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THETA FUNCTIONS ON THE THETA DIVISOR
ROBIN DE JONG

ABSTRACT. We show that the gradient and the Hessian of
the Riemann theta function in dimension n can be combined
to give a theta function of order n + 1 and modular weight
(n 4+ 5)/2 defined on the theta divisor. It can be seen that
the zero locus of this theta function essentially gives the
ramification locus of the Gaussian map. For Jacobians this
leads to a description in terms of theta functions and their
derivatives of the Weierstrass point locus on the associated
Riemannian surface.

In the analytic theory of the Riemann theta function a natural
place is taken by the study of the first and second order terms of its
Taylor series expansion along the theta divisor. The first order term
essentially gives the gradient, and hence the tangent bundle on the
smooth locus, whereas the second order terms give rise to Hessians,
which are widely recognized as carrying subtle geometric information
along the singular locus of the theta divisor. For example, in the case
of a Jacobian, these Hessians define quadrics containing the canonical
image of the associated Riemann surface. Or, in the general case, one
could investigate the properties of those principally polarized Abelian
varieties that have a singular point of order two on their theta divisor,
such that the Hessian of the theta function at that singular point has
a certain given rank. This is a recent line of investigation begun by
Grushevsky and Salvati Manni, with interesting connections to the
Schottky problem [6, 7].

If one moves outside the singular locus of the theta divisor, it is not
immediately clear whether the Hessian of the theta function continues
to have some geometric significance. In this paper we prove that it does.
More precisely, we show that a certain combination of the gradient and
the Hessian gives rise to a well-defined theta function living on the theta
divisor. We can compute its transformation behavior, i.e., its order and
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156 ROBIN DE JONG

automorphy factor explicitly. As it turns out, the geometric meaning of
our function is that on the smooth locus of the theta divisor it precisely
gives the ramification locus of the Gaussian map, i.e., the map sending
a smooth point to its tangent space, seen as a point in the dual of the
projectivized tangent space of the origin of the ambient Abelian variety.
We can study the situation in more detail for Jacobians, where our
theory leads to a global description of the locus of Weierstrass points
on the corresponding Riemann surface in terms of theta functions and
their derivatives. By way of example, we state and prove an explicit
formula for our theta function in genus two.

1. Definition and main theorem. Let H,, denote the Siegel upper
half space of degree n > 0. On C™ x H,,, we have the Riemann theta
function

0 = 9(2,7’) — Z em'tmrm+27ritmz_

meZ"

Here and henceforth, vectors are column vectors and ¢ denotes trans-
pose. For any fixed 7, the function § = (z) on C" satisfies the identity

(1.1) 0(z+Tu+v) = ef"itumfzmhtuzﬁ(z),

for all z in C™ and for all uw,v in Z™. Moreover, it has a symmetry
property

(1.2) 0(—z) =6(2)

for all z in C". Equation (1.1) implies that div6 is well defined as a
Cartier divisor on the complex torus A = C"/(Z" + 7Z™). We denote
this divisor by ©. In fact, 0 gives rise to a global section of O 4(©), and
we say that 6 is a “theta function of order 1.” By equation (1.2), the
divisor © is symmetric: [-1]%0 = ©.

For 7 varying through H,, it turns out that § = 6(z, 7) is a modular
form of weight 1/2. More precisely, consider the group I'y » of matrices

v = (Z Z) in Sp (2n,Z) with a,b,c,d square matrices such that the

diagonals of both ‘ac and ‘bd consist of even integers. We can let I'y o
act on C" x H,, via

(2,7) — (t(CT +d)7tz, (T + b)(cT + d)_l) .
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Under this action, the Riemann theta function transforms as

(1.3) 8(*(cr +d) 'z, (am +b)(cr +d) ™)
— C’ydet (CT + d)l/Zewitz(c‘rer)*lcze(z’7_)

for some eighth root of unity ¢, cf., [10, page 189].

We write 0; for the first order partial derivative 96/0z; and 6;; for
the second order partial derivative 826/0z;0z;. If (h;;) is any square
matrix, we denote by (h;;)¢ = (hf;) its cofactor matrix, i.e.,

hfj = (—1)i+jdet (hkl)k;éi-
I#j

The function we want to study in this paper is then the following.

Definition 1.1. Let (6;) be the gradient of § in the C™-direction,
and let (6;;) be its Hessian. Then we put

(1.4) n=n(z7) ="(0:)(6:;)°(05)-

We want to consider this as a function on the vanishing locus 6~1(0)
of # on C" x H,,.

Example 1.2. For n = 1, we obtain

Y
=\
viewed as a function of (z,7) in C X H with z = (1+7)/2 mod Z+ 7Z.
For n = 2, we obtain

n = 01105 — 2012002 + 02207,

which is already somewhat more complicated.

Our main result is that the function 7 transforms well with respect to
both lattice translations and the action of the congruence symplectic
group I'y o.
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Theorem 1.3. The function n = n(z,7) is a theta function of order
n+1 and weight (n+5)/2 on the theta divisor. In other words, for any
fized T in H,,, the function n gives rise to a global section of the line
bundle Og(©)®"*! on © in A = C"/(Z" + 7Z"). Furthermore, when
viewed as a function of two variables (z,7), the function n transforms
under the action of I'1 o with an automorphy factor det (¢t + d)("Jr5)/2
on 0-1(0).

It follows that, for any fixed 7, the zero locus of 7 is well-defined on
©. This zero locus contains Sing O, the singular locus of ©, as well as
the set of 2-division points © N A[2] if n > 2. Moreover, this zero locus
is stable under the involution z — —z of ©.

For 7 varying through H,,, it follows that the function 7 gives rise to
a global section of a line bundle

L=0e(0)®" " @n*M

on the canonical symmetric theta divisor © of a universal principally
polarized Abelian variety with level structure = : U, — A,(II’Q) =
I'y 2\ H,,. Here M is a certain line bundle on A%1’2). It follows from
general principles that M is a power of A, the determinant of the Hodge
bundle on A?. By counting weights we find that M = \®2,

Example 1.4. When n = 1, the theorem states that df/dz is
of order 1 and of modular weight 3/2 on the theta divisor. Both
statements can be checked directly from (1.1) and (1.3). Alternatively,
the statement on the modular weight can be seen using Jacobi’s
derivative formula, cf. [10, page 64]. This formula says that

ewir/4;l_z<1+TT> = i [8] (0,7)0 [1(/)2] (0,7)0 [1(/)2} (0,7),

where 6 {g}, 0 {1?2} and 6 {1(/)2} are the usual elliptic theta functions

with even characteristic. Each of the three Thetanullwerte 6 [8} (0,7),

0 [1(/)2} (0,7) and 6 [162} (0,7) is a modular form of weight 1/2.

A proof of Theorem 1.3 will be given in Section 4.
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Remark 1.5. It should be noted that Grushevsky and Salvati Manni
propose in [7] a simpler definition

0 =mn(z7) = det (fgj %)

for n. They also suggest there an alternative approach for a proof of
Theorem 1.3.

2. Properties. In this section we collect some properties of 7.

Proposition 2.1. Assume that © = divl on C*/(Z™ + 7Z") is

nonsingular, and denote its canonical bundle by Kg. Then n gives rise

to a global section 1 of Kg’"“, locally given by

“dzlA---AcE/\---/\dzn>®”“

) =) (-1 e

wherever 0;(z) is nonzero.

Proof. We view 7 as a global section of the line bundle Og (©)®"*! on
O. By the adjunction formula and the fact that the canonical bundle
K4 of A is trivial, we have an identification

O6(0) = (K4 ®04(9))le = Ke.

This identification can be represented locally by the Poincaré residue
map K4 ® 04(0) — Kg given by

dzy A+ Adzy cydz A Adzi A Aday,

i Y 6:(2)

wherever 6;(z) # 0. From this the corollary follows. O

By way of illustration, we make the multi-differential 77 more explicit
in the case that n = 2. We need the notions of a Wronskian differential
and of Weierstrass points, which we recall briefly. Let X be a compact
Riemann surface of genus n > 0, and let ¢ = ((1,...,{,) be any basis
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of H%(X,Kx). The Wronskian differential w; of ¢ is then given as
follows: let ¢ be a local coordinate, and write w;(t) = f;(t) dt with the
f; holomorphic. We put

1 d7f
we(t) = det ((z 1) dtifjl(t)> - (dt)®nnt/2,

This local definition gives, in fact, rise to a global section of the line
bundle Kg?n(m'l)/z. It can be proven that this section is nonzero. If
the basis ¢ is changed, the differential we changes by a nonzero scalar.
Hence the divisor W = divwe is independent of the choice of (. We
call this divisor the classical divisor of Weierstrass points of X. It has

degree n® — n.

Example 2.2. Assume that A = C?/(Z? + 7Z?) is an indecom-
posable Abelian surface with theta divisor ©® = divf. Then © is a
compact Riemann surface of genus 2, and there is a canonical identi-
fication H°(A4,Q!) = H%(©,Ke). Let ¢ = ((1(2),¢2(2)) be the basis
of H°(0, Kg) corresponding under this identification to the standard
basis (dz1,dz2) of HY(A,Q'). We claim that 7j(z) is equal to the Wron-
skian differential w¢ of ¢. This amounts to a small computation: choose
an open subset of ©® where z; is a local coordinate. In this local coor-
dinate we can write (;(z) = dz1, (2(2) = 25(2) - dz1, with ' denoting
derivative with respect to z;, so that

we(2) = det ((1) 2,23) (d21)®% = 25 (2) - (dz1)®3.

Now, since for z on © we have
01 (Z) le + 92(2) dZQ = 0,

the formula
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holds, leading to

_ 01(2)62(2) — 05(2)61(z)
02(2)?
(011(2) + 012(2) - —(61(2)/02(2))) O2(2)
02(2)?
(012(2) + 022(2) - —(01(2)/02(2))) 01 (2)
02(2)*
011(2)03(2) — 2612(2)01(2)02(2) + 022(2)67 ()
02(2)*

2 (2) =

We find, indeed,

wile) = g - (@)% =72)

A similar computation can be done on the locus where z; is a local
coordinate, giving w¢(z) = 7(z) globally on ©, as required. Note that
our identification w¢(z) = 7(2) gives, as a corollary, that divy = W,
the divisor of Weierstrass points of ©. In Section 5 we will prove a
generalization of this result.

It is interesting to know when 7 is identically zero on the theta divisor.

Proposition 2.3. If A is a decomposable principally polarized
Abelian variety, then n is identically zero on the theta divisor.

Proof. Let us suppose that A = A; x A with A; given by a matrix 7
in Hy and A, given by a matrix 75 in H,, _; where k is an integer with
0 < k < n. We can write 0(z) = F(z1,...,2t)G(2k+1,--- ,2,) Where
F, G are the Riemann theta functions for A; and As, respectively. Let
©; C Ay be the divisor of F', and let ©5 C As be the divisor of G. By
symmetry, it suffices to prove that 7 is zero on ©; x A; C © = divé.
On C" we have

Y9;) = (F;G, FG;)
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and
(6:;) = F;;G FG;
W\ F;G; FGyij )
The subset ©; x Az C O is given by the vanishing of F'; there we find

t6.) — (F. o [ FiG EG;
)= F6.0, @)= (e 5.

Note that both F;G; and F;G;, being a product of a vector and a
covector, have rank < 1. Hence, a minor at (,j) with 1 <4,j < k in
(0;;) has rank <1+ (k—1) = k. If K < n — 1, the determinant of this
minor vanishes, and the cofactor matrix of (6;;) has the shape

c [0 =
(0i)° = <* *> :
We find then that

n = "(6:)(6:;)°(6;) = (,0) (2 I) <;> B

If Kk = n — 1, the last row of (6;;) and the vector *(6;) are linearly
dependent. If 1 < i < n — 1, we see that the ith entry of (6;;)°(6;)
is just the determinant of the matrix obtained from (6;;) by removing
the ith row and adding ?(6;) in its place. But this matrix then contains
two linearly dependent vectors, and its determinant vanishes. So we
obtain

1="69(66) = -0 () =0,

in this case as well. O

3. Interpretation. The contents of the present section are based
on kind suggestions made by Professor Ciro Ciliberto.

As we observed in Section 1, for any complex principally polarized
Abelian variety the zero locus of 7 is well-defined on the theta divisor.
Given the simple description of 7, one expects that this zero locus has
some intrinsic geometric interpretation. This indeed turns out to be
the case.
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Theorem 3.1. Let (A,0) be a complex principally polarized Abelian
variety. On the smooth locus ©° of ©, the zero locus of n is precisely
the ramification locus of the Gauss map

I':0° — P(ThA)*

sending a point on ©F to its tangent space, translated to a subspace of
THA.

Proof. 1t follows from formula (1.4) that a point « on ©° is in the zero
locus of 7 if and only if the quadric @ in P(TpA) defined by the Hessian
is tangent to the projectivized tangent hyperplane P(7,,0) defined by
the gradient. The latter condition is equivalent to the condition that
@ when restricted to P(T,0) becomes degenerate. Now note that Q
when viewed as a linear map can be identified with the tangent map
dl': Ty © — Tp4)(P(ToA)*) = (1:©)* of I'. The locus where this map
is degenerate is precisely the ramification locus of I'. ]

Using the above interpretation, a converse to Proposition 2.3 can be
readily proved.

Corollary 3.2. We have that n is identically zero on the theta divisor
if and only if A is a decomposable Abelian variety.

Proof. We need to prove that if © is irreducible, then the Gaussian
map on © has a proper ramification locus. But, according to [9,
Corollary 9.11] the Gaussian map is generically finite and dominant
in this case, and the result follows. ]

Remark 3.3. 1t follows from Theorem 1.3 that in the indecomposable
case the divisor of 7 belongs to the linear system defined by (n + 1)©
on O©. This fact can also be explained as follows. For simplicity, let
us assume that © is nonsingular. The Hurwitz formula applied to the
GaussianmapI': © — P = P(TpA)* gives that K¢ = I'*Kp+R, where
R is the ramification locus of I'. By definition, I'*Op (1) = Kg, and
hence I'*Kp = K g ™, We find that R is in the linear system belonging
to Kg”*l. As we have seen at the end of the previous section, this is
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the same as Og(©)®"T1. Alternatively, this remark shows that the
equations § = n = 0 define the right scheme structure on R.

Remark 3.4. The description of the vanishing locus of n given in this
section is also mentioned in the paper [7] of Grushevsky and Salvati
Manni. In that paper an interesting application is given of the form
1 to the study of certain codimension-2 cycles in the moduli space of
principally polarized Abelian varieties. In particular, one finds there a
moduli interpretation of a certain cycle R, introduced by Debarre in
[2], Section 4.

4. Proof of the main theorem. In this section we give a proof
of Theorem 1.3. We start with the statement on the order of . We
fix an element 7 in H,,. The case n = 1 being discussed already in
Example 1.4, we assume here that n > 2. Recall from equation (1.1)
that

(4.1) 0(z+ tu+v) = p(z,u)d(z)
for all z in C™ and all u,v in Z™, where

—mituru—27wituz

p(z,u) =e
We need to prove that

)n+1

n(z+Tu+v) =p(z,u n(z)

for all z in C™ with 6(z) = 0. Denote by p; the first order partial
derivative dp/0z;. From (4.1) we have, for z with 8(z) = 0,

0:(z + Tu+ v) = p(z,u)b;(2)
and
0ij(z + Tu +v) = p(z,u)0i(2) + pi(z,u)0;(2) + p;(z,u)0i(2).

We are done, therefore, if we can prove, formally in some domain R
containing the symbols p, p;, ;,0;;, the identity

“(p0:) (p0i; + pif; + p;0i)(p0;) = p™ 1 (6:)(8:5)°(6;)
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or, equivalently, the identity

"(0:) (095 + pib; + p;0:)°(6;) = ' (6:) (p0i;)°(6;)-
At this point we introduce some notation. Let h = (h;,j,) be an R-
valued matrix with rows and columns indexed by finite-length ordered
integer tuples I = (... ,ig,...) and J = (... ,7i,...), respectively. If
I' C I and J' C J are proper subtuples, we denote by h{,l, the submatrix
obtained from h by deleting the rows indexed by I’ and the columns
indexed by J'. If h is a square R-valued matrix with both the row
index set I = (i1,...,%y,) and the column index set J = (j1,...,Jm)
subtuples of (1,2,...,n), we define n(h) to be the element

W(h) = t(eik)(hikjl)c(ejz)

of R. It can be written more elaborately as

n(h) =Y S (~1)"*16;, 6;,det hEH.
k=11=1
On the other hand, the identity we need to prove can be written more
compactly as

n(pbi; + pib; + p;0i) = n(pbi;).
The function 1 can be defined recursively.

Lemma 4.1. Let h = (h;,j,) be a square R-valued matriz of size
m > 2 with both the row index set I = (i1,...,i,) and the column
index set J = (j1,... ,Jm) subtuples of (1,2,...,n). Then the identity

(m — (k) = 3 S (-1 hi s (n))
k=11=1
holds.

Proof. The double sum on the righthand side can be expanded as
Y (1) hiin (hgf}}>

(k1)
=D Vg YD (FDN6,05, deshn)
™ (k)2 0D
= >0 (DM0,05, D0 (<1 g deshygt .
(k") (k,1)#(K"1")
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Expanding the determinant of hg’;g along each of its rows, one finds
(m—1)dethl ) = 3 (=1, det b ),

(k)£ (k 1)
Combining both formulas, one gets

S0 higgn (hE) = m = 1) 3 (-1)¥ 0,05, deth{])
(k1) (k7,17

= (m —1)n(h),

as required. ]

Denote by a = (a;;) the n-by-n R-valued matrix
(aij) = (pif; + p;bs).
It has the property that the ns of all its square submatrices vanish.

Lemma 4.2. Let h be any square submatriz of a of size > 2. Then
n(h) = 0.

Proof. By Lemma 4.1, the statement follows by induction once we
prove the special case that h is a square submatrix of size 2. In this
case h has the shape

(pilejl +pj19i1 pilejz +pj29i1 )
pi29j1 +pj19iz pi29jz +p]'29i2 ’

and n(h) has an expansion

n(h) = eilejl (pizejz +pj20iz) - eilejz (pizejl +pj19i2)
- eizejl (pilejZ +pj29i1) + 0i29j2 (pi10j1 + pj, 011) .

This is identically equal to zero. u]

Denote by b = (b;;) the n-by-n R-valued matrix

(bij) = (p0ij),
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and by b = (E]) the n-by-n R-valued matrix

(bij) = (pbij + pif; + p;bs)-

We need to prove that n(b) = 7(b). We can expand n(b) — n(b) as

(42) A ) = 35" Y er i brn(ah)

m=0  (1.7)

Here the second sum is over all pairs (I, J) of subtuples of (1,2...,n)
of length m, and €7 7 is a sign. In order to see this, expand in the
cofactor matrix b¢ of b each minor as a sum of (n — 1)! terms. A
product p™6;,;, ---6;,.;, occurs as a factor in such a term exactly at
all entries (k,[) of b° for which (k,1) is not in I x J. If (k,1) is such an
entry, at that entry the product p™6;,;, ---0;, ;. is multiplied, up to
a sign €5y depending only on I, J, by det (a%{{'f}} ) This determinant
is understood to be equal to 1 if m = n — 1. It follows that the entry

(k,1) contributes to n(b) with a term

P"0iyg, -+ Oijner s (1) 00,det (aﬁf{lzc}}) .

Summing over all possible (k,[) we obtain, if m < n—1, a contribution
p"0i 1 b5 j..er,.un(al), and if m = n — 1 the contribution n(b).

By Lemma 4.2, every n(a}) with I,J of size smaller than n — 1 is
zero. Therefore, all terms in the summation on the righthand side in
(4.2) vanish. This proves the first half of Theorem 1.3.

In order to prove the statement on modular weight, we recall from
equation (1.3) that
(4.3) 8 (et +d) 'z, (ar +b)(cr +d)7Y)
= Gy det(er +d)?q(z,7,7)8(z, 7)

for all z in H,, and all v = (a Z) in I'y 2, where

c

witz(er4d) " lez

Q(zvfva) =e€
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and where (, is an eighth root of unity. We claim that

(4.4) n(*(er + d)_lz, (am 4+ b)(cT + d)_l)
= det(cr + d)"F/2 g (2, y, ) (2, 7)

for all (z,7) satisfying 6(z,7) = 0. This is just a calculation. For (z,7)
with 6(z,7) = 0 we have by (4.3)

(Hi(t(cr + d)*lz, (aT + b)(er + d)*l))
= "(er + d)¢, det(cr + d)l/zq(z, v,7) (0i(2,7)) .

Furthermore, for such a (z,7) we have

(Gij (*(er +d)™ 'z, (ar +b)(cr + d)_l))
=tcr + d)(ydet (e + d)l/2 (q(z,7,7)0:(z,T)
+Qi(z, Vs T)ej(za T) + q; (Z, Y T)ei(za T)) (CT + d)

We can write, at least for the purpose of this proof,
(4.5) n = det(6:;)"(0:)(0:5) " (6;)-

This gives that n(*(ct +d) 'z, (ar + b)(cr + d)~!) is equal to

det (t(cr + d)(¢y det(cr + d)l/2 (g0ij(z,7) + ¢i0;(z,T)
+40:(2,7)) (e + d) )

- det(cr + d)l/2 ¢ (g0i(2,7)) (e + d)
“(er+d)7 (g0 (z, 7) + @0 (2, T)

+q;6;(z, ! C;l det(cr +d) "2 (er +d) 7t
“Her + d)¢, det(er + d)Y? (q8;(z,7)).

This simplifies to

det (CT + d)2+(n/2)+(1/2) C;L+1
H(q0i(z,7)) (g0 (2, 7) + @05 (2, 7) + 4;0:(2, 7)) (¢0;(2, 7)),
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which, in turn, is equal to
det(cr + d)("+5)/2dj+1q”+1n(z, T)

by the same methods as above when we dealt with the order of n. This
completes the proof of Theorem 1.3.

5. Jacobians. The purpose of this section is to study n for
Jacobians.

Assume that (4,0) = (C"/(Z™ + 7Z"),div0), with n > 2, is
the Jacobian belonging to a compact Riemann surface X marked
with a symplectic basis B = (Ay,...,An, B1,...,By) of homology.
This situation determines uniquely a basis ({1,...,¢(,) = ¢ = (g of
HY(X, Kx) such that

/Cj=5ij, /CjZTij-
A; B;

The isomorphism of C-vector spaces H°(X, Kx)* = C" given by ¢
gives an isomorphism of complex tori

HY(X,Kx)*/H\(X,Z) 3 C"/(Z" + 7Z") = A.
By a theorem of Abel-Jacobi, the natural map

AJ :Pic’X — C"/(Z"™ + TZ"),
P;
P, —Q; (ST
PRUEIAEED Y MECHINS

is a bijection. By a theorem of Riemann, there is a unique element
A = Ap of Pic'™™X such that under the composition of bijections

Pic" ' X 22 Pic'Xx A% cr/(z" +rZ7) = 4,

the set ©¢ = {[D] € Pic™ 1 X : h%(D) > 0} is identified with © = div 6
on A. From now on, we will take this identification of (4,©) with
(Pic™1X,0y) for granted.

We have a natural surjection ¥ : X(»~1) — © which is an isomor-
phism above ©%. If we let this isomorphism be followed by the Gaussian
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map [': ©° — P(TpA)* = P(H’(X,Kx)), we get the map sending a
nonspecial divisor D of degree n — 1 on X to the linear span of its
points on the canonical image in P(H°(X, Kx)*). By Riemann-Roch,
this span is indeed a hyperplane.
We denote by
k: X —0CA

the map sending x to the class of (n — 1) - z. It is natural to study the
pullback of n along x. We claim the following result:

Theorem 5.1. The section k*n is not identically zero. The divisor
of kK*n is equal to (n — 1)W, where W is the divisor of Weierstrass
points of X.

We proceed in a few steps, starting with some notation. For any
(m,4) in Z x Z>g, we put
di
dy?

?
y=z

i) = (8000 = 1= m)a )

interpreted as a global section of the bundle k*04(0) ® K¢ of differ-
ential i-forms with coefficients in k*04(©). For example, for i = 0, we
get

Fmole) =0
identically; for i — 1, we get
fra(2) = mZ 0, ()G 2
and, for i — 2:
fmal@) = m® 3 031(s(2) G £)Gu(2) + Z 0,(s(2))C}(2).
2

jk=1

Form =0,...,n—1,all f,,; are identically equal to zero. Of particular
interest for us will be the section
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F@) = f 14()

of K*04(0) ® K¢". It turns out that divF = W.

Lemma 5.2 (cf. [8, Corollary 3]). The section F of k*O4(0)® K"
s not identically zero, and we have div F = W.

Proof. Consider the map ® : X x X — Pic" !X given by (z,y) —
nx —y. From [3, page 31] we obtain that ®*© = W x X + n - Ax.
Restricting to the diagonal, we get

K'O=3"0|a, =(WxX+n-Ax)|ay,
and by the adjunction formula it follows that
K*04(0) = Ox(W)® K"

via F(z)-(dz)® ™ — 1y ® (dz)® ™. Here 1y denotes the tautological
section of Ox (W). o

Lemma 5.3. We have k*n(z) = 0 if and only if x is a Weierstrass
point. In particular, kK*n is not identically zero.

Proof. According to [2, page 691] the ramification locus of the
Gaussian map is precisely given by the set of divisors D + x with
D effective of degree g — 2 and = a point of X such that D + 2z is
dominated by a canonical divisor, i.e., such that Kx — D — 2z is linearly
equivalent to an effective divisor. Thus, to say that n(k(z)) = 0 means
precisely that h®(Kx —n - ) > 0 or equivalently, by Riemann-Roch,
that h%(n - z) > 1. But this means precisely that z is a Weierstrass
point. O

Proof of Theorem 5.1. It follows from Section 1 that x*n is a
global section of K*04(0)®"t! @ A®2? where A is the trivial bundle
det H°(X, Kx) ® Ox. From Lemma 5.3 we know that x*n is nonzero.
It is stated in Lemma 5.2 that F' is a nonzero global section of
K*04(0) ® K", As was observed by Arakelov (cf. [1, Lemma 3.3]),

the bundle
Kﬁ?n(nﬂ)/? @ A®—1
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has a nonzero section given by

AN

ELR e Ny P

with w¢ the Wronskian differential on (. Combining, we find that
wZ ® k*n @ F@~ (1) ig a nonzero global section of Ox. Hence, it is a
nonzero constant. We find

dive*n = (n+ 1)divF — 2divwe = (n+ L)W = 2W = (n — 1)W

as required. ]

Remark 5.4. An elaborate computation shows that actually
wg ® Kk*n = FOTL
Let us prove this relation in the case that n = 2. So we look at

indecomposable (A, ©) with A = C?/(Z? + 7Z?) and © = X = div .
For z on ©® = X put

P = 011(2)(1(2)®? + 2612(2)¢1(2) ® Ca(2) + 022(2)C2(2)®?

and
Q = 01(2)(1(2) + 02(2) G (2).

Then according to what we have said before Lemma 5.2 we have
P+Q=0, P-Q=2F
We conclude that
F =P =011(2)G1(2)%? + 2012(2)C1(2) © C2(2) + 022(2) G (2)®?,

and writing as before,

C(2) =dz1, (2(2) =dze = 25(2)dzy = —
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we get

F(2) = 011(2)(1(2)®? + 26012(2)¢1(2) @ (2(z) + 22(2)¢2(2)®?
= (011(2) + 2612(2) 25(2) + 022(2)(25(2))?) - (d21)®?

_ 011(2)02(2’)2 — 291291(2)02(2) + 022(2)91(2’)2 ) (le)®2
62(z)2
_ n(z) (dz)®2
 0(2)? (=)™
We have seen in Example 2.2 that w¢(z) = —(n(2)/02(2)3)(dz1)®3.

Combining, we find

wg ® Kk*n = F®3

as required. We note in passing that our formula (for general n) leads
to an alternative description of one of the analytic invariants studied
in [3].

6. Explicit formula. In the case that n = 2 it is possible to give a
closed formula for 77 using a more familiar theta function. This formula
can be viewed as a generalization of Jacobi’s derivative formula, cf.
Example 1.4, which gives 7 in the case that n = 1 as a product of even
Thetanullwerte. Recall that for a,b column vectors of dimension n
with entries in {0,1/2} we have on C" x H,, the theta function with
characteristic [Z] given by

0 [Z] (Z,T) — Z ewit(m+a)‘r(m+a)+2ﬂ.it(m+a)(z+b)‘

meZ"

The choice a = b = 0 gives the Riemann theta function, and it follows
from the definition that 6 [} ] (—2,7) = eiritabg (3] (2,7). Wecall [}]
an even or odd theta characteristic depending on whether 6 [} | (z,7)
is an even or odd function of z. If n = 2, there are ten even theta
characteristics, and six odd ones. The product []_ ..., 0[€](0,7)* of
Thetanullwerte is a modular form of weight 10 and level 1 and can be
related to the discriminant of a hyperelliptic equation.
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Theorem 6.1. For (z,7) in C? x Hy with 0(z,7) = 0, the formula

n(z,7)* = £r'? H 6[¢](0,7)* - 6(3z,7)

g even

holds.

Proof. 1t suffices to prove the formula for 7 corresponding to an
indecomposable Abelian surface. We write A = C2/(Z? + 7Z?) and
O = div# and assume that © is irreducible. By Theorem 1.3, the
section 7(z) is a theta function of order 3 on ©, and by Example 2.2 or
Theorem 5.1 it has zeroes exactly at © N A[2], the Weierstrass points
of O, all of multiplicity 1. On the other hand, the function 6(3z) gives
rise to a global section of 04(0)%?, i.e., is a theta function of order 9
on A, and has zeroes on O exactly at © N A[2], with multiplicity 3. It
follows that 1(z)® = c-0(3z) on the zero locus of §(z) in C2, where c is
a constant only depending on 7. In order to compute ¢, we recall from
Remark 5.4 that we(2)?n(z) = F(z)3, with ¢ the basis of H°(6, Kg)
given by (dz1,dz2), so that

9

(6.1) e= P

we(2)%6(32)
for z on ©\ (© N A[2]). We find ¢ by letting z approach a point @ of
© N A[2], along O, and computing Taylor expansions of the numerator
and denominator in (6.1). Note that the leading coefficient of a Taylor
expansion of F(z) around @ is the same as the leading coefficient of
a Taylor expansion of 6(2z)|e around Q. We start with the standard
Euclidean coordinates z1, z2, but now translated suitably so as to have
them both vanish at @ on A. According to [5, formula (1.6)] there
exist a constant b3 and an invertible 2-by-2 matrix p such that in the
coordinates (u1,us) = (21, 22) 1 one has a Taylor expansion
(6.2)
0(z) = 0(p tu) = yef™ <u1 + ibguﬁ - %ug + higher order terms),
with v some nonzero constant and with G(u) some holomorphic func-
tion that vanishes at u = 0. This gives us as a local coordinate around
Q@ on O, as well as an expansion

1
(6.3) up = Eug + higher order terms
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locally around @) on ©. The way wi,us are obtained is as follows.
One may identify (0, Q) with a hyperelliptic curve (X, c0) given by a
hyperelliptic equation y?> = f(z) with f a monic separable polynomial
of degree 5. We have then around @ a local coordinate ¢ such that
z=t"2+hot. and y = —t~° + h.o.t. A computation yields that

de 2 xdzx

— =2t +hot., —— =2t + h.o.t.
¥ 3 o Y

/ dzr / xdx
U = —, U2 = —
~ Y o Y

gives the required relation (6.3). The matrix p corresponds then to a
change of basis of holomorphic differentials on © from ¢ = (dz1,dz) to
¢’ = (dz/y, zdz/y) = (duy,duz). From (6.2) and (6.3), one computes

so that, putting

1
0(2z)|e = v e <2u1 - E(2u2)3 + h.o.t.>

1
=57 e 3 4 hoot.

and
0(32)|e

1
y eCB3w <3u1 - E(3u2)3 + h.o.t.>

= —27e%C 43 L hot.
As to the Wronskian of ¢, we have
we = (det ) wer.

Writing out w¢s with respect to uy gives

AN
wer (’U,Q) = det <Z,1, 0> (dU2)®3

1
= —uf (dug)®?

1
— (_ U2 + h.o.t.> (duz)®®.

c= = = 27%(det u)%4°.



176 ROBIN DE JONG

By [5, Theorem 2.11] one has

v = 2242 (det )¢ T 0l)(0, 7).

g even

Substituting this in our formula for ¢ we get the result. o
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