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METRIC TRANSFORMATIONS OF THE REAL LINE 

DARYL TINGLEY 

1. A metric transformation between two metric (or semi-metric) spaces 
Mi and M2 is defined to be a function / such that for some function 
p: R+ -> R+, called the scale function associated with / , p(di(x, y)) = 
dzifi*)) f(y))> where x, yeM. The set f(M{) is said to be a metric 
transform of Mx. In this paper all metric transforms from the real line in 
Euclidean w-space are characterized. 

The notion of a metric transformation was introduced by Wilson [10] 
in 1935. In 1938 von-Neumann and Schoenberg [8] characterized all 
continuous metric transformations of the real line, R, into Hilbert space. 
This powerful result shows that the scale functions p corresponding to 
such transformations are those, and only those, functions which satisfy 
the condition 

where a is non-decreasing and j ^ u~2da(u) < oo. They also showed that, 
in order that/(R) be embeddable in En (finite dimensional Hilbert space), 
it is necessary and sufficient that a increase at only a finite number of 
points. In this case 

m 
p2(t) = 2]/*2.sjn2ifc.f + C2f2, 

1 

and in a suitable coordinate system, 

(1) f(t) = {Ai cos kit, Ai sin kit, . . . , Am cos kmt, Am sin kmt, ct) 

If f(R) is embeddable in En, but not in En~x, then, for n odd, 2m = n — 1 
and c 7* 0, while 2m = n and c = 0 for n even. As a helix is typical, 
von-Neumann and Schoenberg refer to continuous metric transforms of 
R as screw curves. 

Metric transformations, including the von-Neumann and Schoenberg 
result, have appeared in the literature of late in connection with a method 
of data analysis known as Multidimensional Scaling. (See [1], [3], [6] 
and [7]). Here one takes a semi-metric space Mi and some other metric 
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or semi-metric space M2, such as En, and attempts to construct a metric 
transformation of Mi into M2 with the scale function p being strictly 
monotone. In this case Mx is said to be order embeddable into M2 and 
/ i s called an order transformation. Once this has been accomplished one 
might ask if the result, in some sense, is unique. 

Beals, Krantz and Tversky [1] have given necessary and sufficient condi
tions for a semimetric space Mi to be order embeddable into a convex 
metric space. They show the embedding is unique up to a similarity. 
Kelly is credited in [6] with the classification of all those semimetric spaces 
of n + 2 points which are order embeddable into En. Erdös and Kelly 
[3] have shown that, for m sufficiently large, there are semimetric spaces 
of m points not order embeddable into En. Lew [7] uses (1) to show that 
/^° and /£ are not order embeddable in En, for any n, and von-Neuman 
and Schoenberg [8] use (1) to show that any continuous metric transfor
mation of En into Em is either a similarity or maps Em to a single point 
of En. The characterization (1) would seem to be fundamental in the study 
of metric and order transformations, particularly for uniqueness pro
perties. 

In this paper we consider all metric transforms of R into En, including 
those which are discontinuous. To illustrate our result we present the fol
lowing three examples, the first of which is due to Vogt [9]. 

EXAMPLE 1. Let / : R -• R be a group homomorphism. Then d(f(x), 
Ay)) = l/(*) -AM = 1/(1*-71)1 = p(rf(x,^)), showing that / i s a metric 
transformation. 

More generally, let M be any normed linear space, and let f:R-+M 
be a group homomorphism. Then ||/(x) — Ay)\\ — 11/(1* — Jl)ll> again 
showing t h a t / i s a metric transformation. 

REMARK. A group homomorphism f:R-+M (M a vector space) is 
simply a function satisfying f(a + b) = f(a) +/(&). G- Hamel [4] showed 
that one method of constructing such functions is to consider R and 
M as vector spaces over the rationals. If A ç R is a basis for R, as a 
vector space over the rationals, and / : A -> M is arbitrarily defined, then 
/ c a n be extended by linearity to R. The resulting function is clearly a group 
homomorphism, and hence a metric transformation. Of interest is that if 
B c M is a basis for M, as a vector space over the rationals, and if the 
cardinality of A and B are the same (the cardinality of the continuum) 
then there are functions from A onto B and hence metric transformations 
from R onto M. In particular there are metric transformations of R 
onto any separable normed linear space. 

Halperin [4] used the above type of construction to show that there 
are discontinuous functions/: R -+ R which satisfy the intermediate value 
theorem. In fact he produced a group homomorphism / : R -> R such 
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that f((a9 b)) = R for a < b. It follows that there are metric transfor
mations of R onto any separable normed linear space M such that f((a, b)) 
= M for a < b. 

EXAMPLE 2. Let C be the unit circle in E2, and let 6 : R -> R/27Ü be any 
group homomorphism. Then the function t -* (cos 0(t), sin d(t)) is a 
metric transformation of R to C. The scale function p is given by p(d) = 
2 sin(d(d)l2). 

EXAMPLE 3. Let /•: R -* Kf-, / = 1, . . . , « be a metric transformation 
from R to a normed linear space V^ let V = V\ © F2 ® • • • ® Vn, with 
norm given by ||(vb v2, . . . , vn)\\

2 = bill2 + ||v2|P + . . . \\vH\\*9 and let 
f = (/ i , /2 , . . . , /„) . Then/ : R -> Kis a metric transformation with scale 
function p, where |02 = L ;0?. Note that Example's 1 and 2 may be com
bined in this way. 

In Theorem 1 we classify all metric transformations from R into En, 
whether continuous or not. In this respect, then, the result is stronger 
than the corresponding result of von-Neumann and Schoenberg [8] which 
assumes continuity; however, (general) Hilbert space has been replaced 
by E». 

2. Definitions. A set H is said to be an w-flat of En if it is a translate of 
an w-dimensional subspace of En. A set S is said to span En it if lies in 
no (n - l)-flat. 

A (rigid) motion T of a metric space M is defined to be an isometry 
from M onto M. For M = En, it is a standard theorem of linear algebra 
that such a function can be written as T(x) = U(x) + T(0) where U is an 
orthogonal transformation (that is, a linear norm preserving transfor
mation of En). A set of motions {Ts\s e R} of a metric space M satisfying 
Tso Tr = Ts+r is called a one-parameter subgroup of motions of M. 

It follows immediately that for any one-parameter subgroup of motions 
{Ts\s e R} and any s, r e R we have Ts ° Tr = Tr o Ts, (Ts)

n = Tn.s and 
(Ts+ry = Tn.s o Tnr. 

LEMMA 1. If B £ En spans En
9 and T : B -+ En is an isometry, then there 

is a unique motion T: En -» En such that T\B = T. 

PROOF. See [2, §38]. 

PROPOSITION 1. Let f: R -> En be a metric transformation with scale 
function p, and assume that f(R) spans En. Then there is a unique one-
parameter subgroup of motions {Ts\s e R} such thatf(s) = Ts(f(0)). 

PROOF. For each s e R define f , : /(R) -> E« by Ts(f(t)) = f(t + s). As 
/ i s a metric transformation it follows that ||fs(/('i)) - ^(/(^))ll = 
WAh + s) - f(t2 + s)\\ = p(\h - r2|). By hypothesis,/(R) spans E», hence 
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Lemma 1 shows Ts can be uniquely extended to a motion Ts of En. Be
cause of this uniquencess, and because Ts o Tr(f(t)) = fit + s + r) = 
Ts+r{f(0) it follows that TsoTr = Ts+r. Thus { 7 > e R } forms a one-
parameter subgroup of motions of £w, such that/fa) = Ts(/(0)). 

If {Rs\s e R} is any other one-parameter subgroup of motions such that 
M = Rs(f(0)l then 

Rs(f(0) = RsRtUm = Rs+tf(0)) =f(s + 0 = riefle») = rs(/(0). 
As/(R) spans En, Lemma 1 shows Rs = 7V 

The proof of the following result is straightforward. However since 
it is crucial to our argument, we include the details. 

PROPOSITION 2. If {Ts\s e R} is a one-parameter subgroup of motions of 
En, then Ts = Us 4- r5(0) where Us is an orthogonal transformation of En, 
{Us\seR} form a one parameter subgroup of motions of En, and for any 
s, r 6 R, 

(2) ( / - C/r)r5(0) = ( 7 - Us)Tr(0). 

PROOF. As mentioned earlier, Ts can be written as Ts(x) = Us(x) + 
r5(0), where Us is an orthogonal transformation. 

As Tr o Ts = Ts+r9 it follows that (Us+r - UsUr)x = £/5(7V(0)) + 
r/O) — Ts+r(Q) = constant. As this is true for all x, the constant is 0, 
and hence UsUr = Us+r and Ts+r(0) = ^ , ( ^ 0 ) ) + Ts(0). 

Similarly tfrC/s = t/s+r and Ts+r(0) = W 5 ( 0 ) ) + r r(0). Thus Us(Tr(0)) 
-I- Ts(0) = Ur(Ts(0)) + 2V(0) or (/ - Ur)Ts(0) = (I - tf5)rr(0), where 
/ is the identity transformation. 

PROPOSITION 3. If {Us\s e R} is a one parameter subgroup of orthogonal 
transformations of En

9 then En can be written as En = Vi © V2 © • • • © 
Kw © PF, where Vj are two dimensional subspaces of En

9 Vj and W are 
invariant under US9 for all s and j9 Us \ W = Iw for all s and Us \ Vj has in 
any positively oriented orthonomal basis the matrix form 

M = /cos ej(s) - sin Oj(s)\ 
sJ \ sin dj(s) cos dj(s) j . 

For each /, there is an s9 call it Sj9 such that Us | Vj ^ /, and the functions 
dj'. R-> R/2^r are group homomorphisms. 

PROOF. The bulk of the proof consists of applying standard techniques of 
linear algebra to the transformations {Us\s G R}, so we shall omit it. 
That Oj(s + r) = Oj(s) + 0/0) (modulo 2x) follows from the fact that 
MsjMrj = M{s+r)j. 

PROPOSITION 4. Let {Ts\seVL} and {Us\szYL} be as in Proposition 2, 
and Vl9 ...,Vm and Was in Proposition 3. For each s, let Ts(0) = Tsl(0) + 
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. . . + Tsm(0) + TJP), where TSJ(0) e Vh Tsw(0) e W. Then there is a 
v e Vx 0 • • • e Vm such that for all s, Ts(x) = Us(x - v) 4- v + Tsw(0). 

PROOF. Let Usj = Us\ Vj. It follows from Proposition 3 that Us\ W = /. 
Define TSJ{x) and Tsw(x) by 

T,Ax) = U5J(x) + r5/(0) and Tsw(x) = x + 7^(0). 

If x = xx + • • • + xw + xw, Xj e Vj and xw e ^ it follows that 

r,(*) = 2 r,Xxy) + TSW(XW). 

= S r,x*y) + xw + Tjp). 
By Proposition 3, for each y, there is an s = sj with USjj ^ 7. Thus 

(/ - USj})-
1 exists and we define vy = (/ - U.^T^/ß). It'follows that 

r „ / x / ) ' = # , , / * , - vy) + vy. 
Using equation (2) and the fact that USj and t/s commute for all s, 

it can now be shown that Tsj(xj) = UsJ(xj — vy) + vy for all .y, y. Letting 
v = Vi + • • • + vm, it follows that Ts(x) = £/s(x - v) + v + Tsw(0). 

We are now prepared for the main Theorem of this paper. 

THEOREM 1. Let f: R -> En be a metric transformation such that {f(t): 
r e R } span En. Then there are complementary subspaces V and W, with 
orthogonal projections Pv: En -> V and Pw: En -> W respectively, and a 
vector ueEn such that, iff{t) =f(t) -u,fv = Pv of andfw = Pw ° / , then 

fv(t) = (At cos dx(t), At sin dt(t), . . . , Am cos 0m(/), 4 m sin 0m(»), 

wAere /4y è 0 are constants, Oj'- R -• R/2# ßre grow/? homomorphisms, and 
fw(t) is a group homomorphism from R into W. 

Conversely, iff: R -• En and there are complemetary subspaces V and W 
ofEn such that 

Pv of(t) = (A^osOiit), A^inOiit), . . . , Amcosdm(t), Amsin0m(t))9 

where Oji R -> R/2^ are group homomorphisms and fw = Pw°f is a group 
homomorphism form R into W, then f is a metric transformation. 

PROOF OF CONVERSE. Let tx and t2 be in R. Then 

\\f(h) -MW = t^Aj s i n 2 ( M l ) z i ^ + ììfw(h) _ fM\\2 

= g 4 4 sin2(± M ' i - f r l ) ) + || ±fw(\h - /2|)||2 

= g4A*jSin^eA\t2ü)+ \\fw(\h - *2I)II
2. 
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This shows that / is a metric transformation with scale function p(d) 
satisfying 

p2(d)=Z4Ajsm2l4ß- + \\g(dW. 
y=i 2 

PROOF OF THEOREM 1. Construct a one-parameter subgroup of motions 
{ r j s e R } and {£/5 |seR} as in Proposition 1, and let v, Vl9 . . . , Vm9 

W9 Tsj9 TSW9 and USJ9 be as in Proposition 4. Let V = Vx © • • • © Vm9 

fJO) = Pw(/(0))and w = v + A,(0). Consider the translation/(R) of/(R) 
given by f(s) = f(s) - u and let g(s) = Tsw(0). Note that / is a metric 
transformation, and g(s) e W. Then 

/ ( * ) = r s ( / ( 0 ) ) - V - / J 0 ) 

= £/s(/(0) - v) + v + 7 ^ 0 ) - v - fjf)) 

= £U/(0)) + g(s). 

It now follows from Proposition 1 that if Ts(x) = Us(x) + g(s), then 
{f (s) 15 e R} is the unique one-parameter subgroup of motions such that 
A") = Ts(f(0)). 

Choose a positively oriented orthonormal basis in Jj, j = 1, . . . , m 
such that the projection of/(0) into Vj has co-ordinates (Aj, 0). Proposition 
2 now shows that the matrix of Usj in this basis is 

cos Qj(s) — sin 6j(s) \ 

Sin Oj(s) COS ôy(5") / 

for some d7-(s)9 such that ôy: R -> R/2^ is a group homomorphism. Thus, 
fv(0 = (i4iCos0i(O, i4isindi(0, - • -, >4mcosÖ(05 ^4wsinöm(0) and fw(t) 
= g(0- Using the fact that {Ts\s G R} form a one parameter subgroup of 
motions such that fs(x) = x + g(^), for x e W9 it follows immediately 
that g(.s) + g{r) = g(^ + r), and hence that g: R -> ^ is a group homo
morphism. 

REMARKS. The assumption in Theorem 1 that {f(t)\teR} spans2sw can 
easily be eliminated. For, otherwise, we need only consider the smallest 
flat in En containing{f(t)\t e R} and perform the above analysis in that 
flat. 

The von-Neumann-Schoenberg result in En
9 where f(t) is continuous, 

follows easily from this. For, i f / i s continuous, then dj9j= 1, . . . , m and 
g must be continuous, in which case it is not difficult to conclude that 
Oj(s) = ks (modulo In) and g(s) = su9 u a fixed vector in W. This then 
gives the characterization of a metric transformation of R into En given 
in the von-Neumann-Schoenberg paper. 

3. As mentioned earlier, this problem has arisen in connection with 
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Multidimensional Scaling. Specifically, if / : Mx -> En is a metric trans
formation, is/(Afi) unique in some sense? For this type of question, a copy 
of R may not be available in M l9 hence Theorem 1 is not applicable. 
However, often Mi contains an interval, that is a set isometric to an 
interval of R. Thus it is natural to ask if Theorem 1 characterizes all metric 
transforms of intervals. Theorem 2 shows that indeed it does. 

LEMMA 2. Let Em be an m-flat ofEn. Let T: En -» En be an isometry which 
maps a spanning set of Em into Em. Then T{Em) = Em. 

PROOF. See [2, §40]. 

PROPOSITION 5. Let {Ts\ \s\ < 5} be a set of motions of En satisfying 
Ts o Tr = Ts+r whenever s, r and s + r are in (—<?, d). Then there is a 
unique one-parameter subgroup of motions, called {Ts \ s e R} such that 
Ts = rs, \s\ < 5. 

PROOF. For s e R pick an integer m such that s/m e (—ö, d), and define 
Ts by Ts = (Ts/m)m. It is not hard to show that Ts is independent of the 
choice of m, and then that {Ts} is the unique set of motions extending 
{Ts} to a one parameter subgroup. 

THEOREM 2. Let f be a metric transformation of ( — a, a) into En. Then f 
can be uniquely extended to a metric transformation f of R into En. If 
Em c E», andf((-a, a)) s Em, then /(R) s Em. 

PROOF. Case I. Assume/((—a, a)) spans En. The case that it does not 
will be covered in II. Let — a < t0 g ti ^ • • • ^ tn < a be such that 
{/(O} spans En, and let ö = min {a - tn, t0 + a}. 

For each s, \s\ < 5, the function given by/(f) -+ f(t + s) is an isometry 
off([—a + 5, a — 5]) into ü>, hence can be uniquely extended to motion 
Ts of En (Lemma 1). For s and r such that s, r, and s + r are in (— d, d), 

TS o rr(/(0) =/(' + s + r) = r5+r(/(0), 

and hence Ts<>Tr = Ts+r. Thus {r s | | j | < 5} satisfies the hypotheses of 
Proposition 5, so there is a unique one parameter subgroup of motions 
{ r > e R } which extends {Ts\ \s\ < ö}. 

Define /(.y)by/Cy) = Ts(/(0)). Then it is easy to show that / is the 
unique extension o f / t o a metric transformation of R to En. 

Case II. Consider now the case f((—a, a)) does not span En. Let En 

be the m-flat of En which contains, and is spanned by f((—a, a)). L e t / 
be any extension of / to a metric transformation of R and assume /(R) 
spans the flat E/. (Case I shows there is at least one such extension.) As 
above, let ö be such that f([-a + 5, a - 5)] spans Em. As in Proposition 
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1, let {Ts} be a one-parameter subgroup of motions of is'such that 
T,Wt)) = fit+ s). For \s\<0, 

Ts(f([-a + Ö, a - <?])) =/([-<* + Ö + j , a - 5 + s)] s £"». 

Thus, by Lemma 2, r ,(£w) = £w . 
Since /(s) = r5(/(0)) and /(0) G £>» it follows that £ ' = J£«, and the 

uniqueness of the extension follows from Case I. 
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