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SPECTRUM OF NONPOSITIVE CONTRACTIONS ON C(X). 

ROBERT E. ATALLA 

ABSTRACT. Known results in the spectral theory of Markov oper
ators are shown to have analogues which are valid for general con
tractions. For instance we discuss the group structure of the uni
modular eigenfunctions, and the representation of an irreducible 
operator as a rotation of a compact group, followed by a multi
plication. 

1. Introduction. Throughout, Xm\\ be a compact T2 space and C(X) the 
continuous scalar valued functions on X9 where the scalar field may be 
either the real or the complex numbers. T will be a contraction on C(X)9 

i.e., a linear operator will ||r|| ^ 1. T is called a Markov operator in 
case r ^ 0 and TÌ = 1. In areas such as ergodic theory and spectral 
theory, the theory of Markov operators is much more developed than that 
of general contractions. The reason is that positivity is a great convenience 
when measures come into play. However there exists a device which en
ables us to bring positivity into the picture even when T is nonpositive. 
Let F(T*) = {m in C(X)*: T*m = m}, let m be an extreme point of the 
unit ball F^T*), and let <pm be the Radon-Nikodym derivative dm\d\m\. 
This was introduced in [3] for the special case where T2 = T, and used in 
[1] to transfer results from the ergodic theory of Markov operators to 
general contractions. In this paper we make use of the functions <pm to 
prove results in spectral theory already well known for Markov operators 
[4, 6, 7, 8]. For instance we show that the unimodular eigenfunctions form 
a group under an operation a little more complicated than pointwise mul
tiplication, and that if T is irreducible and the unimodular eigenfunctions 
"strongly separate" X, then Tis essentially a rotation of a compact group, 
followed by a multiplication. 

It should be noted that in contrast to the Markov case it is possible 
that F(T*) = {0}. On the other hand it is easy to manufacture nontrivial 
examples : let Äbea Markov operator, <j) a unimodular continuous func-
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tion, and define Tf = Rtffitjr1. By [1; Proposition 2.9(b)], there is a 
bijective correspondence between F(T*) and F(JR*), so F{T*) ^ {0}. 

2. Notation. If x is in X, let tx be the measure representing the linear 
functional/-> Tf(x)(f in C{X% so that f o r / i n C{X\ Tf(x) = \f dtx. 
We may extend the domain of T to include the Baire functions by defining 
Tg(x) = jg dtx for g Baire. An easy transfinite induction over the Baire 
classes shows that Tg is again a Baire function. Moreover if m is in F(T*)9 

i.e., T*m = m, then transfinite induction gives \Tg dm = Jg dm for each 
Baire function g. 

If m is a positive measure, supp m is the smallest closed set of full 
measure, and if m is a signed or complex measure, supp m = supp|Aw|. 
We let M = closure (J{supp m: m in F(T*)} = closure (J{supp m: 
m extreme in Fi(T*)}. (The second equality follows from Krein-Milman 
[1].) Our results will be valid only on the set M rather than on all X. 
In 3.3 below we show that M is invariant, i.e., x in M implies supp tx <= 
M9 i.e., f\ M = 0 implies Tf\ M = 0 (see [9]). As in [1], this implies that we 
may define a contraction T0 of C(M) by T0f(x) = Tf(x), where x is in M 
and / is any continuous extension of / to all X. In view of this we are 
justified in assuming throughout that X = M and T = T0. 

A Baire function / is called a unimodular eigenfunction if \f(x)\ = 1 
for all x, and Tf = A/with \X\ = 1. For each m extreme in Fi(T*)9 we let 
<pm = dm\d\m\ (cf. [1, 2.1.]), so that <pm can be taken as a Baire function 
with \<pm\ = 1 on supp m. Note that jpm = d\m\/dm, and on supp m, ipm = 
<p~^. We may further assume that \çm\ ^ 1 everywhere. 

3. Baire eigenfunctions. Lemma 3.1 was proved in [1, Lemma 2.5], but 
with the restrictive assumption that a nonvanishing continuous fixed point 
for T exists. Lemma 3.5 generalizes a well known characterization of 
unimodular eigenfunctions for Markov operators. (See [8, p. 558], [6, 
p. 24], and [4, p. 1044].) The group operation in Theorem 3.6 was defined 
for positive operators in [7, p. 188]. 

Lemma 3.1. If m is extreme in Fi(T*)and x is in supp m9 then supp tx 

a supp m. 

PROOF. Suppose there exists x in supp m with supp f*\supp m ^ 0 . By 
complete regularity there exists fin C(X) with 0 ^ / ^ 1* / = 1 o n supp 
m, and/(w) < 1 for some w in supp tx. Ldt Z = / _ 1 ( 0 ^ SUPP m- We show 
first that the set F = {y in supp m: supp ty c= Z} is closed. Let y(a) be a 
net in F with y(a) -> y. If y is not in F, then supp ty <t Z. Choose h in C(X) 
with h = 0 on Z and A(v) ^ 0 for some v in supp tr Now, supp ty has the 
characterization (see, e.g., [2, p. 121]). supp ty = (^{/^(O): & in C(X) 
and 0 = \kg dty for all g in C(X)}. Hence there exists g in Q T ) with Tgh(j) 
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= jgh dty 7* 0, while since supp ty(a) c Z, we have Tgh(y(a)) = 0 for all 
a. Thus Tgh(y(a)) •» Tgh(^), contrary to y(a) -» y. 

Now the set V = {y in supp m: supp fy <£ Z} is open and non-void in 
supp m. Further, if y is in K, then supp ty\Z is a non-void open subset of 
supp ty, and since \f<pm\ < 1 on this set, we have \Tf<pm(y)\ = \$f<pmdty\ 
< 1. Since K is open in supp m, we then get \\Tfcm dm\ < 1. On the 
other hand, \fipm dm = §<pm dm = \d\m\ = 1, and hence \Tf(pmdm ^ 
j " / ^ m dm, contrary to T*m = m (since / ^ w is a Baire function). 

EXAMPLE 3.2. The result can fail if | |r| | > 1. For instance let X = 
{1, 2, 3}, so that C(X) is essentially R3 or C3, and define Thy the matrix 

[1/2 1/2 1/21 

1/2 1/2 - 1 / 2 

Lo o o J, 
i.e., h = T*d1 = (l/2)«x + (l/2)52 + (l/2)<?3, t2 = (1/2)* + (l/2)*2 -
(l/2)53, and f3 = 0. If m is the measure given by the row vector (1/2, 
1/2, 0), then m is extreme in /^(r*) , but 1 is in supp m = {1, 2}, while 
supp/x = {1,2,3} <£ {1,2}. 

COROLLARY 3.3. Iff\M = 0, then Tf\M = 0 ( / in C{X)\ so that the T0 

of the Introduction is well defined. Hence we may assume throughout that 
M = X. 

PROOF. This follows from 3.1, just as in [1, Corollary 2.6]. 

LEMMA 3.4. If m is extreme in Fi(T*), and a = ipm = d\m\/dm, then 
Ta = a m-ae. 

PROOF. We have |a| = 1 on supp m, and 3.1 implies \Ta\ ^ 1 on 
supp/w, so \a~l Ta d\m\ = \Ta dm — \a dm = §d\m\ = 1. Since \m\ is a 
probability, a~lTa = 1 m-ae. 

LEMMA 3.5. Let m and a be as in 3.4. and let W = Wm = {JC: Ta(x) = 

a(x)}. Let g be a unimodular Baire function which is an eigenfunction on the 
set W, say Tg(x) = Xg(x)for x in W, where \X\ = 1. For x in W we have 
g(s) = Xg(x)a(x)~la(s) f,-a.e. 

PROOF. First we show that the measure r(A) = \A<x(s)a(x)~ldtx(s) 
is a probability if x is in W. But r(X) = \a{s)a{x)~1dtx(s) = a(x)a{x)~l 

= 1; and if / is in C(X) with ||/| | ^ 1, then since by 3.1 \a\ = 1 on 
supp tX9 and \\tx\\ ̂  1, we have |\fdr\ ^ 1. Now, if x is in W, we have 

i = A-ig(x)-i7g(x) = Jr^w-ig^xw 

= ^-1g(x)-1g(s)a(s)-^a(x) dr(s). 

file:///d/m/
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Since r is a probability and the integrand has modulus 1 on supp r, we 
conclude that the integrand is equal to 1 r-a.e., or f^-a.e. 

THEOREM 3.6. (a) Let Hi be the set of all unimodular Baire functions 
which are eigenfunctions on W. Then Hi is an Abelian group under the 
operation fog = fgä. 

(b) V V' Hi -> C is defined by Th = #(/*)/*, then % is a group character. 
(c) If x is in W and %x\ Hx -> C is defined by %x(h) = h{x)a(x), then 

Xx is a group character. 

PROOF, (a) To prove closure, Let Tf = If and Tg = /ug on W. For x in 
W 3.5 yields 

T(fgä)(x) = Xf(xMxjfig(x)oJxj ja(s)a(s)cc(sj dtx(s) 

( 1 ) = A iif{x)g(x)a{x)-* \a{s) dtx(s) 

= Aßf(x)g(x)a(x)-2a(x) = X ftf(x)g(x)ä(x). 

Thus T(fog) = Xfifog on W. The group identity is a. If g is in Hh its 
inverse is g~xa2, for clearly g o (g~la2) = a, and g~la2 is in Hi, because 
if x is in W&nd Tg = Xg on W, Lemma 3.5 gives 

Tig'1 a2)(x) = J ^ ) - i a(s)2 dtx(s) 

( 2 ) = A"1 g0c)-i a(x) J a W - ^ W 2 dtx(s) 

(b) If Tf = Xf and Tfc = /<g, then (1) gives T(fo g) = ; ^ / o g. 
(c) x,(g ° Ä) = %x{gh or1) = g W A ^ a W - 1 « ^ ) - 1 = Xx(g)Xx(h). 

REMARKS ON ERGODIC THEORY. We shall discuss here how our less 
restrictive version of [1, Lemma 2.5], namely 3.1 above, leads to less re
strictive versions of all other results, in [1]. The need for Lemma A below 
in proving the unrestricted version of [1, Lemma 2.2] was pointed out by 
a referee. 

LEMMA A. Let m be extreme in Fi(T*), f in C(X), and suppose Tf = / 
on supp m. Then Tnf = fon supp m, where Tn = (l/n) ( / + • • • + T»-1), 
n^\. 

PROOF. If x is in supp m, then by Lemma 3.1 above, supp tx c supp m, 
and so T*f(x) = \Tfdtx = \fdtx = Tf(x) = /(*). By induction T»f(x) = 
/(*), and hence Tnf(x) = f(x). 
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LEMMA B. (Cf. [1, Lemma 2.2].) If Tf - fon supp m {rather than on all 
X) then Tf = \fdm <pm m-a.e. 

PROOF. Exactly as in [1, Lemma 2.2]. 

LEMMA C. (Cf. [1, Lemma 2.6].) Iff\M = 0, then Tf\M = 0. {This is just 
3.3 above.) 

Using A, B and C in place of their counterparts in [1], we now need only 
assume in the statements of Theorems 3.2, 3.3 and 3.4 of [1] that there 
exists a in C{X) such that Ta = a on M (rather than on all X\ and a # 0 
on M. 

4. Continuous eigenfunctions. In this section we assume the existence 
of a continuous ß with Tß = ß and \ß{x)\ = 1 for all x. This is necessary 
if we are to consider H = Hx fl C{X) as a subgroup, since then ß will 
serve as the identity. If m is an extreme point in Fi{T*), then by [1, Lemma 
2.2], ß = k<pm w-a.e., where k = \ß dm. Since k ^ 0, <pm may be taken as 
continuous on supp m [1, Remark 2.3]. Note that we now have W = 
Wm = supp m for each extreme m. 

Much of the development here is an adaptation to the general case of 
results on Markov operators in [6, Paragraph 6]. 

LEMMA 4.1. If g is in H9 say Tg = Àg9 if m is extreme in F^T*), and 
ifx is in supp m, then g{s) = Xg{x) ß{x)~lß{s) on supp tx. 

PROOF. If a = <pm9 then since ß = ka, 3.5 implies that for ^-almost 
all s9 g{s) = Xg{x)a{x)~1a{s) = Ag{x)ß{x)~lß{s). By continuity the equality 
holds for all s in supp m. 

THEOREM 4.2. (a) H is an Abelian group under the operation f° g = fgß. 
(b) If x is defined by Th = %{h)h, then % is a group character. 
(c) If x is in X, then %x defined by %x{h) = h{x)ß{x) is a group character. 

PROOF, (a) To prove closure, first let m be an extreme point of Fi{T*). 
Lemma 4.1 and the same computation as (1) in Theorem 3.6 yield 
T{f°g){x) = Xfi{f°g){x) for x in supp m. The union of the supports 
of such extremes is dense in M = X, so by continuity the result holds 
for all x. Clearly the group identity is /3, and the inverse of g is g~lß2. The 
proof that g~~lß2 is in H is the same computation as (2), except that we 
use 4.1 and replace a by ß. 

(b) and (c) are left as exercises. 

DEFINITION 4.3. A subset S <=. C{X) strongly separates X if for x ^ y, 
there exists no scalar b such that for all/ in S,f{x) = bf{y). 

LEMMA 4.4. Suppose H strongly separates X. Then for each x, there exists 
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y (which we shall call %x) such that for all f in C(X), Tf(x) = k(x)fax)i 

where k(x) = ß(x)ß{%x). 

PROOF. First, the set Hß is closed under pointwise multiplication, since 
i f / and g are in H, then by the proofs of 3.6 and 4A,fgß is in H, and so 
(fß)(gß) = (fgß)ß is in Hß. Also 1 = ßß is in Hß. By the strong separating 
property of H, Hß separates X, and hence by Stone-Weierstrass the linear 
span of Hß is a dense subalgebra of C(X). 

For fixed x, consider the measure dr = ß(x)~1ß dtx, which was shown in 
the proof of 3.5 to be a probability. By 4.2 i f / and g are in //, say Tf = 
If and 7£ = ^g, then 

J/feÊ* = W)nfgß)(x) =W)2W(x)g(*l 

Also 

J7/3 dr §gßdr= W)nfßß)(x)W)T(gßß)(x) 

= W)2W(x)g(x)' 
Thus the probability measure r is multiplicative on Hß, and hence on 
all C(T), so by [5, 33] we have r = dxx for some %x in X Thus for all 
/ in C(X\ fax) = \f dr = #x)F(//3)(x), or Tf(x) = T((fß)ß)(x) = 
ß(x)ß(7ux)A%x). 

REMARKS 4.5. (a) We see the curious result that if / i s in H with 7 / = 
If then for all x, Xf(x)fax) = ß(x)ß(7ux). 

(b) If H strongly separates, then x ^ y implies %x ̂  Xy. 

DEFINITIONS 4.6. Let s be a fixed element of X and if0 = {/in if: 1 = 
Zs(/) = f(ß)ß(s)}, a subgroup of H. Let G be the (compact) group of all 
characters on H0. Finally, let c = X%s. 

THEOREM 4.7. Assume H strongly separates X. Then 
(a) the map x -• Xxfrom X to G is a continuous injection, 
(b) Xs ^ the un*t of G, 
(c) X™ = X\H0> where % is as in 4.2(b), 
(d) For all x, %%x = cXx = %«* X*-
(e) {ck: k an integer] c= {Xx: x in X}. 

PROOF, (a) and (b) are obvious. 

(c) I f / i s in ff0, then x„(f) = fasjßfaj) = Tf(s)J(s) = X(f)A*)W) 
= %(/), the second equality by 4.4, the third by 4.2(b), and the last 
since/is in i/0. 

(d) If/is in i/0, then Xnx(f) = fax) ~ßÖ^) = Tf(x)fcx) = X(f)f(x)ß(x) = 
Xxs(f)Xx(f)> t r ie last equality following from (c). 



SPECTRUM OF NONPOSITIVE CONTRACTIONS 213 

(e) In fact, ck = %*s = %h where t = %ks, for all k ^ 1. To show this, 
note first that by an easy induction, Tkf(x) = ß(x)ß(7zk) f(nkx). Then if / 
is in //o, *,(/) = / ( ^ ) i S ( ^ ) = T*f(s)/ß(s) = W ) = xOWfr) = &(/)*. 
That c* is in {%x\ x in X} for all integers follows from [6, Lemma 6.4]. 

THEOREM 4.8. Assume H strongly separates X, and further that T is 
irreducible, i.e., there exists in X no proper invariant closed set. (In parti
cular, supp m = X for every m in F(T*).) Then K = {%x: x in X) is a 
subgroup of G homeomorphic to X. Define S: C(K) -* C(K) by Sf(%x) = 

KxWxsx*)and U: C(K) - C W hy uf(x) = f(x*y Then T o U = Uos-
PROOF. That K is a subgroup homeomorphic to X is proved as in [6, 

Theorem 6.9]. I f / i s in C(K), T(Uf)(x) = k(x)Uf(izx) = k(x)fix%^ a n d 

U(Sf)(x) = SAXx) = mfiXsX*)- But by 4.7(d), 1%x = lslx. 

REMARK ON THE SPECTRUM OF T. It follows from the proof of Theorem 
3.6(b) that the set of eigenvalues corresponding to Baire eigenfunctions 
on W is a multiplicative subgroup of the unit circle. Likewise Theorem 
4.2(b) implies that the eigenvalues corresponding to continous uni-
modular eigenfunctions is also a subgroup. In case T is irreducible, we 
have the stronger result that the set of all eigenvalues of T which have 
modulus one is a subgroup of the unit circle. Just as in [4, p. 1044], one 
shows that if Tf = JLf where |A| = 1, and ||/| | = 1, then the set F = 
{x: \f(x)\ — 1} is an invariant set, so that by irreducibility we have F = 
X. Hence X corresponds to a unimodular eigenfunction. 
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