METRIC TRANSFORMATIONS OF THE REAL LINE

DARYL TINGLEY

1. A metric transformation between two metric (or semi-metric) spaces M_1 and M_2 is defined to be a function f such that for some function $\rho: \mathbb{R}^+ \to \mathbb{R}^+$, called the scale function associated with f, $\rho(d_1(x, y)) = d_2(f(x), f(y))$, where $x, y \in M$. The set $f(M_1)$ is said to be a metric transform of M_1 . In this paper all metric transforms from the real line in Euclidean *n*-space are characterized.

The notion of a metric transformation was introduced by Wilson [10] in 1935. In 1938 von-Neumann and Schoenberg [8] characterized all continuous metric transformations of the real line, **R**, into Hilbert space. This powerful result shows that the scale functions ρ corresponding to such transformations are those, and only those, functions which satisfy the condition

$$\rho^{2}(t) = \left(\int_{0}^{\infty} \frac{\sin^{2} tu}{u^{2}} d\alpha(u)\right),$$

where α is non-decreasing and $\int_{1}^{\infty} u^{-2} d\alpha(u) < \infty$. They also showed that, in order that $f(\mathbf{R})$ be embeddable in \mathbf{E}^{n} (finite dimensional Hilbert space), it is necessary and sufficient that α increase at only a finite number of points. In this case

$$\rho^{2}(t) = \sum_{1}^{m} A_{i}^{2} \sin^{2} k_{i} t + c^{2} t^{2},$$

and in a suitable coordinate system,

(1)
$$f(t) = (A_1 \cos k_1 t, A_1 \sin k_1 t, \dots, A_m \cos k_m t, A_m \sin k_m t, \text{ct})$$

If $f(\mathbf{R})$ is embeddable in E^n , but not in E^{n-1} , then, for n odd, 2m = n - 1and $c \neq 0$, while 2m = n and c = 0 for n even. As a helix is typical, von-Neumann and Schoenberg refer to continuous metric transforms of **R** as screw curves.

Metric transformations, including the von-Neumann and Schoenberg result, have appeared in the literature of late in connection with a method of data analysis known as Multidimensional Scaling. (See [1], [3], [6] and [7]). Here one takes a semi-metric space M_1 and some other metric

Recieved by the editors September 9, 1983

Copyright © 1985 Rocky Mountain Mathematics Consortium

or semi-metric space M_2 , such as E^n , and attempts to construct a metric transformation of M_1 into M_2 with the scale function ρ being strictly monotone. In this case M_1 is said to be order embeddable into M_2 and f is called an order transformation. Once this has been accomplished one might ask if the result, in some sense, is unique.

Beals, Krantz and Tversky [1] have given necessary and sufficient conditions for a semimetric space M_1 to be order embeddable into a convex metric space. They show the embedding is unique up to a similarity. Kelly is credited in [6] with the classification of all those semimetric spaces of n + 2 points which are order embeddable into E^n . Erdös and Kelly [3] have shown that, for *m* sufficiently large, there are semimetric spaces of *m* points not order embeddable into E^n . Lew [7] uses (1) to show that ℓ_m^{∞} and ℓ_n^1 are not order embeddable in E^n , for any *n*, and von-Neuman and Schoenberg [8] use (1) to show that any continuous metric transformation of E^n into E^m is either a similarity or maps E^m to a single point of E^n . The characterization (1) would seem to be fundamental in the study of metric and order transformations, particularly for uniqueness properties.

In this paper we consider all metric transforms of \mathbf{R} into E^n , including those which are discontinuous. To illustrate our result we present the following three examples, the first of which is due to Vogt [9].

EXAMPLE 1. Let $f: \mathbf{R} \to \mathbf{R}$ be a group homomorphism. Then $d(f(x), f(y)) = |f(x) - f(y)| = |f(|x - y|)| = \rho(d(x, y))$, showing that f is a metric transformation.

More generally, let M be any normed linear space, and let $f: \mathbb{R} \to M$ be a group homomorphism. Then ||f(x) - f(y)|| = ||f(|x - y|)||, again showing that f is a metric transformation.

REMARK. A group homomorphism $f: \mathbf{R} \to M$ (M a vector space) is simply a function satisfying f(a + b) = f(a) + f(b). G. Hamel [4] showed that one method of constructing such functions is to consider \mathbf{R} and M as vector spaces over the rationals. If $A \subseteq \mathbf{R}$ is a basis for \mathbf{R} , as a vector space over the rationals, and $f: A \to M$ is arbitrarily defined, then f can be extended by linearity to \mathbf{R} . The resulting function is clearly a group homomorphism, and hence a metric transformation. Of interest is that if $B \subseteq M$ is a basis for M, as a vector space over the rationals, and if the cardinality of A and B are the same (the cardinality of the continuum) then there are functions from A onto B and hence metric transformations from \mathbf{R} onto M. In particular there are metric transformations of \mathbf{R} onto any separable normed linear space.

Halperin [4] used the above type of construction to show that there are discontinuous functions $f: \mathbb{R} \to \mathbb{R}$ which satisfy the intermediate value theorem. In fact he produced a group homomorphism $f: \mathbb{R} \to \mathbb{R}$ such

that $f((a, b)) = \mathbf{R}$ for a < b. It follows that there are metric transformations of \mathbf{R} onto any separable normed linear space M such that f((a, b)) = M for a < b.

EXAMPLE 2. Let C be the unit circle in E^2 , and let $\theta: \mathbf{R} \to \mathbf{R}/2\pi$ be any group homomorphism. Then the function $t \to (\cos \theta(t), \sin \theta(t))$ is a metric transformation of **R** to C. The scale function ρ is given by $\rho(d) = 2 \sin(\theta(d)/2)$.

EXAMPLE 3. Let $f_i: \mathbf{R} \to V_i$, i = 1, ..., n be a metric transformation from **R** to a normed linear space V_i , let $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$, with norm given by $\|(v_1, v_2, ..., v_n)\|^2 = \|v_1\|^2 + \|v_2\|^2 + \cdots \|v_n\|^2$, and let $f = (f_1, f_2, ..., f_n)$. Then $f: \mathbf{R} \to V$ is a metric transformation with scale function ρ , where $\rho^2 = \sum \rho_i^2$. Note that Example's 1 and 2 may be combined in this way.

In Theorem 1 we classify all metric transformations from \mathbf{R} into E^n , whether continuous or not. In this respect, then, the result is stronger than the corresponding result of von-Neumann and Schoenberg [8] which assumes continuity; however, (general) Hilbert space has been replaced by E^n .

2. Definitions. A set H is said to be an *m*-flat of E^n if it is a translate of an *m*-dimensional subspace of E^n . A set S is said to span E^n it if lies in no (n - 1)-flat.

A (rigid) motion T of a metric space M is defined to be an isometry from M onto M. For $M = E^n$, it is a standard theorem of linear algebra that such a function can be written as T(x) = U(x) + T(0) where U is an orthogonal transformation (that is, a linear norm preserving transformation of E^n). A set of motions $\{T_s|s \in \mathbf{R}\}$ of a metric space M satisfying $T_s \circ T_r = T_{s+r}$ is called a one-parameter subgroup of motions of M.

It follows immediately that for any one-parameter subgroup of motions $\{T_s | s \in \mathbf{R}\}$ and any $s, r \in \mathbf{R}$ we have $T_s \circ T_r \equiv T_r \circ T_s, (T_s)^n = T_{n \cdot s}$ and $(T_{s+r})^n = T_{n \cdot s} \circ T_{n \cdot r}$.

LEMMA 1. If $B \subseteq E^n$ spans E^n , and $\tilde{T}: B \to E^n$ is an isometry, then there is a unique motion $T: E^n \to E^n$ such that $T|B = \tilde{T}$.

PROOF. See [2, §38].

PROPOSITION 1. Let $f: \mathbf{R} \to E^n$ be a metric transformation with scale function ρ , and assume that $f(\mathbf{R})$ spans E^n . Then there is a unique one-parameter subgroup of motions $\{T_s | s \in \mathbf{R}\}$ such that $f(s) = T_s(f(0))$.

PROOF. For each $s \in \mathbf{R}$ define \tilde{T}_s : $f(\mathbf{R}) \to E^n$ by $\tilde{T}_s(f(t)) = f(t+s)$. As f is a metric transformation it follows that $\|\tilde{T}_s(f(t_1)) - \tilde{T}_s(f(t_2))\| = \|f(t_1+s) - f(t_2+s)\| = \rho(|t_1-t_2|)$. By hypothesis, $f(\mathbf{R})$ spans E^n , hence

Lemma 1 shows \tilde{T}_s can be uniquely extended to a motion T_s of E^n . Because of this uniquencess, and because $T_s \circ T_r(f(t)) = f(t + s + r) = T_{s+r}(f(t))$ it follows that $T_s \circ T_r = T_{s+r}$. Thus $\{T_s | s \in \mathbf{R}\}$ forms a oneparameter subgroup of motions of E^n , such that $f(s) = T_s(f(0))$.

If $\{R_s | s \in \mathbf{R}\}$ is any other one-parameter subgroup of motions such that $f(s) = R_s(f(0))$, then

 $R_s(f(t)) = R_s R_t(f(0)) = R_{s+t} f(0) = f(s+t) = T_{s+t}(f(0)) = T_s(f(t)).$ As $f(\mathbf{R})$ spans E^n , Lemma 1 shows $R_s = T_s$.

The proof of the following result is straightforward. However since it is crucial to our argument, we include the details.

PROPOSITION 2. If $\{T_s | s \in \mathbf{R}\}$ is a one-parameter subgroup of motions of E^n , then $T_s = U_s + T_s(0)$ where U_s is an orthogonal transformation of E^n , $\{U_s | s \in \mathbf{R}\}$ form a one parameter subgroup of motions of E^n , and for any $s, r \in \mathbf{R}$,

(2)
$$(I - U_r)T_s(0) = (I - U_s)T_r(0).$$

PROOF. As mentioned earlier, T_s can be written as $T_s(x) = U_s(x) + T_s(0)$, where U_s is an orthogonal transformation.

As $T_r \circ T_s \equiv T_{s+r}$, it follows that $(U_{s+r} - U_s U_r)x = U_s(T_r(0)) + T_s(0) - T_{s+r}(0) = \text{constant.}$ As this is true for all x, the constant is 0, and hence $U_s U_r = U_{s+r}$ and $T_{s+r}(0) = U_s(T_r(0)) + T_s(0)$.

Similarly $U_r U_s = U_{s+r}$ and $T_{s+r}(0) = U_r(T_s(0)) + T_r(0)$. Thus $U_s(T_r(0)) + T_s(0) = U_r(T_s(0)) + T_r(0)$ or $(I - U_r)T_s(0) = (I - U_s)T_r(0)$, where *I* is the identity transformation.

PROPOSITION 3. If $\{U_s|s \in \mathbf{R}\}$ is a one parameter subgroup of orthogonal transformations of E^n , then E^n can be written as $E^n = V_1 \oplus V_2 \oplus \cdots \oplus V_m \oplus W$, where V_j are two dimensional subspaces of E^n , V_j and W are invariant under U_s , for all s and j, $U_s|W = I_W$ for all s and $U_s|V_j$ has in any positively oriented orthonomal basis the matrix form

$$M_{sj} = \begin{pmatrix} \cos \theta_j(s) & -\sin \theta_j(s) \\ \sin \theta_j(s) & \cos \theta_j(s) \end{pmatrix}.$$

For each *j*, there is an *s*, call it *s_j*, such that $U_{s_j}|V_j \neq I$, and the functions $\theta_j: \mathbf{R} \to \mathbf{R}/2\pi$ are group homomorphisms.

PROOF. The bulk of the proof consists of applying standard techniques of linear algebra to the transformations $\{U_s|s \in \mathbf{R}\}$, so we shall omit it. That $\theta_j(s + r) = \theta_j(s) + \theta_j(r)$ (modulo 2π) follows from the fact that $M_{sj}M_{rj} = M_{(s+r)j}$.

PROPOSITION 4. Let $\{T_s | s \in \mathbf{R}\}$ and $\{U_s | s \in \mathbf{R}\}$ be as in Proposition 2, and V_1, \ldots, V_m and W as in Proposition 3. For each s, let $T_s(0) = T_{s1}(0) + V_{s2}(0)$

202

 $\cdots + T_{sm}(0) + T_{sw}(0)$, where $T_{sj}(0) \in V_j$, $T_{sw}(0) \in W$. Then there is a $v \in V_1 \oplus \cdots \oplus V_m$ such that for all s, $T_s(x) = U_s(x - v) + v + T_{sw}(0)$.

PROOF. Let $U_{sj} = U_s | V_j$. It follows from Proposition 3 that $U_s | W = I$. Define $T_{sj}(x)$ and $T_{sw}(x)$ by

$$T_{sj}(x) = U_{sj}(x) + T_{sj}(0)$$
 and $T_{sw}(x) = x + T_{sw}(0)$.

If $x = x_1 + \cdots + x_m + x_w$, $x_j \in V_j$ and $x_w \in W$ it follows that

$$T_s(x) = \sum T_{sj}(x_j) + T_{sw}(x_w).$$

= $\sum T_{sj}(x_j) + x_w + T_{sw}(0)$

By Proposition 3, for each *j*, there is an $s = s_j$ with $U_{s_jj} \neq I$. Thus $(I - U_{s_jj})^{-1}$ exists and we define $v_j = (I - U_{s_jj})^{-1}T_{s_jj}(0)$. It follows that $T_{s_ij}(x_j) = U_{s_ij}(x_j - v_j) + v_j$.

Using equation (2) and the fact that U_{s_j} and U_s commute for all s, it can now be shown that $T_{s_j}(x_j) = U_{s_j}(x_j - v_j) + v_j$ for all s, j. Letting $v = v_1 + \cdots + v_m$, it follows that $T_s(x) = U_s(x - v) + v + T_{sw}(0)$.

We are now prepared for the main Theorem of this paper.

THEOREM 1. Let $f: \mathbb{R} \to E^n$ be a metric transformation such that $\{f(t): t \in \mathbb{R}\}$ span E^n . Then there are complementary subspaces V and W, with orthogonal projections $P_v: E^n \to V$ and $P_w: E^n \to W$ respectively, and a vector $u \in E^n$ such that, if $\tilde{f}(t) = f(t) - u$, $\tilde{f}_v = P_v \circ \tilde{f}$ and $\tilde{f}_w = P_w \circ \tilde{f}$, then

$$\bar{f}_v(t) = (A_1 \cos \theta_1(t), A_1 \sin \theta_1(t), \dots, A_m \cos \theta_m(t), A_m \sin \theta_m(t)),$$

where $A_j \ge 0$ are constants, $\theta_j \colon \mathbf{R} \to \mathbf{R}/2\pi$ are group homomorphisms, and $\tilde{f}_w(t)$ is a group homomorphism from \mathbf{R} into W.

Conversely, if $f: \mathbf{R} \to E^n$ and there are complemetary subspaces V and W of E^n such that

$$P_v \circ f(t) = (A_1 \cos \theta_1(t), A_1 \sin \theta_1(t), \dots, A_m \cos \theta_m(t), A_m \sin \theta_m(t)),$$

where θ_j : $\mathbf{R} \to \mathbf{R}/2\pi$ are group homomorphisms and $f_w = P_w \circ f$ is a group homomorphism form \mathbf{R} into W, then f is a metric transformation.

PROOF OF CONVERSE. Let t_1 and t_2 be in **R**. Then

$$\begin{split} \|f(t_1) - f(t_2)\|^2 &= \sum_{j=1}^m 4A_j^2 \sin^2 \left(\frac{\theta_j(t_1) - \theta_j(t_2)}{2}\right) + \|f_w(t_1) - f_w(t_2)\|^2 \\ &= \sum_{j=1}^m 4A_j^2 \sin^2 \left(\frac{\theta_j(t_1 - t_2)}{2}\right) + \|f_w(t_1 - t_2)\|^2 \\ &= \sum_{j=1}^m 4A_j^2 \sin^2 \left(\pm \frac{\theta_j(|t_1 - t_2|)}{2}\right) + \|\pm f_w(|t_1 - t_2|)\|^2 \\ &= \sum_{j=1}^m 4A_j^2 \sin^2 \left(\frac{\theta_j(|t_1 - t_2|)}{2}\right) + \|f_w(|t_1 - t_2|)\|^2. \end{split}$$

This shows that f is a metric transformation with scale function $\rho(d)$ satisfying

$$\rho^{2}(d) = \sum_{j=1}^{m} 4A_{j}^{2} \sin^{2} \frac{\theta_{j}(d)}{2} + \|g(d)\|^{2}.$$

PROOF OF THEOREM 1. Construct a one-parameter subgroup of motions $\{T_s|s \in \mathbf{R}\}$ and $\{U_s|s \in \mathbf{R}\}$ as in Proposition 1, and let v, V_1, \ldots, V_m , W, T_{sj}, T_{sw} , and U_{sj} , be as in Proposition 4. Let $V = V_1 \oplus \cdots \oplus V_m$, $f_w(0) = P_w(f(0))$ and $u = v + f_w(0)$. Consider the translation $\tilde{f}(\mathbf{R})$ of $f(\mathbf{R})$ given by $\tilde{f}(s) = f(s) - u$ and let $g(s) = T_{sw}(0)$. Note that \tilde{f} is a metric transformation, and $g(s) \in W$. Then

$$\begin{aligned} f(s) &= T_s(f(0)) - v - f_w(0) \\ &= U_s(f(0) - v) + v + T_{sw}(0) - v - f_w(0) \\ &= U_s(\tilde{f}(0)) + g(s). \end{aligned}$$

It now follows from Proposition 1 that if $\tilde{T}_s(x) = U_s(x) + g(s)$, then $\{\tilde{T}(s) | s \in \mathbf{R}\}$ is the unique one-parameter subgroup of motions such that $\tilde{f}(s) = \tilde{T}_s(\tilde{f}(0))$.

Choose a positively oriented orthonormal basis in J_j , j = 1, ..., m such that the projection of $\tilde{f}(0)$ into V_j has co-ordinates $(A_j, 0)$. Proposition 2 now shows that the matrix of U_{sj} in this basis is

$\cos \theta_j(s)$	$-\sin \theta_j(s)$
$\sin \theta_j(s)$	$\cos \theta_j(s)$

for some $\theta_j(s)$, such that $\theta_j: \mathbf{R} \to \mathbf{R}/2\pi$ is a group homomorphism. Thus, $\tilde{f}_v(t) = (A_1 \cos \theta_1(t), A_1 \sin \theta_1(t), \ldots, A_m \cos \theta(t), A_m \sin \theta_m(t))$ and $\tilde{f}_w(t) = g(t)$. Using the fact that $\{\tilde{T}_s|s \in \mathbf{R}\}$ form a one parameter subgroup of motions such that $\tilde{T}_s(x) = x + g(s)$, for $x \in W$, it follows immediately that g(s) + g(r) = g(s + r), and hence that $g: \mathbf{R} \to W$ is a group homomorphism.

REMARKS. The assumption in Theorem 1 that $\{f(t)|t \in \mathbf{R}\}$ spans E^n can easily be eliminated. For, otherwise, we need only consider the smallest flat in E^n containing $\{f(t)|t \in \mathbf{R}\}$ and perform the above analysis in that flat.

The von-Neumann-Schoenberg result in E^n , where f(t) is continuous, follows easily from this. For, if f is continuous, then θ_j , $j = 1, \ldots, m$ and g must be continuous, in which case it is not difficult to conclude that $\theta_j(s) = ks$ (modulo 2π) and g(s) = su, u a fixed vector in W. This then gives the characterization of a metric transformation of R into E^n given in the von-Neumann-Schoenberg paper.

3. As mentioned earlier, this problem has arisen in connection with

Multidimensional Scaling. Specifically, if $f: M_1 \to E^n$ is a metric transformation, is $f(M_1)$ unique in some sense? For this type of question, a copy of **R** may not be available in M_1 , hence Theorem 1 is not applicable. However, often M_1 contains an interval, that is a set isometric to an interval of **R**. Thus it is natural to ask if Theorem 1 characterizes all metric transforms of intervals. Theorem 2 shows that indeed it does.

LEMMA 2. Let E^m be an *m*-flat of E^n . Let $T: E^n \to E^n$ be an isometry which maps a spanning set of E^m into E^m . Then $T(E^m) = E^m$.

PROOF. See [2, §40].

PROPOSITION 5. Let $\{T_s | |s| < \delta\}$ be a set of motions of E^n satisfying $T_s \circ T_r = T_{s+r}$ whenever s, r and s + r are in $(-\delta, \delta)$. Then there is a unique one-parameter subgroup of motions, called $\{\overline{T}_s | s \in \mathbf{R}\}$ such that $\overline{T}_s \equiv T_s$, $|s| < \delta$.

PROOF. For $s \in \mathbf{R}$ pick an integer *m* such that $s/m \in (-\delta, \delta)$, and define \overline{T}_s by $\overline{T}_s = (T_{s/m})^m$. It is not hard to show that \overline{T}_s is independent of the choice of *m*, and then that $\{\overline{T}_s\}$ is the unique set of motions extending $\{T_s\}$ to a one parameter subgroup.

THEOREM 2. Let f be a metric transformation of (-a, a) into E^n . Then f can be uniquely extended to a metric transformation \overline{f} of \mathbf{R} into E^n . If $E^m \subseteq E^n$, and $f((-a, a)) \subseteq E^m$, then $\overline{f}(\mathbf{R}) \subseteq E^m$.

PROOF. Case I. Assume f((-a, a)) spans E^n . The case that it does not will be covered in II. Let $-a < t_0 \leq t_1 \leq \cdots \leq t_n < a$ be such that $\{f(t_i)\}$ spans E^n , and let $\delta = \min \{a - t_n, t_0 + a\}$.

For each s, $|s| < \delta$, the function given by $f(t) \rightarrow f(t + s)$ is an isometry of $f([-a + \delta, a - \delta])$ into E^n , hence can be uniquely extended to motion T_s of E^n (Lemma 1). For s and r such that s, r, and s + r are in $(-\delta, \delta)$,

$$T_s \circ T_r(f(t)) = f(t + s + r) = T_{s+r}(f(t)),$$

and hence $T_s \circ T_r = T_{s+r}$. Thus $\{T_s | |s| < \delta\}$ satisfies the hypotheses of Proposition 5, so there is a unique one parameter subgroup of motions $\{T_s | s \in \mathbf{R}\}$ which extends $\{T_s | |s| < \delta\}$.

Define f(s) by $\overline{f}(s) = \overline{T}_s(f(0))$. Then it is easy to show that \overline{f} is the unique extension of f to a metric transformation of \mathbf{R} to E^n .

Case II. Consider now the case f((-a, a)) does not span E^n . Let E^n be the *m*-flat of E^n which contains, and is spanned by f((-a, a)). Let \overline{f} be any extension of f to a metric transformation of \mathbf{R} and assume $\overline{f}(\mathbf{R})$ spans the flat E'. (Case I shows there is at least one such extension.) As above, let δ be such that $f([-a + \delta, a - \delta)]$ spans E^m . As in Proposition

1, let $\{T_s\}$ be a one-parameter subgroup of motions of E' such that $T_s(f(t)) = f(t + s)$. For $|s| < \delta$,

$$T_s(f([-a+\delta, a-\delta])) = f([-a+\delta+s, a-\delta+s)] \subseteq E^m.$$

Thus, by Lemma 2, $T_s(E^m) = E^m$.

Since $\overline{f}(s) = T_s(f(0))$ and $f(0) \in E^m$ it follows that $E' = E^m$, and the uniqueness of the extension follows from Case I.

REFERENCES

1. Beals, R., Krantz, D., Tversky, A. Foundations of multidimensional scaling. Psychological Review 75 (1968), 127-142.

2. Blumenthal, L.M., *Theory and Applications of Distance Geometry*. London: Oxford University Press, 1953.

3. Erdos P., Kelly, L.M., On the rank ordering of distances. Unpublished.

4. Halperin, I., Discontinuous functions with the Darboux property. Canadian Mathematical Bulletin 2 (1959), 111–118.

5. Hamel, G., Eine Basisaller Zahlan and die verstetigen Lösungen der Functionalgleichung: f(x + y) = f(x) + f(y), Mathematische Annalen 60 (1905), 459–462.

6. Holeman, E.W., The relation between hierarchial and euclidean models for psychological distances. Psychometrika 37 (1972), 417-423.

7. Lew, J.S., some counterexamples in multidimensional scaling. Journal of Math. Psych. 17 (1978), 247-254.

8. von-Neumann, J. and Schoenberg, I.J., Fourier integrals and metric geometry. Transactions of the A.M.S. 50 (1941), 226-251.

9. Vogt, A., Maps which preserve equality of distance. Studia Mathematica 45 (1973), 43-48.

10. Wilson, W.A., On certain types of continuous transformations of metric spaces. American Journal of Math 57 (1935), 62-68.

DALHOUSIE UNIVERSITY HALIFAX, N.S.

MICHIGAN STATE UNIVERSITY E. LANSING, MI.

206