (Fp, C) are elements of B. Moreover, let L(M')p = (Fp, C).
Recall that a set P of Fp is defined as o(PNB); thus, P is characterized
by the set PN B.

Let |B| = n and B,, be the Boolean lattice of subsets of n-set, ordered
by inclusion; denote by V, A the join and the meet in B,,, respectively.

Lemma 7. (1) If P,Q € Fp, thensc (PUQ)NB = (PNB)U(QNB).

(2) Under the inclusion ordering C, Fp is a lattice.

Proof. By Lemma 6, one has that PN Q € Fg and PUQ is B-
saturated. But according to [1], P UQ is not, in general, closed. Thus,
PAQ=PNQ,PvQ=sc(PUQ) for all P,Q € Fg. O

Theorem 3. (Fg,C) is a Boolean lattice.

Proof. Let v : L(M'")p — B, be given by ¢(P) = P N B where
P e L(M")pg. Clearly, ¢ is a bijection because P is characterized by
PN B. In addition, (P A Q) = »(PNQ) = (PNQ)NB = (PNB)N
(QNB) =¢(P)NY(Q) = ¥(P)AY(Q) and (P V Q) = ¢(sc(PUQ)) =
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sc(PUQ)NB = (PNB)U(QNB)=¢(P)Uy(Q) =¢(P)Vi(Q)
Therefore, 1 is a bijection which preserves V and A, and so it is an
isomorphism. ]

Remark 3. (1) Since §# = o(f N B) is valid for every 6 € Fg, by
Definition 1 and Lemma 2 6 is uniquely defined by 8 N B. Besides,
{X : X C B}| < co. Thus, Fp is a finite set though an element in Fp
is perhaps not finite. So (Fg,V,A), i.e., L(M')p, is defined as a finite
lattice.

Certainly, we also get the same information from Theorem 3.

(2) Actually, by the definition of a finite matroid in [9, page 7] and
Lemma 2, one has that

(&) every matroid of arbitrary cardinality on F is a finite matroid
when E is finite.

Additionally,

() it is well known that a geometric lattice is not always a Boolean
one.

(8) [9, page 54, Theorem 2] verifies that the corresponding relation
between a finite geometric lattices and a finite simple matroids;

(7) (1) tells us £L(M')p is finite.

Hence, from (a)—(7y), we obtain that, up to isomorphism, there does
not always exist a finite simple matroid which is isomorphic to L(M') g.

In addition, Mao in [5] points out the corresponding relation between
a geometric lattice with finite height and a simple matroid of arbitrary
cardinality. Considering this expression with () and the above result,
we have that, up to isomorphism, there does not always exist a simple
matroid of arbitrary cardinality which is isomorphic to L(M')p.

Therefore, by virtue of [5], generally Fp would not be the family of
closed sets of M.

(3) Because L(M')p is finite and M’ is perhaps infinite, one has that
the properties of L(M') g are easily obtained, but finding the properties
of M’ may not be so easy. Based on this, we firmly believe that £L(M')p
could play an appropriate role in dealing with the properties of M’.
For example, if the number of atoms of £L(M')p does not equal that
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of £L(M])p,, then M’ is not isomorphic to M], where M is a simple
matroid of arbitrary cardinality on E and B is one of bases of Mj.
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