# THE AUTOMORPHISM GROUP OF AN EXTRASPECIAL p-GROUP

### DAVID L. WINTER

1. Let p be a prime. The finite p-group P is called special if either (i) P is elementary abelian or (ii) the center, commutator subgroup and Frattini subgroup of P all coincide and are elementary abelian. A nonabelian special p-group whose center has order p is called an extraspecial p-group. It is possible to give a uniform treatment of the subject of automorphisms for all the possible isomorphism types of extraspecial p-groups and so some cases that are more or less known are included here. The result when p is odd and P has exponent  $p^2$  leads to an interesting subgroup of the symplectic group Sp (2n, q), q a power of p, n > 1. This subgroup is the semidirect product of Sp (2n - 2, q) and a normal special p-group of order  $q^{2n-1}$  whose center has order q.

THEOREM 1. Let p be a prime and let P be an extraspecial p-group of order  $p^{2n+1}$ . Let I be the group of inner automorphisms and let H be the normal subgroup of Aut P consisting of all elements of Aut P which act trivially on Z(P). Then Aut  $P = \langle \theta \rangle H$  where  $\theta$  has order  $p - 1, H \cap \langle \theta \rangle = \langle 1 \rangle$  and H/I is isomorphic to a subgroup of Sp (2n, p). Furthermore,

(a) If p is odd and P has exponent p,  $H/I \cong \text{Sp}(2n, p)$  of order  $p^{n^2} \prod_{i=1}^{n} (p^{2i} - 1)$ .

(b) If p is odd and P has exponent  $p^2$ , H/I is the semidirect product of Sp (2n - 2, p) and a normal extraspecial group of order  $p^{2n-1}$ . (If n = 1, H/I has order p.)

(c) If p = 2, H/I is isomorphic to the orthogonal group  $O_{\epsilon}(2n, 2)$  of order  $2^{n(n-1)+1}(2^n - \epsilon)\prod_{i=1}^{n-1}(2^{2i} - 1)$ . Here  $\epsilon = 1$  if P is isomorphic to the central product of n dihedral groups of order 8 and  $\epsilon = -1$  if P is isomorphic to the central product of n - 1 dihedral groups of order 8 and a quaternion group.

COROLLARY 1. Let p be an odd prime and let P be an extraspecial p-group of exponent  $p^2$ . There is a nonidentity element of P/Z(P) left fixed by every automorphism of P.

Received by the editors June 16, 1970.

AMS 1970 subject classifications. Primary 20D45; Secondary 20F55, 20D05.

Copyright © 1972 Rocky Mountain Mathematics Consortium

COROLLARY 2. Let P be an extraspecial p-group of order  $p^{2n+1}$ and let  $\phi$  be an automorphism of P which acts trivially on Z(P) and irreducibly on P/Z(P). Then the order of  $\phi$  modulo I, the group of inner automorphisms, is a divisor of  $p^n + 1$ . If p is odd, P has exponent p.

2. As usual, Aut P denotes the automorphism group of P, Z(P) the center of P. If  $x \in P$ ,  $\bar{x}$  means the coset Z(P)x. If a is a rational integer  $\bar{a}$  means its image under the natural map of the integers onto GF(p). Since P has class 2, for p odd,

$$(2.1) (xy)^p = x^p y^p,$$

 $x, y \in P$  [3, 5.3.9]. The terminology and concepts of symplectic spaces are taken from [1] and [4, II, §9]. The results on extraspecial *p*-groups stated below are from [3] and [4].

Let P be an extraspecial p-group. Then P has order  $p^{2n+1}$  for some positive integer n. P is the central product of n nonabelian subgroups of order  $p^3$ . In all cases, P has generators  $x_1, \dots, x_{2n}$  satisfying the following relations once a suitable generator z of Z(P) is chosen.

$$\begin{split} [x_{2i-1}, x_{2i}] &= z, \qquad i = 1, \cdots, n. \\ [x_j, x_k] &= 1 \quad unless \ \{j, k\} \text{ is one of the pairs } \{2i - 1, 2i\} \text{ or} \\ &\{2i, 2i - 1\} \text{ for some } i, \ 1 \leq i \leq n. \\ &x_i^p \in \langle z \rangle \quad \text{for all } i, \ z^p = 1. \end{split}$$

If p is odd, there are two isomorphism classes; one with P of exponent p and one with P of exponent  $p^2$ . In the latter case, we may take  $x_1$  of order  $p^2$ ,  $x_i$  of order p if  $i \neq 1$  and  $x_1^p = z$  [3, 5.5.2].

If p = 2, P may be the central product of n dihedral groups of order 8 in which case we may take  $x_{2i-1}^2 = x_{2i}^2 = 1$ ,  $i = 1, \dots, n$ . If p = 2, the only other possibility is that P is isomorphic to the central product of n - 1 dihedral groups of order 8 and a quaternion group. In this case, we take  $x_{2i-1}^2 = x_{2i}^2 = 1$ ,  $i = 1, \dots, n - 1$ ,  $x_{2n-1}^2 = x_{2n}^2 = z$ .

Let  $x, y \in P$ . If one sets  $(\bar{x}, \bar{y}) = \bar{a}$  where  $[x, y] = z^a, P/Z(P)$  becomes a nondegenerate symplectic space over GF(p). The first two relations above may be expressed as  $(\bar{x}_{2i-1}, \bar{x}_{2i}) = 1$ , i = 1,  $\cdots$ ,  $n, (\bar{x}_j, \bar{x}_k) = 0$ , unless  $\{j, k\}$  is one of the pairs  $\{2i - 1, 2i\}$  or  $\{2i, 2i - 1\}, 1 \leq i \leq n$ .

If p = 2, we may also set  $q(\bar{x}) = \bar{c}$  where  $x^2 = z^c$  (c = 0 or 1). Then q is a quadratic form on P/Z(P). If P is the central product of *n* dihedral groups of order 8, then  $[4, III, \S13]$ 

(2.2) 
$$q(\bar{x}_1^{\xi_1} \, \bar{x}_2^{\xi_2} \cdots \bar{x}_{2n}^{\xi_{2n}}) = \xi_1 \, \xi_2 + \cdots + \xi_{2n-1} \, \xi_{2n}$$

If P is the central product of n-1 dihedral groups of order 8 and a quaternion group, then

(2.3) 
$$q(\bar{x}_{1}^{\xi_{1}} \bar{x}_{2}^{\xi_{2}} \cdots \bar{x}_{2n}^{\xi_{2n}}) = \bar{\xi}_{1} \bar{\xi}_{2} + \cdots + \bar{\xi}_{2n-3} \bar{\xi}_{2n-2} + \bar{\xi}_{2n-1}^{2} + \bar{\xi}_{2n-1} \bar{\xi}_{2n} + \bar{\xi}_{2n}^{2}$$

These are precisely the two possible normal forms of a nondegenerate quadratic form over GF(2) [2, Chapter VIII]. In both cases the quadratic form and the bilinear form are related by  $q(\bar{x} \bar{y}) = q(\bar{x}) + q(\bar{y}) + (\bar{x}, \bar{y})$ .

3. (3A) Let  $\phi \in \text{Aut } P$ .  $\phi$  induces on P/Z(P) an element of  $\operatorname{Sp}(2n, p)$  if and only if  $\phi$  acts trivially on Z(P). If p = 2,  $q(\phi(\overline{x})) = q(\overline{\phi(x)}) = q(\overline{x})$  for all  $x \in P$ .

**PROOF.** For  $x, y \in P$ ,  $(\phi(\bar{x}), \phi(\bar{y})) = (\overline{\phi(x)}, \phi(y)) = (\bar{x}, \bar{y})$  if and only if  $[x, y] = [\phi(x), \phi(y)] = \phi([x, y])$ . Since Z(P) = P', this proves the first assertion. If p = 2, the second follows since  $\phi(x)^2 = \phi(x^2) = x^2$  for all  $x \in P$ .

From now on *H* denotes the subgroup of Aut *P* consisting of all members of Aut *P* which act trivially on Z(P). If  $\alpha \in \text{Aut } P$  and  $h \in H, (\alpha^{-1}h\alpha)(z) = \alpha^{-1}[h(\alpha(z))] = \alpha^{-1}[\alpha(z)] = z$ . Hence,  $H \triangleleft \text{Aut } P$ . Of course if p = 2, Aut P = H.

(3B) Let *m* be a primitive root mod *p* with 0 < m < p. Let  $\theta$  be defined by  $\theta(x_{2i-1}) = x_{2i-1}^m$ ,  $\theta(x_{2i}) = x_{2i}$ ,  $i = 1, \dots, n$ ,  $\theta(z) = z^m$ . Then  $\theta$  can be extended to an automorphism of *P* of order p - 1. Furthermore, Aut  $P = \langle \theta \rangle H$  and  $\langle \theta \rangle \cap H = \langle 1 \rangle$ .

**PROOF.** The first statement follows since  $[x_{2i-1}^m, x_{2i}] = z^m$  (also if p is odd and P has exponent  $p^2$ ,  $x_1^{mp} = z^m$ ) and so  $x_{2i-1}^m$ ,  $x_{2i}$ ,  $z^m$ satisfy the same relations as  $x_{2i-1}$ ,  $x_{2i}$ , z. That Aut  $P = \langle \theta \rangle H$  is also clear since if  $\alpha \in \text{Aut } P$ ,  $\theta^{\alpha} \alpha \in H$  for a suitable power a. From the definitions  $\langle \theta \rangle \cap H = \langle 1 \rangle$ .

(3C) The group M of all automorphisms which act trivially on both Z(P) and P/Z(P) is equal to the group I of inner automorphisms. It consists of the  $p^{2n}$  automorphisms  $\phi$  determined by  $\phi(x_i) = x_i z^{d_i}$ ,  $\phi(z) = z, 0 \leq d_i < p$ .

**PROOF.** Clearly I of order  $p^{2n}$  is contained in M. Each element of M must be determined by one of the  $p^{2n}$  functions mentioned in the lemma. All statements now follow.

(3D) Each element of P can be expressed uniquely in the form  $(\prod_{i=1}^{2n} x_i^{a_i}) z^c, 0 \leq a_i, c < p.$ 

**PROOF.** This is true because  $\{\bar{x}_i\}_{i=1}^{2n}$  is a basis of the vector space P/Z(P).

We now regard Sp (2n, p) as operating on P/Z(P) and preserving the skew-symmetric bilinear form  $(\bar{x}, \bar{y})$ . Let  $T \in \text{Sp}(2n, p)$  and let  $A = (\bar{a}_{ij})$  be the matrix of T relative to the basis  $\{\bar{x}_i\}_{i=1}^{2n}$  where the  $a_{ij}$  are integers with  $0 \leq a_{ij} < p$  for all i and j. Define a function  $\phi$ from P to P by

(3.1) 
$$\phi(x) = \left[ \prod_{i=1}^{2n} \left( \prod_{j=1}^{2n} x_j^{a_{ij}} \right)^{a_i} \right] z^c$$

where  $(\prod_{i=1}^{2n} x_i^{a_i}) z^c$ ,  $0 \leq a_i$ , c < p, is the expression for x given in (3D). Call  $\phi$  the function determined by T.  $\phi$  is well defined, acts trivially on Z(P) and induces T on P/Z(P). Since T is nonsingular the range of  $\phi$  generates P modulo Z(P) so the range of  $\phi$  generates P since Z(P) is the Frattini subgroup. Therefore,  $\phi$  is an automorphism of P if and only if  $\phi$  preserves multiplication. In this direction it is immediate that

$$\boldsymbol{\phi}(x_i^{a_i}) = \left(\prod_j x_j^{a_{ij}}\right)^{a_i} = \boldsymbol{\phi}(x_i)^{a_i} \quad \text{and} \quad$$

(3.2)

$$\phi\left(\left[\prod_{i=1}^{2n} x_i^{a_i}\right] z^c\right) = \left[\prod_{i=1}^{2n} \phi(x_i)^{a_i}\right] z^c \quad \text{for } 0 \leq a_i, c < p.$$

Furthermore,  $\overline{(\phi(x), \phi(y))} = (T(\overline{x}), T(\overline{y})) = (\overline{x}, \overline{y})$ . Hence (3.3)  $[\phi(x), \phi(y)] = [x, y]$  for all  $x, y \in P$ .

(3E) H/I is isomorphic to the subgroup G of Sp (2n, p) consisting of all transformations which determine automorphisms of P by (3.1).

**PROOF.** By (3A) each  $\phi \in H$  induces a transformation  $T \in \text{Sp}(2n, p)$ on P/Z(P). The map  $\phi \to T$  is a homomorphism of H into Sp(2n, p)whose kernel is I by (3C). The image of the homomorphism obviously contains the set G of all transformations which determine automorphisms of P. On the other hand, let T be the image of  $\phi$  and let  $\phi_1$  be the function on P determined by T. We shall show that  $\phi = \alpha \phi_1$  for some inner automorphism  $\alpha$ .

Let  $\phi(x_i) = (\prod_j x_j^{a_{ij}}) z^{c_i}$ ,  $0 \leq a_{ij}$ ,  $c_i < p$ . Then the matrix of T relative to  $\{\bar{x}_i\}$  is  $(\bar{a}_{ij})$ . There exists a unique set of integers  $d_1, \dots, d_{2n}$ ,  $0 \leq d_i < p$  such that  $\sum_j a_{ij} d_j \equiv c_i \pmod{p}$ ,  $i = 1, \dots, 2n$ . By (3C) there is an inner automorphism  $\alpha$  such that  $\alpha(x_i) = x_i z^{d_i}$ , i = 1,  $\dots, 2n$ . Let  $x \in P$  and let  $x = (\prod_i x_i^{a_i}) z^c$ ,  $0 \leq a_i$ , c < p. Then

$$(\alpha \phi_1)(x) = \alpha \left( \left[ \prod_i \left( \prod_j x_j^{a_{ij}} \right)^{a_i} \right] z^c \right)$$
$$= \left[ \prod_i \left( \prod_j \alpha(x_j)^{a_{ij}} \right)^{a_i} \right] z^c$$
$$= \left[ \prod_i \left( \prod_j x_j^{a_{ij}} z^{a_{ij}d_j} \right)^{a_i} \right] z^c$$
$$= \left[ \prod_i \left( \prod_j x_j^{a_{ij}} \right)^{a_i} z^{a_ic_i} \right] z^c.$$

Hence

$$\phi(x) = \phi \left[ \left( \prod x_i^{a_i} \right) z^c \right]$$

$$= \left[ \prod_i \left( \left( \prod_j x_j^{a_{ij}} \right) z^{c_i} \right)^{a_i} \right] z^c = (\alpha \phi_1)(x).$$

Therefore,  $\phi_1 = \alpha^{-1} \phi$  is an automorphism and the image of H under the homomorphism is G. Thus G is a group and  $H/I \cong G$ .

(3F) Let  $\overline{T} \in \text{Sp}(2n, p)$  and let  $\phi$  be the function on P determined by T. Then  $\phi \in \text{Aut } P$  if and only if  $\phi(x_i)^p = x_i^p$ ,  $i = 1, \dots, 2n$ .

**PROOF.** Since  $\phi$  acts trivially on Z(P), the condition is necessary. Conversely, assume  $\phi(x_i)^p = x_i^p = z^{\gamma_i}, 0 \leq \gamma_i < p, i = 1, \dots, 2n$ . Let

$$x = \left(\prod_{i=1}^{2n} x_i^{a_i}\right) z^{c_1}, \quad y = \left(\prod_{i=1}^{2n} x_i^{b_i}\right) z^{c_2}, \quad 0 \leq a_i, b_i, c_i < p.$$

We have

$$\prod_{i} x_{i}^{a_{i}} \prod_{i} x_{i}^{b_{i}} = \left(\prod_{i=1}^{2n} x_{i}^{a_{i}+b_{i}}\right) \prod_{j=1}^{2n-1} \prod_{k=j+1}^{2n} [x_{k}^{a_{k}}, x_{j}^{b_{j}}]$$
$$= \left(\prod_{i=1}^{2n} x_{i}^{a_{i}+b_{i}}\right) z^{e}$$

for some e. By (3.2) and (3.3),

$$\prod \phi(x_i)^{a_i} \prod \phi(x_i)^{b_i} = \left[\prod \phi(x_i)^{a_i+b_i}\right] z^e.$$

Thus,  $\phi(xy) = \phi[(\prod x_i^{a_i+b_i})z^{c_1+c_2+e}]$ . Now set  $a_i + b_i = r_i + \delta_i p$ and  $c_1 + c_2 + e + \sum \gamma_i \delta_i = r + tp$  with  $0 \leq r_i, r < p, i = 1, \cdots, 2n$ . Then  $\phi(xy) = \phi[(\prod x_i^{r_i})z^r] = [\prod \phi(x_i)^{r_i}]z^r$ . On the other hand,

$$\begin{split} \phi(x)\phi(y) &= \left[\prod \phi(x_i)^{a_i}\right] \left[\prod \phi(x_i)^{b_i}\right] z^{c_1+c_2} \\ &= \left[\prod \phi(x_i)^{a_i+b_i}\right] z^{c_1+c_2+e} \\ &= \left[\prod \phi(x_i)^{r_i}\right] \left[\prod z^{\gamma_i \,\delta_i}\right] z^{c_1+c_2+e}. \end{split}$$

Hence,  $\phi(xy) = \phi(x)\phi(y)$  as desired.

4. If p is odd and P has exponent p, the condition of (3F) is always satisfied. Therefore, in this case,  $H/I \cong \text{Sp}(2n, p)$ .

If p = 2, the condition is  $\phi(x_i)^2 = \bar{x}_i^2$ ,  $i = 1, \dots, 2n$ . This is equivalent to  $q(\phi(\bar{x}_i)) = q(T(\bar{x}_i)) = q(\bar{x}_i)$  for all *i*. Thus the necessary condition  $q(\phi(\bar{x})) = q(T(\bar{x})) = q(\bar{x})$  given by (3A) is also sufficient to guarantee that *T* determines an automorphism. Hence, H/I is the orthogonal group associated with the appropriate quadratic form (2.2) or (2.3). The orders as well as other properties of these groups have been given by Dickson [2, Chapter VIII].

Assume now that p is odd and P has exponent  $p^2$ . As stated in §2 we may take  $x_1^p = z$ ,  $x_i^p = 1$  for i > 1. Then  $\phi(x_i)^p = (\prod x_j^{a_{ij}})^p = \prod_j x_j^{pa_{ij}} = z^{a_{i1}}$  by (2.1). Hence the group G of (3E) consists of all elements of Sp (2n, p) whose matrices relative to  $\{\bar{x}_i\}$  satisfy  $\bar{a}_{11} = 1$ ,  $\bar{a}_{i1} = 0$  for i > 1. The structure of G can be studied in a more general context.

Let  $q = p^r$  where p is any prime. Regard Sp (2n, q) as transformations of a nondegenerate symplectic space V over GF(q) preserving its skew-symmetric form. Let  $x_1, \dots, x_{2n}$  be a basis of V such that  $x_{2i-1}, x_{2i}$  is a hyperbolic pair for  $i = 1, \dots, n$  and

$$V = \langle x_1, x_2 \rangle \perp \cdots \perp \langle x_{2n-1}, x_{2n} \rangle.$$

By the matrix of a linear transformation of V we shall mean the matrix relative to this basis. Let L be the subgroup of Sp(2n, q) of all transformations whose matrices have first column  $(1, 0, \dots, 0)$ .

(4A) For all  $T \in L$ ,  $T(x_2) = x_2$ .

**PROOF.** Let  $T \in L$  and let  $T(x_i) = y_i$ ,  $i = 1, \dots, 2n$ . Since T is an isometry,  $V = \langle y_1, y_2 \rangle \perp \cdots \perp \langle y_{2n-1}, y_{2n} \rangle$ . Let  $H_1 = \langle y_1, y_2 \rangle$  and let  $H_1^{\perp}$  denote its orthogonal complement. Then by the definition of L,

$$(4.1) \quad H_1^{\perp} = \langle y_3, y_4 \rangle \perp \cdots \perp \langle y_{2n-1}, y_{2n} \rangle \subset \langle x_2, x_3, \cdots, x_{2n} \rangle.$$

Let  $A = (a_{ij})$  be the matrix of T and suppose  $a_{22} = 0$ . Then  $(y_1, x_1 + a_{12}x_2) = (x_1 + \sum_{i=2}^{2n} a_{1i}x_i, x_1 + a_{12}x_2) = -a_{12} + a_{12} = 0$  and  $(y_2, x_1 + a_{12}x_2) = (\sum_{j=3}^{2n} a_{2j}x_j, x_1 + a_{12}x_2) = 0$ . Therefore  $(x_1 + a_{12}x_2)$   $\in H_1^{\perp}$ , contrary to (4.1). Hence  $a_{22} \neq 0$ . Now  $\sum c_i x_i \in \langle y_2 \rangle^{\perp}$  if and only if

$$\left(\sum_{j=2}^{2n} a_{2j}x_j, \sum c_i x_i\right) = -c_1 a_{22} + \sum_{i,j=2}^{2n} a_{2j}c_i(x_j, x_i)$$
$$= -c_1 a_{22} + \sum_{j=2}^{2n} \left[\sum_{t=1}^n a_{2j}c_{2t}(x_j, x_{2t}) + \sum_{t=2}^n a_{2j}c_{2t-1}(x_j, x_{2t-1})\right]$$
$$= -c_1 a_{22} + \sum_{t=2}^n (a_{2,2t-1}c_{2t} - a_{2,2t}c_{2t-1}) = 0,$$

since  $a_{21} = 0$ . Hence  $\sum c_i x_i \in \langle y_2 \rangle^{\perp}$  if and only if

$$c_1 = \left[ \sum_{t=2}^{n} (a_{2,2t-1}c_{2t} - a_{2,2t}c_{2t-1}) \right] / a_{22}.$$

On the other hand,  $\sum c_i x_i \in \langle y_1 \rangle^{\perp}$  if and only if

$$\left(x_{1} + \sum_{j=2}^{2n} a_{1j}x_{j}, \sum c_{i}x_{i}\right)$$
  
=  $c_{2} - c_{1}a_{12} + \sum_{t=2}^{n} (a_{1,2t-1}c_{2t} - a_{1,2t}c_{2t-1}) = 0.$ 

This implies  $\sum c_i x_i \in H_1^{\perp}$  if  $c_3, c_4, \cdots, c_{2n}$  are chosen arbitrarily and  $c_1$  and  $c_2$  are taken as indicated above. But by (4.1) we know  $c_1 = 0$  always and this requires  $a_{2i} = 0$  for i > 2. We already know  $a_{21} = 0$  and since  $(y_1, y_2) = 1 = (x_1 + \sum_{j=2}^{2n} a_{1j}, a_{22}x_2) = a_{22}$ , (4A) is proved.

We note at this point that if n = 1, then L is isomorphic to the group of all matrices of the form

$$\begin{pmatrix} 1 & a_{12} \\ 0 & 1 \end{pmatrix}$$

and hence is an elementary abelian *p*-group of order *q*. From now on let n > 1 hold.

Each of the  $q^{2n-1}$  pairs  $y_1, y_2$  with  $y_1 = x_1 + \sum_{j=2}^{2n} a_{1j}x_j$ ,  $y_2 = x_2$  is a hyperbolic pair and the set of these pairs is invariant under L. Suppose  $T \in L$  fixes all of these pairs. Then T fixes the pairs  $x_1, x_2$  and  $x_1 + x_i, x_2, i > 2$ , which implies T is the identity. Therefore L is a permutation group on these pairs.

If  $y_1, y_2$  is one such pair, the map  $T(x_1) = y_1$ ,  $T(x_2) = y_2$  has an extension to an element  $S \in \text{Sp}(2n, q)$  by Witt's theorem [4, II, 9.9]. But for each i > 2,  $S(x_i)$  is in the orthogonal complement of  $\langle x_2 \rangle$  which is  $\langle x_2, \dots, x_{2n} \rangle$  and therefore  $S \in L$ . Hence L acts transitively on the pairs.

It follows that  $|L| = q^{2n-1}|K|$  where K is the subgroup fixing the pair  $x_1, x_2$ . But each element of K yields an isometry of  $\langle x_3, x_4, \dots, x_{2n} \rangle$  by restriction and conversely each such isometry can be extended in a unique way to an element of K. Hence  $K \cong \text{Sp}(2n-2, q)$ . Therefore

$$|L| = q^{2n-1}q^{(n-1)^2} \prod_{i=1}^{n-1} (q^{2i} - 1)$$
$$= q^{n^2} \prod_{i=1}^{n-1} (q^{2i} - 1).$$

The group of matrices of elements of K is the set of all matrices



where B is the matrix of an arbitrary element of Sp (2n - 2, q) relative to the basis  $x_3, x_4, \dots, x_{2n}$ .

Let S be the group of transformations whose matrices relative to  $x_1, \dots, x_{2n}$  have the form

$$C = \begin{pmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1,2n} \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & a_{14} & & & \\ 0 & -a_{13} & & & \\ & \ddots & & & & \\ & \ddots & & & & I \\ & \ddots & & & & I \\ & \ddots & & & & I \\ & 0 & a_{1,2n} & & & \\ 0 & -a_{1,2n-1} & & & & \end{pmatrix}$$

where *I* is the identity matrix of rank 2n - 2. Since

166



S has exponent p. If p is odd, it is easily verified that S is a special p-group of order  $q^{2n-1}$  whose center has order q. If p = 2, S is elementary abelian. Clearly  $K \cap S = \langle 1 \rangle$  and from the group orders L = KS.

Computing with the matrices above, we have

This shows that  $S \triangleleft L$ . This completes the proof of Theorem 1.

**PROOF OF COROLLARY 1.** For a coset decomposition of H relative to I we may write  $H = \bigcup I\phi_i$  where  $\phi_i$  runs over all automorphisms of P which are determined by transformations in G (refer to (3E)). If p is odd and P has exponent  $p^2$ , we have seen that  $\phi_i(\bar{x}_2) = \bar{x}_2$  for each such  $\phi_i$ . Thus  $\phi(\bar{x}_2) = \bar{x}_2$  for all  $\phi \in H$  and the same is true for all  $\phi \in$  Aut P by (3B).

**PROOF OF COROLLARY 2.** Let  $\phi$  satisfy the hypotheses of Corollary 2. Then  $\phi \in H$  and from the preceding paragraph  $\phi = \alpha \phi_i$  where  $\alpha$ is an inner automorphism and  $\phi_i$  is an automorphism of P determined by some  $T \in \text{Sp}(2n, p)$ . Thus the action of  $\phi$  on P/Z(P) is the same as T on P/Z(P). Hence  $\langle T \rangle$  acts irreducibly on P/Z(P) and by [4, II, 9.23] if the order of T is  $m, m \mid (p^n + 1)$ . This m is the least positive

integer such that  $\phi^m$  acts trivially on P/Z(P) and hence by (3C) the least positive integer such that  $\phi^m \in I$ .

If p is odd, P cannot have exponent  $p^2$  by Corollary 1.

## References

1. E. Artin, Geometric algebra, Interscience, New York, 1957. MR 18, 553.

2. L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover, New York, 1958. MR 21 #3488.

3. D. Gorenstein, *Finite groups*, Harper and Row, New York, 1968. MR 38 #229.

4. B. Huppert, *Endliche Gruppen*. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR 37 #302.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823