THE AUTOMORPHISM GROUP OF AN EXTRASPECIAL p-GROUP

DAVID L. WINTER

1. Let p be a prime. The finite p-group P is called special if either (i) P is elementary abelian or (ii) the center, commutator subgroup and Frattini subgroup of P all coincide and are elementary abelian. A nonabelian special p-group whose center has order p is called an extraspecial p-group. It is possible to give a uniform treatment of the subject of automorphisms for all the possible isomorphism types of extraspecial p-groups and so some cases that are more or less known are included here. The result when p is odd and P has exponent p^{2} leads to an interesting subgroup of the symplectic group $\operatorname{Sp}(2 n, q)$, q a power of $p, n>1$. This subgroup is the semidirect product of Sp $(2 n-2, q)$ and a normal special p-group of order $q^{2 n-1}$ whose center has order q.

Theorem 1. Let p be a prime and let P be an extraspecial p-group of order $p^{2 n+1}$. Let I be the group of inner automorphisms and let H be the normal subgroup of Aut P consisting of all elements of Aut P which act trivially on $Z(P)$. Then Aut $P=\langle\theta\rangle H$ where θ has order $p-1, H \cap\langle\theta\rangle=\langle 1\rangle$ and H / I is isomorphic to a subgroup of $\operatorname{Sp}(2 n, p)$. Furthermore,
(a) If p is odd and P has exponent $p, H / I \cong \operatorname{Sp}(2 n, p)$ of order $p^{n^{2}} \prod_{i=1}^{n}\left(p^{2 i}-1\right)$.
(b) If p is odd and P has exponent $p^{2}, H / I$ is the semidirect product of $\operatorname{Sp}(2 n-2, p)$ and a normal extraspecial group of order $p^{2 n-1}$. (If $n=1, H / I$ has order p.)
(c) If $p=2, H / I$ is isomorphic to the orthogonal group $O_{\epsilon}(2 n, 2)$ of order $2^{n(n-1)+1}\left(2^{n}-\epsilon\right) \prod_{i=1}^{n-1}\left(2^{2 i}-1\right)$. Here $\boldsymbol{\epsilon}=1$ if P is isomorphic to the central product of n dihedral groups of order 8 and $\epsilon=-1$ if P is isomorphic to the central product of $n-1$ dihedral groups of order 8 and a quaternion group.

Corollary 1. Let p be an odd prime and let P be an extraspecial p-group of exponent p^{2}. There is a nonidentity element of $P / Z(P)$ left fixed by every automorphism of P.

AMS 1970 subject classifications. Primary 20D45; Secondary 20F55, 20 D 05.

Corollary 2. Let P be an extraspecial p-group of order $p^{2 n+1}$ and let ϕ be an automorphism of P which acts trivially on $Z(P)$ and irreducibly on $\mathrm{P} / \mathrm{Z}(P)$. Then the order of ϕ modulo I, the group of inner automorphisms, is a divisor of $p^{n}+1$. If p is odd, P has exponent p.
2. As usual, Aut P denotes the automorphism group of $P, Z(P)$ the center of P. If $x \in P, \bar{x}$ means the $\operatorname{coset} Z(P) x$. If a is a rational integer \bar{a} means its image under the natural map of the integers onto $\operatorname{GF}(p)$. Since P has class 2, for p odd,

$$
\begin{equation*}
(x y)^{p}=x^{p} y^{p} \tag{2.1}
\end{equation*}
$$

$x, y \in P[3,5.3 .9]$. The terminology and concepts of symplectic spaces are taken from [1] and [4, II, §9]. The results on extraspecial p-groups stated below are from [3] and [4].

Let P be an extraspecial p-group. Then P has order $p^{2 n+1}$ for some positive integer $n . P$ is the central product of n nonabelian subgroups of order p^{3}. In all cases, P has generators $x_{1}, \cdots, x_{2 n}$ satisfying the following relations once a suitable generator z of $Z(P)$ is chosen.

$$
\begin{aligned}
{\left[x_{2 i-1}, x_{2 i}\right]=} & z, \quad i=1, \cdots, n . \\
{\left[x_{j}, x_{k}\right]=} & 1 \quad \text { unless }\{j, k\} \text { is one of the pairs }\{2 i-1,2 i\} \text { or } \\
& \{2 i, 2 i-1\} \text { for some } i, 1 \leqq i \leqq n .
\end{aligned}
$$

$$
x_{i}^{p} \in\langle z\rangle \text { for all } i, z^{p}=1
$$

If p is odd, there are two isomorphism classes; one with P of exponent p and one with P of exponent p^{2}. In the latter case, we may take x_{1} of order p^{2}, x_{i} of order p if $i \neq 1$ and $x_{1}{ }^{p}=z$ [3, 5.5.2]

If $p=2, P$ may be the central product of n dihedral groups of order 8 in which case we may take $x_{2 i-1}^{2}=x_{2 i}^{2}=1, i=1, \cdots, n$. If $p=2$, the only other possibility is that P is isomorphic to the central product of $n-1$ dihedral groups of order 8 and a quaternion group. In this case, we take $x_{2 i-1}^{2}=x_{2 i}^{2}=1, i=1, \cdots, n-1, x_{2 n-1}^{2}=$ $x_{2 n}^{2}=z$.

Let $x, y \in P$. If one sets $(\bar{x}, \bar{y})=\bar{a}$ where $[x, y]=z^{a}, P / Z(P)$ becomes a nondegenerate symplectic space over $G F(p)$. The first two relations above may be expressed as $\left(\bar{x}_{2 i-1}, \bar{x}_{2 i}\right)=1, i=1$, $\cdots, n,\left(\bar{x}_{j}, \bar{x}_{k}\right)=0$, unless $\{j, k\}$ is one of the pairs $\{2 i-1,2 i\}$ or $\{2 i, 2 i-1\}, 1 \leqq i \leqq n$.

If $p=2$, we may also set $q(\bar{x})=\bar{c}$ where $x^{2}=z^{c}(c=0$ or 1$)$. Then q is a quadratic form on $P / Z(P)$. If P is the central product of
n dihedral groups of order 8, then [4, III, §13]

$$
\begin{equation*}
q\left(\bar{x}_{1}^{\xi_{1}} \bar{x}_{2}^{\xi_{2}} \cdots \bar{x}_{2 n}^{\xi_{2 n}}\right)=\bar{\xi}_{1} \bar{\xi}_{2}+\cdots+\bar{\xi}_{2 n-1} \bar{\xi}_{2 n} \tag{2.2}
\end{equation*}
$$

If P is the central product of $n-1$ dihedral groups of order 8 and a quaternion group, then

$$
\begin{align*}
q\left(\bar{x}_{1}^{\xi_{1}} \bar{x}_{2}^{\xi_{2}} \cdots \bar{x}_{2 n}^{\xi_{2 n}}\right)= & \bar{\xi}_{1} \bar{\xi}_{2}+\cdots+\bar{\xi}_{2 n-3} \bar{\xi}_{2 n-2}+\bar{\xi}_{2 n-1}^{2} \\
& +\bar{\xi}_{2 n-1} \bar{\xi}_{2 n}+\bar{\xi}_{2 n}^{2} \tag{2.3}
\end{align*}
$$

These are precisely the two possible normal forms of a nondegenerate quadratic form over $G F(2)$ [2, Chapter VIII]. In both cases the quadratic form and the bilinear form are related by $q(\bar{x} \bar{y})=q(\bar{x})$ $+q(\bar{y})+(\bar{x}, \bar{y})$.
3. (3A) Let $\phi \in$ Aut P. ϕ induces on $P / Z(P)$ an element of $\operatorname{Sp}(2 n, p)$ if and only if ϕ acts trivially on $Z(P)$. If $p=2, q(\phi(\bar{x}))=$ $q(\overline{\boldsymbol{\phi}(x)})=q(\bar{x})$ for all $x \in P$.

Proof. For $x, y \in P,(\phi(\bar{x}), \phi(\bar{y}))=\overline{(\phi(x)}, \overline{\phi(y)})=(\bar{x}, \bar{y})$ if and only if $[x, y]=[\phi(x), \phi(y)]=\phi([x, y])$. Since $Z(P)=P^{\prime}$, this proves the first assertion. If $p=2$, the second follows since $\phi(x)^{2}=\phi\left(x^{2}\right)=x^{2}$ for all $x \in P$.

From now on H denotes the subgroup of Aut P consisting of all members of Aut P which act trivially on $Z(P)$. If $\alpha \in$ Aut P and $h \in H,\left(\alpha^{-1} h \alpha\right)(z)=\alpha^{-1}[h(\alpha(z))]=\alpha^{-1}[\alpha(z)]=z$. Hence, $H \triangleleft$ Aut P. Of course if $p=2$, Aut $P=H$.
(3B) Let m be a primitive root $\bmod p$ with $0<m<p$. Let θ be defined by $\boldsymbol{\theta}\left(x_{2 i-1}\right)=x_{2 i-1}^{m}, \theta\left(x_{2 i}\right)=x_{2 i}, i=1, \cdots, n, \theta(z)=z^{m}$. Then θ can be extended to an automorphism of P of order $p-1$. Furthermore, Aut $P=\langle\boldsymbol{\theta}\rangle H$ and $\langle\boldsymbol{\theta}\rangle \cap H=\langle 1\rangle$.

Proof. The first statement follows since $\left[x_{2 i-1}^{m}, x_{2 i}\right]=z^{m}$ (also if p is odd and P has exponent $p^{2}, x_{1}^{m p}=z^{m}$) and so $x_{2 i-1}^{m}, x_{2 i}, z^{m}$ satisfy the same relations as $x_{2 i-1}, x_{2 i}, z$. That Aut $P=\langle\theta\rangle H$ is also clear since if $\boldsymbol{\alpha} \in$ Aut $P, \boldsymbol{\theta}^{a} \boldsymbol{\alpha} \in H$ for a suitable power a. From the definitions $\langle\theta\rangle \cap H=\langle 1\rangle$.
(3C) The group M of all automorphisms which act trivially on both $Z(P)$ and $P / Z(P)$ is equal to the group I of inner automorphisms. It consists of the $p^{2 n}$ automorphisms ϕ determined by $\phi\left(x_{i}\right)=x_{i} z^{d_{i}}$, $\phi(z)=z, 0 \leqq d_{i}<p$.

Proof. Clearly I of order $p^{2 n}$ is contained in M. Each element of M must be determined by one of the $p^{2 n}$ functions mentioned in the lemma. All statements now follow.
(3D) Each element of P can be expressed uniquely in the form $\left(\prod_{i=1}^{2 n} x_{i}^{a_{i}}\right) z^{c}, 0 \leqq a_{i}, c<p$.

Proof. This is true because $\left\{\bar{x}_{i}\right\}_{i=1}^{2 n}$ is a basis of the vector space $P / Z(P)$.

We now regard $\mathrm{Sp}(2 n, p)$ as operating on $P / Z(P)$ and preserving the skew-symmetric bilinear form (\bar{x}, \bar{y}). Let $T \in \operatorname{Sp}(2 n, p)$ and let $A=\left(\overline{a_{i j}}\right)$ be the matrix of T relative to the basis $\left\{\bar{x}_{i}\right\}_{i=1}^{2 n}$ where the $a_{i j}$ are integers with $0 \leqq a_{i j}<p$ for all i and j. Define a function ϕ from P to P by

$$
\begin{equation*}
\phi(x)=\left[\prod_{i=1}^{2 n}\left(\prod_{j=1}^{2 n} x_{j}^{a_{i j}}\right)^{a_{i}}\right] z^{c} \tag{3.1}
\end{equation*}
$$

where $\left(\prod_{i=1}^{2 n} x_{i}^{a_{i}}\right) z^{c}, 0 \leqq a_{i}, c<p$, is the expression for x given in (3D). Call ϕ the function determined by $T . \phi$ is well defined, acts trivially on $Z(P)$ and induces T on $P / Z(P)$. Since T is nonsingular the range of ϕ generates P modulo $Z(P)$ so the range of ϕ generates P since $Z(P)$ is the Frattini subgroup. Therefore, ϕ is an automorphism of P if and only if ϕ preserves multiplication. In this direction it is immediate that

$$
\phi\left(x_{i}^{a_{i}}\right)=\left(\prod_{j} x_{j}^{a_{i j}}\right)^{a_{i}}=\phi\left(x_{i}\right)^{a_{i}} \quad \text { and }
$$

$$
\begin{equation*}
\phi\left(\left[\prod_{i=1}^{2 n} x_{i}^{a_{i}}\right] z^{c}\right)=\left[\prod_{i=1}^{2 n} \phi\left(x_{i}\right)^{a_{i}}\right] z^{c} \quad \text { for } 0 \leqq a_{i}, c<p \tag{3.2}
\end{equation*}
$$

Furthermore, $\overline{(\phi(x)}, \overline{\phi(y)})=(T(\bar{x}), T(\bar{y}))=(\bar{x}, \bar{y})$. Hence

$$
\begin{equation*}
[\phi(x), \phi(y)]=[x, y] \quad \text { for all } x, y \in P \tag{3.3}
\end{equation*}
$$

(3E) H/I is isomorphic to the subgroup G of $\operatorname{Sp}(2 n, p)$ consisting of all transformations which determine automorphisms of P by (3.1).

Proof. By (3A) each $\phi \in H$ induces a transformation $T \in \operatorname{Sp}(2 n, p)$ on $P / Z(P)$. The map $\phi \rightarrow T$ is a homomorphism of H into $\operatorname{Sp}(2 n, p)$ whose kernel is I by (3C). The image of the homomorphism obviously contains the set G of all transformations which determine automorphisms of P. On the other hand, let T be the image of ϕ and let ϕ_{1} be the function on P determined by T. We shall show that $\phi=\boldsymbol{\alpha} \phi_{1}$ for some inner automorphism $\boldsymbol{\alpha}$.

Let $\phi\left(x_{i}\right)=\left(\prod_{j} x_{j}^{a_{i j}}\right) z^{c_{i}}, 0 \leqq a_{i j}, c_{i}<p$. Then the matrix of T relative to $\left\{\bar{x}_{i}\right\}$ is $\left(\overline{a_{i j}}\right)$. There exists a unique set of integers $d_{1}, \cdots, d_{2 n}$, $0 \leqq d_{i}<p$ such that $\sum_{j} a_{i j} d_{j} \equiv c_{i}(\bmod p), i=1, \cdots, 2 n . \quad$ By (3C) there is an inner automorphism α such that $\alpha\left(x_{i}\right)=x_{i} z^{d_{i}}, i=1$, $\cdots, 2 n$. Let $x \in P$ and let $x=\left(\prod x_{i}{ }^{a_{i}}\right) z^{c}, 0 \leqq a_{i}, c<p$. Then

$$
\begin{aligned}
\left(\alpha \phi_{1}\right)(x) & =\alpha\left(\left[\prod_{i}\left(\prod_{j} x_{j}^{a_{i j}}\right)^{a_{i}}\right] z^{c}\right) \\
& =\left[\prod_{i}\left(\prod_{j} \alpha\left(x_{j}\right)^{a_{i j}}\right)^{a_{i}}\right] z^{c} \\
& =\left[\prod_{i}\left(\prod_{j} x_{j}^{a_{i j}} z^{a_{i j} d_{j}}\right)^{a_{i}}\right] z^{c} \\
& =\left[\prod_{i}\left(\prod_{j} x_{j}^{a_{i j}}\right)^{a_{i}} z^{a_{i} c_{i}}\right] z^{c}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi(x) & =\phi\left[\left(\prod x_{i}^{a_{i}}\right) z^{c}\right] \\
& =\left[\prod_{i}\left(\left(\prod_{j} x_{j}^{a_{i j}}\right) z^{c_{i}}\right)^{a_{i}}\right] z^{c}=\left(\alpha \phi_{1}\right)(x) .
\end{aligned}
$$

Therefore, $\boldsymbol{\phi}_{1}=\boldsymbol{\alpha}^{-1} \boldsymbol{\phi}$ is an automorphism and the image of H under the homomorphism is G. Thus G is a group and $H / I \cong G$.
(3F) Let $T \in \operatorname{Sp}(2 n, p)$ and let ϕ be the function on P determined by T. Then $\phi \in$ Aut P if and only if $\phi\left(x_{i}\right)^{p}=x_{i}{ }^{p}, i=1, \cdots, 2 n$.

Proof. Since ϕ acts trivially on $Z(P)$, the condition is necessary. Conversely, assume $\phi\left(x_{i}\right)^{p}=x_{i}^{p}=z^{\gamma_{i}, 0} \leqq \gamma_{i}<p, i=1, \cdots, 2 n$. Let

$$
x=\left(\prod_{i=1}^{2 n} x_{i}^{a_{i}}\right) z^{c_{1}}, \quad y=\left(\prod_{i=1}^{2 n} x_{i}^{b_{i}}\right) z^{c_{2}}, \quad 0 \leqq a_{i}, b_{i}, c_{i}<p
$$

We have

$$
\begin{aligned}
\prod_{i} x_{i}^{a_{i}} \prod_{i} x_{i}^{b_{i}} & =\left(\prod_{i=1}^{2 n} x_{i}^{a_{i}+b_{i}}\right) \prod_{j=1}^{2 n-1} \prod_{k=j+1}^{2 n}\left[x_{k}^{a_{k}}, x_{j}^{b_{j}}\right] \\
& =\left(\prod_{i=1}^{2 n} x_{i}^{a_{i}+b_{i}}\right) z^{e}
\end{aligned}
$$

for some e. By (3.2) and (3.3),

$$
\prod \phi\left(x_{i}\right)^{a_{i}} \Pi \phi\left(x_{i}\right)^{b_{i}}=\left[\prod \phi\left(x_{i}\right)^{a_{i}+b_{i}}\right] z^{e}
$$

Thus, $\boldsymbol{\phi}(x y)=\boldsymbol{\phi}\left[\left(\prod x_{i}^{a_{i}+b_{i}}\right) z^{c_{1}+c_{2}+e}\right]$. Now set $a_{i}+b_{i}=r_{i}+\delta_{i} p$ and $c_{1}+c_{2}+e+\sum \gamma_{i} \delta_{i}=r+t p$ with $0 \leqq r_{i}, r<p, i=1, \cdots$, $2 n$. Then $\boldsymbol{\phi}(x y)=\boldsymbol{\phi}\left[\left(\prod x_{i}{ }^{r_{i}}\right) z^{r}\right]=\left[\prod \boldsymbol{\phi}\left(x_{i}\right)^{r_{i}}\right] z^{r}$. On the other hand,

$$
\begin{aligned}
\phi(x) \phi(y) & =\left[\prod \phi\left(x_{i}\right)^{a_{i}}\right]\left[\prod \phi\left(x_{i}\right)^{b_{i}}\right] z^{c_{1}+c_{2}} \\
& =\left[\prod \phi\left(x_{i}\right)^{a_{i}+b_{i}}\right] z^{c_{1}+c_{2}+e} \\
& =\left[\prod \phi\left(x_{i}\right)^{r_{i}}\right]\left[\prod z^{\gamma_{i} \delta_{i}}\right] z^{c_{1}+c_{2}+e}
\end{aligned}
$$

Hence, $\boldsymbol{\phi}(x y)=\boldsymbol{\phi}(x) \boldsymbol{\phi}(y)$ as desired.
4. If p is odd and P has exponent p, the condition of $(3 F)$ is always satisfied. Therefore, in this case, $H / I \cong \operatorname{Sp}(2 n, p)$.

If $p=2$, the condition is $\phi\left(x_{i}\right)^{2}=x_{i}{ }^{2}, i=1, \cdots, 2 n$. This is equivalent to $q\left(\phi\left(\bar{x}_{i}\right)\right)=q\left(T\left(\bar{x}_{i}\right)\right)=q\left(\bar{x}_{i}\right)$ for all i. Thus the necessary condition $q(\phi(\bar{x}))=q(T(\bar{x}))=q(\bar{x})$ given by (3A) is also sufficient to guarantee that T determines an automorphism. Hence, H / I is the orthogonal group associated with the appropriate quadratic form (2.2) or (2.3). The orders as well as other properties of these groups have been given by Dickson [2, Chapter VIII].

Assume now that p is odd and P has exponent p^{2}. As stated in $\S 2$ we may take $x_{1}{ }^{p}=z, x_{i}^{p}=1$ for $i>1$. Then $\phi\left(x_{i}\right)^{p}=\left(\prod_{j} x_{j}^{a_{i j}}\right)^{p}=$ $\prod_{i} x_{j}{ }^{p a_{i j}}=z^{a_{i 1}}$ by (2.1). Hence the group G of (3E) consists of all elements of $\mathrm{Sp}(2 n, p)$ whose matrices relative to $\left\{\bar{x}_{i}\right\}$ satisfy $\bar{a}_{11}=1, \quad \bar{a}_{i 1}=0$ for $i>1$. The structure of G can be studied in a more general context.

Let $q=p^{r}$ where p is any prime. Regard $\operatorname{Sp}(2 n, q)$ as transformations of a nondegenerate symplectic space V over $G F(q)$ preserving its skew-symmetric form. Let $x_{1}, \cdots, x_{2 n}$ be a basis of V such that $x_{2 i-1}, x_{2 i}$ is a hyperbolic pair for $i=1, \cdots, n$ and

$$
V=\left\langle x_{1}, x_{2}\right\rangle \perp \cdots \perp\left\langle x_{2 n-1}, x_{2 n}\right\rangle
$$

By the matrix of a linear transformation of V we shall mean the matrix relative to this basis. Let L be the subgroup of $\operatorname{Sp}(2 n, q)$ of all transformations whose matrices have first column $(1,0, \cdots, 0)$.
(4A) For all $T \in L, T\left(x_{2}\right)=x_{2}$.
Proof. Let $T \in L$ and let $T\left(x_{i}\right)=y_{i}, i=1, \cdots, 2 n$. Since T is an isometry, $V=\left\langle y_{1}, y_{2}\right\rangle \perp \cdots \perp\left\langle y_{2 n-1}, y_{2 n}\right\rangle$. Let $H_{1}=\left\langle y_{1}, y_{2}\right\rangle$ and let H_{1}^{\perp} denote its orthogonal complement. Then by the definition of L,

$$
\begin{equation*}
H_{1}^{\perp}=\left\langle y_{3}, y_{4}\right\rangle \perp \cdots \perp\left\langle y_{2 n-1}, y_{2 n}\right\rangle \subset\left\langle x_{2}, x_{3}, \cdots, x_{2 n}\right\rangle \tag{4.1}
\end{equation*}
$$

Let $A=\left(a_{i j}\right)$ be the matrix of T and suppose $a_{22}=0$. Then $\left(y_{1}, x_{1}+a_{12} x_{2}\right)=\left(x_{1}+\sum_{i=2}^{2 n} a_{1 i} x_{i}, x_{1}+a_{12} x_{2}\right)=-a_{12}+a_{12}=0$ and
$\left(y_{2}, x_{1}+a_{12} x_{2}\right)=\left(\sum_{j=3}^{2 n} a_{2 j} x_{j}, x_{1}+a_{12} x_{2}\right)=0$. Therefore $\left(x_{1}+a_{12} x_{2}\right)$ $\in H_{1}^{\perp}$, contrary to (4.1). Hence $a_{22} \neq 0$.

Now $\sum c_{i} x_{i} \in\left\langle y_{2}\right\rangle^{\perp}$ if and only if

$$
\begin{aligned}
& \left(\sum_{j=2}^{2 n} a_{2 j} x_{j}, \sum c_{i} x_{i}\right)=-c_{1} a_{22}+\sum_{i, j=2}^{2 n} a_{2 j} c_{i}\left(x_{j}, x_{i}\right) \\
& \quad=-c_{1} a_{22}+\sum_{j=2}^{2 n}\left[\sum_{t=1}^{n} a_{2 j} c_{2 t}\left(x_{j}, x_{2 t}\right)+\sum_{t=2}^{n} a_{2 j} c_{2 t-1}\left(x_{j}, x_{2 t-1}\right)\right] \\
& \quad=-c_{1} a_{22}+\sum_{t=2}^{n}\left(a_{2,2 t-1} c_{2 t}-a_{2,2 t} c_{2 t-1}\right)=0
\end{aligned}
$$

since $a_{21}=0$. Hence $\sum c_{i} x_{i} \in\left\langle y_{2}\right\rangle^{\perp}$ if and only if

$$
c_{1}=\left[\sum_{t=2}^{n}\left(a_{2,2 t-1} c_{2 t}-a_{2,2 t} c_{2 t-1}\right)\right] / a_{22}
$$

On the other hand, $\sum c_{i} x_{i} \in\left\langle y_{1}\right\rangle^{\perp}$ if and only if

$$
\begin{aligned}
&\left(x_{1}+\sum_{j=2}^{2 n} a_{1 j} x_{j}, \sum c_{i} x_{i}\right) \\
&=c_{2}-c_{1} a_{12}+\sum_{t=2}^{n}\left(a_{1,2 t-1} c_{2 t}-a_{1,2 t} c_{2 t-1}\right)=0
\end{aligned}
$$

This implies $\sum c_{i} x_{i} \in H_{1}^{\perp}$ if $c_{3}, c_{4}, \cdots, c_{2 n}$ are chosen arbitrarily and c_{1} and c_{2} are taken as indicated above. But by (4.1) we know $c_{1}=0$ always and this requires $a_{2 i}=0$ for $i>2$. We already know $a_{21}=0$ and since $\left(y_{1}, y_{2}\right)=1=\left(x_{1}+\sum_{j=2}^{2 n} a_{1 j}, a_{22} x_{2}\right)=a_{22},(4 \mathrm{~A})$ is proved.

We note at this point that if $n=1$, then L is isomorphic to the group of all matrices of the form

$$
\left(\begin{array}{cc}
1 & a_{12} \\
0 & 1
\end{array}\right)
$$

and hence is an elementary abelian p-group of order q. From now on let $n>1$ hold.

Each of the $q^{2 n-1}$ pairs y_{1}, y_{2} with $y_{1}=x_{1}+\sum_{j=2}^{2 n} a_{1 j} x_{j}, \quad y_{2}=x_{2}$ is a hyperbolic pair and the set of these pairs is invariant under L. Suppose $T \in L$ fixes all of these pairs. Then T fixes the pairs x_{1}, x_{2} and $x_{1}+x_{i}, x_{2}, i>2$, which implies T is the identity. Therefore L is a permutation group on these pairs.

If y_{1}, y_{2} is one such pair, the map $T\left(x_{1}\right)=y_{1}, T\left(x_{2}\right)=y_{2}$ has an extension to an element $S \in \operatorname{Sp}(2 n, q)$ by Witt's theorem [4, II, 9.9]. But for each $i>2, S\left(x_{i}\right)$ is in the orthogonal complement of $\left\langle x_{2}\right\rangle$ which is $\left\langle x_{2}, \cdots, x_{2 n}\right\rangle$ and therefore $S \in L$. Hence L acts transitively on the pairs.

It follows that $|L|=q^{2 n-1}|K|$ where K is the subgroup fixing the pair x_{1}, x_{2}. But each element of K yields an isometry of $\left\langle x_{3}, x_{4}, \cdots, x_{2 n}\right\rangle$ by restriction and conversely each such isometry can be extended in a unique way to an element of K. Hence $K \cong \operatorname{Sp}(2 n-2, q)$. Therefore

$$
\begin{aligned}
|L| & =q^{2 n-1} q^{(n-1)^{2}} \prod_{i=1}^{n-1}\left(q^{2 i}-1\right) \\
& =q^{n^{2}} \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)
\end{aligned}
$$

The group of matrices of elements of K is the set of all matrices

$$
R_{B}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 1 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & & & & & \\
\cdot & \cdot & & & & & \\
\cdot & \cdot & & & B & & \\
\cdot & \cdot & & & & & \\
0 & 0 & & & & &
\end{array}\right)
$$

where B is the matrix of an arbitrary element of $\operatorname{Sp}(2 n-2, q)$ relative to the basis $x_{3}, x_{4}, \cdots, x_{2 n}$.

Let S be the group of transformations whose matrices relative to $x_{1}, \cdots, x_{2 n}$ have the form

where I is the identity matrix of $\operatorname{rank} 2 n-2$. Since

S has exponent p. If p is odd, it is easily verified that S is a special p-group of order $q^{2 n-1}$ whose center has order q. If $p=2, S$ is elementary abelian. Clearly $K \cap S=\langle 1\rangle$ and from the group orders $L=K S$.

Computing with the matrices above, we have

$$
R_{B}{ }^{-1} C R_{B}=\left(\begin{array}{cccccc}
1 & a_{12} & \left(a_{13},\right. & \left.\cdots, a_{1,2 n}\right) & B \\
0 & 1 & 0 & \cdot & \cdot & 0 \\
0 & & \left(\begin{array}{c}
a_{14} \\
-a_{13} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right. & B^{-1}\left(\begin{array}{llll}
\\
-a_{2 n-1}
\end{array}\right)
\end{array}\right) .
$$

This shows that $S \triangleleft L$. This completes the proof of Theorem 1 .
Proof of Corollary 1. For a coset decomposition of H relative to I we may write $H=\bigcup I \phi_{i}$ where ϕ_{i} runs over all automorphisms of P which are determined by transformations in G (refer to (3 E)). If p is odd and P has exponent p^{2}, we have seen that $\phi_{i}\left(\bar{x}_{2}\right)=\bar{x}_{2}$ for each such ϕ_{i}. Thus $\phi\left(\bar{x}_{2}\right)=\bar{x}_{2}$ for all $\phi \in H$ and the same is true for all $\phi \in$ Aut P by (3B).

Proof of Corollary 2. Let ϕ satisfy the hypotheses of Corollary 2. Then $\phi \in H$ and from the preceding paragraph $\phi=\alpha \phi_{i}$ where $\boldsymbol{\alpha}$ is an inner automorphism and $\boldsymbol{\phi}_{i}$ is an automorphism of P determined by some $T \in \operatorname{Sp}(2 n, p)$. Thus the action of ϕ on $P / Z(P)$ is the same as T on $P / Z(P)$. Hence $\langle T\rangle$ acts irreducibly on $P / Z(P)$ and by [4, II, 9.23] if the order of T is $m, m \mid\left(p^{n}+1\right)$. This m is the least positive
integer such that ϕ^{m} acts trivially on $P / Z(P)$ and hence by (3C) the least positive integer such that $\phi^{m} \in I$.

If p is odd, P cannot have exponent p^{2} by Corollary 1 .

References

1. E. Artin, Geometric algebra, Interscience, New York, 1957. MR 18, 553.
2. L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover, New York, 1958. MR 21 \#3488.
3. D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 \#229.
4. B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR 37 \#302.

Michigan State University, East Lansing, Michigan 48823

