METRIC TRANSFORMATIONS OF THE REAL LINE

DARYL TINGLEY

1. A metric transformation between two metric (or semi-metric) spaces M_{1} and M_{2} is defined to be a function f such that for some function $\rho: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$, called the scale function associated with $f, \rho\left(d_{1}(x, y)\right)=$ $d_{2}(f(x), f(y))$, where $x, y \in M$. The set $f\left(M_{1}\right)$ is said to be a metric transform of M_{1}. In this paper all metric transforms from the real line in Euclidean n-space are characterized.

The notion of a metric transformation was introduced by Wilson [10] in 1935. In 1938 von-Neumann and Schoenberg [8] characterized all continuous metric transformations of the real line, \mathbf{R}, into Hilbert space. This powerful result shows that the scale functions ρ corresponding to such transformations are those, and only those, functions which satisfy the condition

$$
\rho^{2}(t)=\left(\int_{0}^{\infty} \frac{\sin ^{2} t u}{u^{2}} d \alpha(u)\right),
$$

where α is non-decreasing and $\int_{1}^{\infty} u^{-2} d \alpha(u)<\infty$. They also showed that, in order that $f(\mathbf{R})$ be embeddable in \mathbf{E}^{n} (finite dimensional Hilbert space), it is necessary and sufficient that α increase at only a finite number of points. In this case

$$
\rho^{2}(t)=\sum_{1}^{m} A_{i}^{2} \sin ^{2} k_{i} t+c^{2} t^{2},
$$

and in a suitable coordinate system,

$$
\begin{equation*}
f(t)=\left(A_{1} \cos k_{1} t, A_{1} \sin k_{1} t, \ldots, A_{m} \cos k_{m} t, A_{m} \sin k_{m} t, \mathrm{ct}\right) \tag{1}
\end{equation*}
$$

If $f(\mathbf{R})$ is embeddable in E^{n}, but not in E^{n-1}, then, for n odd, $2 m=n-1$ and $c \neq 0$, while $2 m=n$ and $c=0$ for n even. As a helix is typical, von-Neumann and Schoenberg refer to continuous metric transforms of \mathbf{R} as screw curves.

Metric transformations, including the von-Neumann and Schoenberg result, have appeared in the literature of late in connection with a method of data analysis known as Multidimensional Scaling. (See [1], [3], [6] and [7]). Here one takes a semi-metric space M_{1} and some other metric
or semi-metric space M_{2}, such as E^{n}, and attempts to construct a metric transformation of M_{1} into M_{2} with the scale function ρ being strictly monotone. In this case M_{1} is said to be order embeddable into M_{2} and f is called an order transformation. Once this has been accomplished one might ask if the result, in some sense, is unique.

Beals, Krantz and Tversky [1] have given necessary and sufficient conditions for a semimetric space M_{1} to be order embeddable into a convex metric space. They show the embedding is unique up to a similarity. Kelly is credited in [6] with the classification of all those semimetric spaces of $n+2$ points which are order embeddable into E^{n}. Erdös and Kelly [3] have shown that, for m sufficiently large, there are semimetric spaces of m points not order embeddable into E^{n}. Lew [7] uses (1) to show that ι_{m}^{∞} and ℓ_{n}^{1} are not order embeddable in E^{n}, for any n, and von-Neuman and Schoenberg [8] use (1) to show that any continuous metric transformation of E^{n} into E^{m} is either a similarity or maps E^{m} to a single point of E^{n}. The characterization (1) would seem to be fundamental in the study of metric and order transformations, particularly for uniqueness properties.

In this paper we consider all metric transforms of \mathbf{R} into E^{n}, including those which are discontinuous. To illustrate our result we present the following three examples, the first of which is due to Vogt [9].

Example 1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a group homomorphism. Then $d(f(x)$, $f(y))=|f(x)-f(y)|=|f(|x-y|)|=\rho(d(x, y))$, showing that f is a metric transformation.

More generally, let M be any normed linear space, and let $f: \mathbf{R} \rightarrow M$ be a group homomorphism. Then $\|f(x)-f(y)\|=\|f(|x-y|)\|$, again showing that f is a metric transformation.

Remark. A group homomorphism $f: \mathbf{R} \rightarrow M$ (M a vector space) is simply a function satisfying $f(a+b)=f(a)+f(b)$. G. Hamel [4] showed that one method of constructing such functions is to consider \mathbf{R} and M as vector spaces over the rationals. If $A \subseteq \mathbf{R}$ is a basis for \mathbf{R}, as a vector space over the rationals, and $f: A \rightarrow M$ is arbitrarily defined, then f can be extended by linearity to \mathbf{R}. The resulting function is clearly a group homomorphism, and hence a metric transformation. Of interest is that if $B \subseteq M$ is a basis for M, as a vector space over the rationals, and if the cardinality of A and B are the same (the cardinality of the continuum) then there are functions from A onto B and hence metric transformations from \mathbf{R} onto M. In particular there are metric transformations of \mathbf{R} onto any separable normed linear space.

Halperin [4] used the above type of construction to show that there are discontinuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$ which satisfy the intermediate value theorem. In fact he produced a group homomorphism $f: \mathbf{R} \rightarrow \mathbf{R}$ such
that $f((a, b))=\mathbf{R}$ for $a<b$. It follows that there are metric transformations of \mathbf{R} onto any separable normed linear space M such that $f((a, b))$ $=M$ for $a<b$.

Example 2. Let C be the unit circle in E^{2}, and let $\theta: \mathbf{R} \rightarrow \mathbf{R} / 2 \pi$ be any group homomorphism. Then the function $t \rightarrow(\cos \theta(t), \sin \theta(t))$ is a metric transformation of \mathbf{R} to C. The scale function ρ is given by $\rho(d)=$ $2 \sin (\theta(d) / 2)$.

Example 3. Let $f_{i}: \mathbf{R} \rightarrow V_{i}, i=1, \ldots, n$ be a metric transformation from \mathbf{R} to a normed linear space V_{i}, let $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$, with norm given by $\left\|\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\|^{2}=\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}+\cdots\left\|v_{n}\right\|^{2}$, and let $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. Then $f: \mathbf{R} \rightarrow V$ is a metric transformation with scale function ρ, where $\rho^{2}=\Sigma \rho_{i}^{2}$. Note that Example's 1 and 2 may be combined in this way.

In Theorem 1 we classify all metric transformations from \mathbf{R} into E^{n}, whether continuous or not. In this respect, then, the result is stronger than the corresponding result of von-Neumann and Schoenberg [8] which assumes continuity; however, (general) Hilbert space has been replaced by E^{n}.
2. Definitions. A set H is said to be an m-flat of E^{n} if it is a translate of an m-dimensional subspace of $E^{n} . A$ set S is said to span E^{n} it if lies in no ($n-1$)-flat.

A (rigid) motion T of a metric space M is defined to be an isometry from M onto M. For $M=E^{n}$, it is a standard theorem of linear algebra that such a function can be written as $T(x)=U(x)+T(0)$ where U is an orthogonal transformation (that is, a linear norm preserving transformation of E^{n}). A set of motions $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ of a metric space M satisfying $T_{s} \circ T_{r}=T_{s+r}$ is called a one-parameter subgroup of motions of M.

It follows immediately that for any one-parameter subgroup of motions $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ and any $s, r \in \mathbf{R}$ we have $T_{s} \circ T_{r} \equiv T_{r} \circ T_{s},\left(T_{s}\right)^{n}=T_{n \cdot s}$ and $\left(T_{s+r}\right)^{n}=T_{n \cdot s} \circ T_{n \cdot r}$.

Lemma 1. If $B \subseteq E^{n}$ spans E^{n}, and $\tilde{T}: B \rightarrow E^{n}$ is an isometry, then there is a unique motion $T: E^{n} \rightarrow E^{n}$ such that $T \mid B=\widetilde{T}$.

Proof. See [2, §38].
Proposition 1. Let $f: \mathbf{R} \rightarrow E^{n}$ be a metric transformation with scale function ρ, and assume that $f(\mathbf{R})$ spans E^{n}. Then there is a unique oneparameter subgroup of motions $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ such that $f(s)=T_{s}(f(0))$.

Proof. For each $s \in \mathbf{R}$ define $\widetilde{T}_{s}: f(\mathbf{R}) \rightarrow E^{n}$ by $\widetilde{T}_{s}(f(t))=f(t+s)$. As f is a metric transformation it follows that $\left\|\tilde{T}_{s}\left(f\left(t_{1}\right)\right)-\widetilde{T}_{s}\left(f\left(t_{2}\right)\right)\right\|=$ $\left\|f\left(t_{1}+s\right)-f\left(t_{2}+s\right)\right\|=\rho\left(\left|t_{1}-t_{2}\right|\right)$. By hypothesis, $f(\mathbf{R})$ spans E^{n}, hence

Lemma 1 shows \widetilde{T}_{s} can be uniquely extended to a motion T_{s} of E^{n}. Because of this uniquencess, and because $T_{s} \circ T_{r}(f(t))=f(t+s+r)=$ $T_{s+r}(f(t))$ it follows that $T_{s} \circ T_{r}=T_{s+r}$. Thus $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ forms a oneparameter subgroup of motions of E^{n}, such that $f(s)=T_{s}(f(0))$.

If $\left\{R_{s} \mid s \in \mathbf{R}\right\}$ is any other one-parameter subgroup of motions such that $f(s)=R_{s}(f(0))$, then
$\left.R_{s}(f(t))=R_{s} R_{t}(f(0))=R_{s+t} f(0)\right)=f(s+t)=T_{s+t}(f(0))=T_{s}(f(t))$. As $f(\mathbf{R})$ spans E^{n}, Lemma 1 shows $R_{s}=T_{s}$.

The proof of the following result is straightforward. However since it is crucial to our argument, we include the details.

Proposition 2. If $\left\{\boldsymbol{T}_{s} \mid s \in \mathbf{R}\right\}$ is a one-parameter subgroup of motions of E^{n}, then $T_{s}=U_{s}+T_{s}(0)$ where U_{s} is an orthogonal transformation of E^{n}, $\left\{U_{s} \mid s \in \mathbf{R}\right\}$ form a one parameter subgroup of motions of E^{n}, and for any $s, r \in \mathbf{R}$,

$$
\begin{equation*}
\left(I-U_{r}\right) T_{s}(0)=\left(I-U_{s}\right) T_{r}(0) \tag{2}
\end{equation*}
$$

Proof. As mentioned earlier, T_{s} can be written as $T_{s}(x)=U_{s}(x)+$ $T_{s}(0)$, where U_{s} is an orthogonal transformation.

As $T_{r} \circ T_{s} \equiv T_{s+r}$, it follows that $\left(U_{s+r}-U_{s} U_{r}\right) x=U_{s}\left(T_{r}(0)\right)+$ $T_{s}(0)-T_{s+r}(0)=$ constant. As this is true for all x, the constant is 0 , and hence $U_{s} U_{r}=U_{s+r}$ and $T_{s+r}(0)=U_{s}\left(T_{r}(0)\right)+T_{s}(0)$.

Similarly $U_{r} U_{s}=U_{s+r}$ and $T_{s+r}(0)=U_{r}\left(T_{s}(0)\right)+T_{r}(0)$. Thus $U_{s}\left(T_{r}(0)\right)$ $+T_{s}(0)=U_{r}\left(T_{s}(0)\right)+T_{r}(0)$ or $\left(I-U_{r}\right) T_{s}(0)=\left(I-U_{s}\right) T_{r}(0)$, where I is the identity transformation.

Proposition 3. If $\left\{U_{s} \mid s \in \mathbf{R}\right\}$ is a one parameter subgroup of orthogonal transformations of E^{n}, then E^{n} can be written as $E^{n}=V_{1} \oplus V_{2} \oplus \cdots \oplus$ $V_{m} \oplus W$, where V_{j} are two dimensional subspaces of E^{n}, V_{j} and W are invariant under U_{s}, for all s and $j, U_{s} \mid W=I_{W}$ for all s and $U_{s} \mid V_{j}$ has in any positively oriented orthonomal basis the matrix form

$$
M_{s j}=\left(\begin{array}{lr}
\cos \theta_{j}(s) & -\sin \theta_{j}(s) \\
\sin \theta_{j}(s) & \cos \theta_{j}(s)
\end{array}\right)
$$

For each j, there is an s, call it s_{j}, such that $U_{s_{j}} \mid V_{j} \neq I$, and the functions $\theta_{j}: \mathbf{R} \rightarrow \mathbf{R} / 2 \pi$ are group homomorphisms.

Proof. The bulk of the proof consists of applying standard techniques of linear algebra to the transformations $\left\{U_{s} \mid s \in \mathbf{R}\right\}$, so we shall omit it. That $\theta_{j}(s+r)=\theta_{j}(s)+\theta_{j}(r)$ (modulo 2π) follows from the fact that $M_{s j} M_{r j}=M_{(s+r) j}$.

Proposition 4. Let $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ and $\left\{U_{s} \mid s \in \mathbf{R}\right\}$ be as in Proposition 2, and V_{1}, \ldots, V_{m} and W as in Proposition 3. For each s, let $T_{s}(0)=T_{s 1}(0)+$
$\cdots+T_{s m}(0)+T_{s w}(0)$, where $T_{s j}(0) \in V_{j}, T_{s w}(0) \in W$. Then there is a $v \in V_{1} \oplus \cdots \oplus V_{m}$ such that for all $s, T_{s}(x)=U_{s}(x-v)+v+T_{s w}(0)$.

Proof. Let $U_{s j}=U_{s} \mid V_{j}$. It follows from Proposition 3 that $U_{s} \mid W=I$. Define $T_{s j}(x)$ and $T_{s w}(x)$ by

$$
T_{s j}(x)=U_{s j}(x)+T_{s j}(0) \text { and } T_{s w}(x)=x+T_{s w}(0) .
$$

If $x=x_{1}+\cdots+x_{m}+x_{w}, x_{j} \in V_{j}$ and $x_{w} \in W$ it follows that

$$
\begin{aligned}
T_{s}(x) & =\sum T_{s j}\left(x_{j}\right)+T_{s w}\left(x_{w}\right) . \\
& =\sum T_{s j}\left(x_{j}\right)+x_{w}+T_{s w}(0) .
\end{aligned}
$$

By Proposition 3, for each j, there is an $s=s_{j}$ with $U_{s, j} \neq I$. Thus $\left(I-U_{s, j}\right)^{-1}$ exists and we define $v_{j}=\left(I-U_{s, j}\right)^{-1} T_{s, j}(0)$. It follows that $T_{s ; j}\left(x_{j}\right)=U_{s, j}\left(x_{j}-v_{j}\right)+v_{j}$.

Using equation (2) and the fact that $U_{s_{j}}$ and U_{s} commute for all s, it can now be shown that $T_{s j}\left(x_{j}\right)=U_{s j}\left(x_{j}-v_{j}\right)+v_{j}$ for all s, j. Letting $v=v_{1}+\cdots+v_{m}$, it follows that $T_{s}(x)=U_{s}(x-v)+v+T_{s w}(0)$.
We are now prepared for the main Theorem of this paper.
Theorem 1. Let $f: \mathbf{R} \rightarrow E^{n}$ be a metric transformation such that $\{f(t)$: $t \in \mathbf{R}\}$ span E^{n}. Then there are complementary subspaces V and W, with orthogonal projections $P_{v}: E^{n} \rightarrow V$ and $P_{w}: E^{n} \rightarrow W$ respectively, and a vector $u \in E^{n}$ such that, if $\tilde{f}(t)=f(t)-u, \tilde{f}_{v}=P_{v} \circ \tilde{f}$ and $\tilde{f}_{w}=P_{w} \circ \tilde{f}$, then

$$
\tilde{f}_{v}(t)=\left(A_{1} \cos \theta_{1}(t), A_{1} \sin \theta_{1}(t), \ldots, A_{m} \cos \theta_{m}(t), A_{m} \sin \theta_{m}(t)\right),
$$

where $A_{j} \geqq 0$ are constants, $\theta_{j}: \mathbf{R} \rightarrow \mathbf{R} / 2 \pi$ are group homomorphisms, and $\tilde{f}_{w}(t)$ is a group homomorphism from \mathbf{R} into W.

Conversely, if $f: \mathbf{R} \rightarrow E^{n}$ and there are complemetary subspaces V and W of E^{n} such that

$$
P_{v} \circ f(t)=\left(A_{1} \cos \theta_{1}(t), A_{1} \sin \theta_{1}(t), \ldots, A_{m} \cos \theta_{m}(t), A_{m} \sin \theta_{m}(t)\right),
$$

where $\theta_{j}: \mathbf{R} \rightarrow \mathbf{R} / 2 \pi$ are group homomorphisms and $f_{w}=P_{w} \circ f$ is a group homomorphism form \mathbf{R} into W, then f is a metric transformation.

Proof of Converse. Let t_{1} and t_{2} be in \mathbf{R}. Then

$$
\begin{aligned}
\left\|f\left(t_{1}\right)-f\left(t_{2}\right)\right\|^{2} & =\sum_{j=1}^{m} 4 A_{j}^{2} \sin ^{2}\left(\frac{\theta_{j}\left(t_{1}\right)-\theta_{j}\left(t_{2}\right)}{2}\right)+\left\|f_{w}\left(t_{1}\right)-f_{w}\left(t_{2}\right)\right\|^{2} \\
& =\sum_{j=1}^{m} 4 A_{j}^{2} \sin ^{2}\left(\frac{\theta_{j}\left(t_{1}-t_{2}\right)}{2}\right)+\left\|f_{w}\left(t_{1}-t_{2}\right)\right\|^{2} \\
& =\sum_{j=1}^{m} 4 A_{j}^{2} \sin ^{2}\left(\pm \frac{\theta_{j}\left(\left|t_{1}-t_{2}\right|\right)}{2}\right)+\left\| \pm f_{w}\left(\left|t_{1}-t_{2}\right|\right)\right\|^{2} \\
& =\sum_{j=1}^{m} 4 A_{j}^{2} \sin ^{2}\left(\frac{\theta_{j}\left(\left|t_{1}-t_{2}\right|\right)}{2}\right)+\left\|f_{w}\left(\left|t_{1}-t_{2}\right|\right)\right\|^{2}
\end{aligned}
$$

This shows that f is a metric transformation with scale function $\rho(d)$ satisfying

$$
\rho^{2}(d)=\sum_{j=1}^{m} 4 A_{j}^{2} \sin ^{2} \frac{\theta_{j}(d)}{2}+\|g(d)\|^{2}
$$

Proof of Theorem 1. Construct a one-parameter subgroup of motions $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ and $\left\{U_{s} \mid s \in \mathbf{R}\right\}$ as in Proposition 1, and let v, V_{1}, \ldots, V_{m}, $W, T_{s j}, T_{s w}$, and $U_{s j}$, be as in Proposition 4. Let $V=V_{1} \oplus \cdots \oplus V_{m}$, $f_{w}(0)=P_{w}(f(0))$ and $u=v+f_{w}(0)$. Consider the translation $\tilde{f}(\mathbf{R})$ of $f(\mathbf{R})$ given by $\tilde{f}(s)=f(s)-u$ and let $g(s)=T_{s w}(0)$. Note that \tilde{f} is a metric transformation, and $g(s) \in W$. Then

$$
\begin{aligned}
\tilde{f}(s) & =T_{s}(f(0))-v-f_{w}(0) \\
& =U_{s}(f(0)-v)+v+T_{s w}(0)-v-f_{w}(0) \\
& =U_{s}(\tilde{f}(0))+g(s)
\end{aligned}
$$

It now follows from Proposition 1 that if $\tilde{T}_{s}(x)=U_{s}(x)+g(s)$, then $\{\tilde{T}(s) \mid s \in \mathbf{R}\}$ is the unique one-parameter subgroup of motions such that $\tilde{f}(s)=\tilde{T}_{s}(\tilde{f}(0))$.

Choose a positively oriented orthonormal basis in $J_{j}, j=1, \ldots, m$ such that the projection of $\tilde{f}(0)$ into V_{j} has co-ordinates $\left(A_{j}, 0\right)$. Proposition 2 now shows that the matrix of $U_{s j}$ in this basis is

$$
\left(\begin{array}{lr}
\cos \theta_{j}(s) & -\sin \theta_{j}(s) \\
\sin \theta_{j}(s) & \cos \theta_{j}(s)
\end{array}\right)
$$

for some $\theta_{j}(s)$, such that $\theta_{j}: \mathbf{R} \rightarrow \mathbf{R} / 2 \pi$ is a group homomorphism. Thus, $\tilde{f}_{v}(t)=\left(A_{1} \cos \theta_{1}(t), A_{1} \sin \theta_{1}(t), \ldots, A_{m} \cos \theta(t), A_{m} \sin \theta_{m}(t)\right)$ and $\tilde{f}_{w}(t)$ $=g(t)$. Using the fact that $\left\{\widetilde{T}_{s} \mid s \in \mathbf{R}\right\}$ form a one parameter subgroup of motions such that $\tilde{T}_{s}(x)=x+g(s)$, for $x \in W$, it follows immediately that $g(s)+g(r)=g(s+r)$, and hence that $g: \mathbf{R} \rightarrow W$ is a group homomorphism.

Remarks. The assumption in Theorem 1 that $\{f(t) \mid t \in \mathbf{R}\}$ spans E^{n} can easily be eliminated. For, otherwise, we need only consider the smallest flat in E^{n} containing $\{f(t) \mid t \in \mathbf{R}\}$ and perform the above analysis in that flat.

The von-Neumann-Schoenberg result in E^{n}, where $f(t)$ is continuous, follows easily from this. For, if f is continuous, then $\theta_{j}, j=1, \ldots, m$ and g must be continuous, in which case it is not difficult to conclude that $\theta_{j}(s)=k s$ (modulo 2π) and $g(s)=s u, u$ a fixed vector in W. This then gives the characterization of a metric transformation of R into E^{n} given in the von-Neumann-Schoenberg paper.
3. As mentioned earlier, this problem has arisen in connection with

Multidimensional Scaling. Specifically, if $f: M_{1} \rightarrow E^{n}$ is a metric transformation, is $f\left(M_{1}\right)$ unique in some sense? For this type of question, a copy of \mathbf{R} may not be available in M_{1}, hence Theorem 1 is not applicable. However, often M_{1} contains an interval, that is a set isometric to an interval of \mathbf{R}. Thus it is natural to ask if Theorem 1 characterizes all metric transforms of intervals. Theorem 2 shows that indeed it does.

Lemma 2. Let E^{m} be an m-flat of E^{n}. Let $T: E^{n} \rightarrow E^{n}$ be an isometry which maps a spanning set of E^{m} into E^{m}. Then $T\left(E^{m}\right)=E^{m}$.

Proof. See [2, §40].
Proposition 5. Let $\left\{T_{s}| | s \mid<\delta\right\}$ be a set of motions of E^{n} satisfying $T_{s} \circ T_{r}=T_{s+r}$ whenever s, r and $s+r$ are in $(-\delta, \delta)$. Then there is a unique one-parameter subgroup of motions, called $\left\{\bar{T}_{s} \mid s \in \mathbf{R}\right\}$ such that $\bar{T}_{s} \equiv T_{s},|s|<\delta$.

Proof. For $s \in \mathbf{R}$ pick an integer m such that $s / m \in(-\delta, \delta)$, and define \bar{T}_{s} by $\bar{T}_{s}=\left(T_{s / m}\right)^{m}$. It is not hard to show that \bar{T}_{s} is independent of the choice of m, and then that $\left\{\bar{T}_{s}\right\}$ is the unique set of motions extending $\left\{T_{s}\right\}$ to a one parameter subgroup.

Theorem 2. Let f be a metric transformation of $(-a, a)$ into E^{n}. Then f can be uniquely extended to a metric transformation \bar{f} of \mathbf{R} into E^{n}. If $E^{m} \subseteq E^{n}$, and $f((-a, a)) \subseteq E^{m}$, then $\bar{f}(\mathbf{R}) \subseteq E^{m}$.

Proof. Case I. Assume $f((-a, a))$ spans E^{n}. The case that it does not will be covered in II. Let $-a<t_{0} \leqq t_{1} \leqq \cdots \leqq t_{n}<a$ be such that $\left\{f\left(t_{i}\right)\right\}$ spans E^{n}, and let $\delta=\min \left\{a-t_{n}, t_{0}+a\right\}$.

For each $s,|s|<\delta$, the function given by $f(t) \rightarrow f(t+s)$ is an isometry of $f([-a+\delta, a-\delta])$ into E^{n}, hence can be uniquely extended to motion T_{s} of E^{n} (Lemma 1). For s and r such that s, r, and $s+r$ are in $(-\delta, \delta)$,

$$
T_{s} \circ T_{r}(f(t))=f(t+s+r)=T_{s+r}(f(t))
$$

and hence $T_{s} \circ T_{r}=T_{s+r}$. Thus $\left\{T_{s}| | s \mid<\delta\right\}$ satisfies the hypotheses of Proposition 5, so there is a unique one parameter subgroup of motions $\left\{T_{s} \mid s \in \mathbf{R}\right\}$ which extends $\left\{T_{s}| | s \mid<\delta\right\}$.

Define $\bar{f}(s)$ by $\bar{f}(s)=\bar{T}_{s}(f(0))$. Then it is easy to show that \bar{f} is the unique extension of f to a metric transformation of \mathbf{R} to E^{n}.

Case II. Consider now the case $f((-a, a))$ does not span E^{n}. Let E^{n} be the m-flat of E^{n} which contains, and is spanned by $f((-a, a))$. Let \bar{f} be any extension of f to a metric transformation of \mathbf{R} and assume $\bar{f}(\mathbf{R})$ spans the flat E^{\prime}. (Case I shows there is at least one such extension.) As above, let δ be such that $f([-a+\delta, a-\delta)]$ spans E^{m}. As in Proposition

1, let $\left\{T_{s}\right\}$ be a one-parameter subgroup of motions of E^{\prime} such that $T_{s}(f(t))=f(t+s)$. For $|s|<\delta$,

$$
T_{s}(f([-a+\delta, a-\delta]))=f([-a+\delta+s, a-\delta+s)] \subseteq E^{m}
$$

Thus, by Lemma 2, $T_{s}\left(E^{m}\right)=E^{m}$.
Since $\bar{f}(s)=T_{s}(f(0))$ and $f(0) \in E^{m}$ it follows that $E^{\prime}=E^{m}$, and the uniqueness of the extension follows from Case I.

References

1. Beals, R., Krantz, D., Tversky, A. Foundations of multidimensional scaling. Psychological Review 75 (1968), 127-142.
2. Blumenthal, L.M., Theory and Applications of Distance Geometry. London: Oxford University Press, 1953.
3. Erdos P., Kelly, L.M., On the rank ordering of distances. Unpublished.
4. Halperin, I., Discontinuous functions with the Darboux property. Canadian Mathematical Bulletin 2 (1959), 111-118.
5. Hamel, G., Eine Basisaller Zahlan and die verstetigen Lösungen der Functionalgleichung: $f(x+y)=f(x)+f(y)$, Mathematische Annalen 60 (1905), 459-462.
6. Holeman, E.W., The relation between hierarchial and euclidean models for psychological distances. Psychometrika 37 (1972), 417-423.
7. Lew, J.S., some counterexamples in multidimensional scaling. Journal of Math. Psych. 17 (1978), 247-254.
8. von-Neumann, J. and Schoenberg, I.J., Fourier integrals and metric geometry. Transactions of the A.M.S. 50 (1941), 226-251.
9. Vogt, A., Maps which preserve equality of distance. Studia Mathematica 45 (1973), 43-48.
10. Wilson, W.A., On certain types of continuous transformations of metric spaces. American Journal of Math 57 (1935), 62-68.

Dalhousie University Halifax, N.S.
Michigan State University E. Lansing, MI.

