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THE GENERA OF PSL(F,)-LÜROTH COVERINGS 

ARTHUR K. WAYMAN 

1. Introduction. In [3] H. Hasse studies the ramification theory of 
Kummer and Artin-Schreier cyclic coverings of an algebraic function 
field in one variable. These cyclic extensions are special cases of a wider 
class of function fields which we will entitle Liiroth coverings. In this paper 
we will study in detail the ramification theory of PSL(F9)-Liiroth cover
ings. We will classify all genus zero and genus one PSL(F9)-Lüroth cover
ings of a rational function field and construct bases for the spaces of 
differentials of the first kind for coverings with genus ^ 2. 

For notation, definitions, and standard theorems used here, the reader 
may consult the bibliography. 

2. Liiroth coverings. Let k be a field and Y an indeterminate over k. 
Denote by PGL(A:) the group of/^-automorphisms of the rational function 
field k(Y). For each element aePGL(k) there are elements aff9 bff, ca, 
daek with aada - baca ± 0 satisfying a(f) = f((affY + ba)\{caY + dff)) 
for a l l / e k{Y). We recall that two substitutions 

v aY + b o , v a'Y + V 
cY + a c Y + a 

induce the same Ä>automorphism of k(Y) if and only if (a\ b\ c', dr) = 
(/la, lb, Àc, Ad) for some Àek* = k - {0}. 

Let ^ be a finite non-trivial subgroup of PGL(&). If k(Yy is the sub-
field of k{Y) left invariant by the action of ^ , then k{Yy contains k and 
from galois theory we have [k(Y): k(YY] =\&\, where | ^ | denotes 
the cardinality of <&. By Lüroth's theorem (see van der Waerden [5]) 
there is an element Z# in k(Y) such that k{YY = k(Z^). We can write 
Z# = U#/V# for some U#9 V# e k[Y] with (U99 V^) = 1. Moreover, 

degFZg, = max{degr£/y, degrK^} = \&\. 

We remark that any other generator of k( Y)9 is of the form (aZ<# + b)j 
(cZçg -f d) where a,b9c,dek and ad — be ^ 0. 

Let K be an algebraic function field in one variable over the algebraically 
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closed field k. For the group ^ set Z = Z# and let z be a nonconstant ele
ment of K. The polynomial 

Lz(#9z)(Y) = U#(Y)- zKAY) 

is called a Lüroth polynomial. If Lz(&, z) is irreducible over K, then the 
extension L = K(y) where Lz(&, z)(y) = 0 is called a Lüroth covering of 
K. Observe that if L\K is a Lüroth covering defined by Lz(&, z), then 
[L: K] = deg rLz(^, z) = \9\. 

PROPOSITION 1. Let Lbe a Lüroth covering ofK defined by the irreducible 
polynomial Lz(&, z). Then the extension L\K is galois and Ga\(L\K) = ^ . 

PROOF. The field L = K(y) where L z(^, z)(y) = 0. Since IJ^V9 is 
invariant under substitutions of the form Y -> (aaY + b^)\{caY + rfj, 
<7 G ̂ , we conclude that each conjugate of y is of the form (affy + ba)/ 
(cay + ca), a e&. Since a ,̂ ba, cff, dff e k, each conjugate of y is in L. 
Furthermore, since j> is transcendental over k, if a, (fie & and a T£ </>, then 
faw* + ba)l{cffya + </,) # 0 ^ + b^/ic^ + d£. We conclude that 
L\K is galois and Gal(L|£) = ^ . 

PROPOSITION 2. Let Lz(&, z) be a (possibly reducible) Lüroth polynomial. 
IfLz(&, z) has no root in K, then its splitting field is a Lüroth covering of K 
defined by a Lüroth polynomial of the form LZJ^, zf) where Jf is a sub
group of<& and z' is a non-constant in K. 

PROOF. The proof of Proposition 1 shows that if L is an extension 
of K containing one root of Lz(&, z), then L contains all roots of Lz(&, z). 
Proposition 2 follows if Lz(&9 z) is irreducible; so assume that Lz(&, z) 
factors over K and write L z(^, z) = G H for some G, HeK[Y] with 
degF(j and deg r/f g: 1. We may and do assume that G is irreducible 
and monic. Let y be a root of G and set L = K(y). Then L contains all of 
the roots of Lz(&, z) and is therefore the splitting field of Lz(&, z) over K. 
The argument in Proposition 1 also shows that the roots of G are distinct 
and hence L\K is galois. Each conjugate of y has the form (a0ya + ba)j 
(caya + d0) for some < je^ (with aa, bff, ca, da e k). Let 

* - { '« I ° ( -ST^) - 0 } -
Observe that | j f | = degrG. An element z e Gal(L|AT)is determined by its 
value at y ; in particular, for each z e Ga\(L\K), there exists a r e / 
satisfying z(y) = (aaya + bff)/(caya + dff). Let za denote the element of 
Gal(L|^r) corresponding to a e jjf. It is easy to see that the correspondence 
za -• a of GSL\(L\K) into ^ is a group homomorphism. Hence j ^ is a 
subgroup of ^ canonically isomorphic to Gal(L\K). Let Z#> = U^/V^ 
be a generator of fc(T}^ where U*9 V^ e /c[F] and (U*, V#} = 1. Write 



PSL(F«,)-LÜROTH COVERINGS 187 

(A) G(7)= n ( Y - °ry
v'i

bs\ 
o<=œ \ caya + aa J 

Let h = \34f\ and expand the right side of equation (A) to obtain 

(B) G(Y) = y» + f:^-Y»-< 

where Ai9 B{ek[y] with (Ah Bt) = 1. An easy calculation shows that 
degy/1,- ^ h and degyi?, g h. The action of #? on k(y) is induced by the 
action of J? on k(Y) and hence all of the coefficients of G lie in k(y)^. 
The degree constraint on A{ and B{ shows that AJBt- = (aiZ#(y) + è,-)/ 
(CiZ#(y) + 4 ) for some tft-, 6f-, Q, d, G k. Since j> is transcendental over k 
and (/(>>) = 0, at least one coefficient of G must satisfy a{d{ — 6,-cf- ^ 0. 
Write this coefficients as (aZ#, 4- b)/(cZ^ + d). Since all coefficients of 
G lie in k we conclude that 

<c> §£TT-«>**-*• 
Inverting equation (C), we obtain 

7 - dzQ - b 
^ -cz0 + a 

Hence L|AT is a Liiroth covering defined by LZje(jf, z') = U#> — z'K^ 
where z' = (dz0 - b)/(—cz0 + a). 

COROLLARY 1. Any Luroth polynomial Lz(&, z) either splits completely 
over K or decomposes into the product of irreducible Lüroth polynomials 
associated with isomorphic subgroups of&. 

COROLLARY 2. If M\K is a Lüroth extension and L is an intermediate 
field, then M\L is a Lüroth extension. 

PROPOSITION 3. Let Z = U/V be a generator ofk{YY and suppose that 
Lz(&9z) = U — zV is irreducible. Let Z* = U*/V* be another generator of 
k{YY and write Z* = (aZ + b)/(cZ + d)with a, b9 c, dek, ad- be ^ 
0. Then Lz*(&, (az 4- b)/(cz + d)) is irreducible. 

PROOF. The proof is immediate from the observation that Lz* = 
{ad - bc)l(cz + d)Lz. 

3. The group PSL(F9). Let p be an odd prime number and let ¥q be the 
finite field containing q = pN elements for some N e Z+. The projective 
special linear group, PSL(F^), is the subgroup of all a e PGL(F9) satisfying 
affda — baca e (Fp2 = {a2\a e F*}. Let k be an algebraically closed field 
with char k = p. Then k contains F̂  and PSL(F9) is a group of /^-auto
morphisms of the rational function field k(Y) if Y is an indeterminate over 
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k. The field of PSL(F9)-invariants in k(Y) is the rational function field 
k(Z) where 

__ ( y <*-*>* + y<«-i> (9-!> + y<«-i> (?-2) + . . . + y * - i + i)<?-i)/2 
Z ( 7? _ y)(<72-ç)/2 

4. PSL(Fg)-Liiroth coverings. Let k be an algebraically closed field 
with char k = p > 2, let ^ = PSL(F9), and let # be an algebraic function 
field in one variable over k. Assume that the Lüroth polynomial 

Lz(99 z) (Y) = (G(Y)y«+v/2 - z(J(Y)y*-M 

is irreducible over AT where z e K — k and 

G(Y) = y<ff-i>« + . . . + y«-i + l = J] ( y - a), 
0CŒFq2-Fg 

J(Y)= Y*-y= R(Y-ß). 

Assume further that /? / ordf z for any pole p of z in AT. Let L = AT(jy) 
where Lz(&9 z) (y) = 0. Then the extension L\K is a PSL(F9)-Lüroth 
covering and we have Gal(L\K) = &. 

5. The different @L\K. We will calculate the different @LiK of the 
PSL(F9)-Lüroth covering L of K. We shall employ the following notation: 

div^(z) = divisor of zeros of z, 

div^(z) = divisor of poles of z, 

d l V * ( z ) " divf(zy 

Let p be a place of K with places ^ and &>' in L lying over p. Then, 
since L\K is galois, the ramification indices e& and e^, satisfy e&> = e&,\ 
we denote this common index by ep. Let @L]K denote the different of the 
extension L\K. Then degL<3LlK denotes its degree as a divisor. Recall that 
if diVtfZ = (qfi • • - qnMp?i • • • #•»), then 

£m{ = ±nj = [K:k(z)l 
i - l 7=1 

PROPOSITION 4. Assume that £P is a place of L which is neither a zero nor 
pole of y — a for any a e J?q2. Then 0> is unramified in L\K. 

PROOF. It suffices to show that &> is not a fixed point for any a e ^\{id}. 
Assume that G(&) = &. We will show that a = id. By acsumption, 0» 
is neither a zero nor a pole of y9 so y(&>) e kx (where y = y(0>)mod &). 
Since a(0>) = 0> we have (aaya + ba)j{caya + </„) = j (^)mod ^ . If 
ca = 0, then aay(&) + ba = day(0>), i.e., ^ is a zero of the function 
y + 6,/(a, - rf„) if aa - da # 0. We conclude that a, - rf„ = 6«, = 0 and 
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hence a = id. If ca ^ 0, 0> is neither a zero nor a pole of cay(âP) -f da. 
Therefore aay(&>) + ba = cay

2(0>) + day{0>\ and we conclude that 
y{&) e F 2̂. But this contradicts the assumption that 0> is not a zero of 
y — a for any a e F^2. We conclude that a — id. 

If 0> is a place of L and p the place of K lying below ^ , then the equa
tion Lz{?g, z)(y) = 0 implies 

(D) *-±_L ord^G(y) = *P ordf z + SLrJL ord^J(y). 

Let p be a zero of z in K. Since j> is integral over k[z], we have ord^(jK) è 0, 
and hence ord§,/0/) ^ 0. Therefore equation (D) implies the inequality 

(E) ^ ± ± o r d ^ ) > ((y ~ 1)<y ovdfjJiy) è 0. 

Hence ^ is a zero of G(y), and therefore y(&>) e ¥q2 — F r Conversely, 
if ^ is a zero of G(j) in L, then o r d ^ O ) = 0 since (G(Y)9 J(Y)) = 1. 
Equation (D) therefore implies 

(F) l^±ord^G(y) = epord*z. 

THEOREM 1. Let &> be a zero of z in L, p the place of K lying below 0> 
and dp = {{q + l)/2, ordfz). Then ep = (q + l)/(2dp). 

PROOF. By equation (F) we have ((q + l)/(2dp))\ep. To show that 
ep — (a + l)/(2dp), it suffices to show that 

(G) \9&)\ ^ - ^ J 1 ' 

where &(&) = {a e &\O(&>) = 0>} is the decomposition group of 0> over 
K. For if inequality (G) holds, then for orb^(^) = {o(@>)\o e <3\ we have 

q3~q = \9\ = | o r b ^ ) | \9{0f)\ 

i \ o i b ^ ) \ ^ L 

à | o r b ^ ) | e „ 

_ g 3 - q 
~ 2 ' 

and hence equality must hold at every stage. We now prove inequality (G). 
If a e &, then either a = ab,c or a = ab,ca„, where ob,c(Y) = bY + c 
and a a = (aY + l ) / ( - Y) with a, è, c e F, and èe(F*)2. The latter factor
ization of a follows from the fact that the set {<f> e PSL(F,)| ^ = id or 
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^ = (7fl(flGF?)} represents the right cosets of the group {abtC\ceFq, 
b G (FJ)2} in #. Let a e <?(&>) and set a = y(0>). Then equation (F) shows 
that a e Fq2 — F9. Since y = a mod 0> and o{0>) = ^ , we conclude that 
ö*(j;) = a mod ^*. If 6T = Ö^C, we assert that G = id, for y — Gb>c(y) = 
a mod ^ implies that bee + c = a. Thus (Z> — l)a + c = 0. But, since 
b, ce¥q and a G Fg2 — F9, we conclude that b = 1 and c = 0. Now 
suppose that G = GbtCGa. Thenj> = ab,caa(y) = a: mod ^ and 

We conclude 

(H) a2 + {b~lc + tf)a + Z>-1(ÛC + 1) = 0. 

Since, a is quadratic over Fq, there is exactly one monic irreducible 
quadratic equation of which a is a root. Thus if we fix a G ¥q and let 

(I) X* + AX + B = Irr(a, F,) (X\ 

then we have è -1c + a = A and b~\ac + 1) = 2?. So we consider the 
pair of equations 

(A - d)b - c = 0, 

Bb - ac = 1. 

Taking 6 and c as unknowns, the determinant of the coefficients is a2 — 
Aa + B = Irr(a, F9)( — a) 7e 0. Thus, given a e Fq, there is at most one 
GbtC satisfying obtCGa{^) = &• We note that —A — Tia and b~lc = - a — 
T r a (where Tr = TrPg2/Fg). Easy computations establish that GbtC(G(Y)) = 
G(Y) and Ga(G(Y)) = G(7)/7<>2-<i. L e U p G # be a local parameter at 
p and set n = ord^z. Let 

_ (G0,))(*-l)/<2rf,) 

Then from the equation Lz(&, z) (y) = 0, we have 

(H(y)Y> = 4 - ( ^ ) ) ( ^ ) / ( 2 ) -

Since ((z)//J) ^ 0 mod ^ and the zeros of G(y) and / ( j ) are disjoint, we 
have J(y) ^ Omod 0>, and hence i / ( » ?É Omod(^), i.e., ß = if(a) # 0. 
Thus(7^^a(^) = ^ implies GbtCGaH(y) = ^ mod ^ . Now we obtain 

(J) °My) - Ti^kr. 

and applying Ö^C to equation (J), we obtain 
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Since y(&>) = a a n d bq~l = 1, equation (K) implies 

(a + 6-ic)(*3-s)/(2^ = 1, 

and hence 

( a _ Tr a - n ) ^ « » ^ = 1. 

Therefore a is a root of the equation 

( a - T r a - X)^~q)/^ = 1. 

LEMMA 1. Fix j " 6 F g 2 - F^ and deZ+ with d\(q + 1). Then there are 
exactly ((q + l)/d) — 1 roots of the polynomial U{q~l),d — 1 in the coset 

PROOF. Let £ be a generator of FJ. Then the set {0} U {£*y|0 ^ i ^ 
# - 2} represents Fq2 mod ¥q. If 7- + a is a root of U(q2~1)/d - 1 in 
7- -f- Fç, then £'7- + C'a is a root in Ç* + F9. This correspondence is bijec-
tive, so the number of roots in each coset £' + Fg (where 0 ^ / ^ 
q — 2) is the same. Now FJ2 contains all roots of Uiq2~1)/d — 1 and 
each element of Fj is a root, so ¥q2 — F? contains (q2 — \)jd — 
(^ — 1) = (q — l)((^r — l)/rf) — 1 roots. Thus each coset not equal to Fq 

contains ((q + l)/d) — 1 roots. 

It follows immediately from the lemma that there are at most ((q +1)/ 
2dp) — 1 elements aeFq such that ohtCoa(&) = &> for some abtC. Including 
a = id, we see that 

1^(^)1^-^-, 

and Theorem 1 is established. 

COROLLARY 3. Any zero pofz in K is tamely ramified in L with de-
com position number hp = (q2 — q)dp and differential exponent mp = 
((q + l)/2dp) - 1. 

We now consider the ramification propelties of the poles of z. Let 
&> be a pole of z in L and p the place of K lying below ^ . From equation 
(D) we conclude that &> is either a zero of J(y) or a pole of y. If ^ is a 
zero of /O) , then ord^G(j) = 0 and we have 

(L) - 2 ^ 2 - ordé/OO = - ^ ordfz; 

if ^ is a pole of j , then 
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(M) 3^Y3- o r d ^ = ep OTd?z-

THEOREM 2. Let 0> be a pole of z in L, p the place of K lying below 0> 
anddp = ((q- l)/2, ordfz). Then ep = (q2 - q)/2dp and hp = (q + 1)JP. 

PROOF. Since char k = p K ordf z, equation (M) shows that ((q2 — #)/ 
2dp)\ep. Let o r b , ^ = {<7(̂ )|<7 e #} . To show that ep = (q2 - q)/(2dp), 
it suffices to show that 

(N) lorb^l ^ 4 f a + 1). 

For if equation (N) holds, then 

and hence equality holds throughout. Before proceeding we define zb = 
(7i,_ô and /ia = aa>Q. Observe that obtC — jubz-c. Easy computations show 
that zbJ(Y) = J(Y) for all be¥q'9 abtCJ(Y) = Z>/(7) for all abtCe&9 

aJ(Y) = (/(r»/y«+i for all a G F, and hence if a = 0* ,^ , then ( T / ( F ) = 
(bJ(Y))/(bY + c)*+i. Now let ^ be a pole of z in L. If it is a pole of J(y\ 
then it is a pole of 7. Thus a^) is a zero of y and hence ^ is conjugate 
to a zero of y. Therefore we can assume without loss of generality that 
y(0>) = 0. This implies G(y) 9* 0 mod ^ , since G(y) = 1 mod â for any 
zero £t of J(y\ Let p be the pole of z in K lying below ^ and let tp e K 
be a local parameter at p. Set n = ordf z and dp = ((# — l)/2, n). Let 

FOO = t{n)/dp(J(y))^2-^/2dp. 

Then 

(O) (W- IGÜ-) )^ . 

The right side of equation (O) is finite and ^ 0 mod 0>, i.e., y — F(0) ^ 
0. We will need the following concept. If (w, v) e L x L we write (w, v)«̂  
whenever w = 0 mod 0> and v = 0 mod ^ . We shall say that (w, v)^ is 
an admissible pair with respect to &>. If a is a ^-automorphism of L, 
then it is clear that (w, v)^ implies (<7(w), o{v))aW ; we shall write this 
implication as 

(W, V)^ -> (<j(w), <T(v))ff(^). 

In general, if for a place J , the pair (w, x)^ can be deduced from the pair 
(w, v)p, then we write (w, v)^ -> (w, x)â. Now consider the admissible 
pair (y, F(y) — 7-)̂ . From this pair we obtain dp distinct pairs via the 
automorphism jua (where a e (F*)2); namely, 
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(y, F(y) - r), - (y, a<*-W>F(y) - T W 

Since 

card{fl(^2-^2^|ûe(Fp2} = dp, 

we see by comparing second coordinates in these pairs that card{/^(^)| 
a e (FJ)2} = dp. Now to each of the pairs 

(y9 a^^F(y) - r ) , û W 

we apply zb, where b e Fg. Then we get 

(y, aW*>Fty) - i),aW -+{y-b9 a<*~***'F(y) _ r ) ^ W i 

We also obtain 

(v a(f-*)/2d*F(v) - r) (^ -» f— a^-ü™* F ^ r i 
W * r W VilaW yy,a y(q*-q)/2dp

 r)aofXam' 

By comparing first coordinates we see that each place fjLa{&) yields q + 1 
distinct new places. We conclude that there are at least dp(q + 1 ) pairs, 
no two of which can belong to the same place. Therefore we have | o r b ^ | 
è d?{q + 1)> and Theorem 2 is established. 

Since the poles of z are wildly ramified, the calculation of their different
ial exponents requires further consideration. 

THEOREM 3. Let &>be a pole of z in L and p the place of K lying below 0>. 
Then the differential exponent of 0> over p is 

PROOF. Since all conjugates of &> have the same differential exponent, 
we can assume without loss of generality that ^ is chosen so that the 
pair (y, F(y) — y)# is admissible. Let Lz(&>) be the decomposition field of 
0>. Then [L: Lz(0>)] = \&(0>)\ = ep. Let p = Lz{0>) fl ^ Then 0> is 
totally ramified over Lz(0>), while p is unamified over K. We will 
determine the elements of <&(&>) and apply Hubert's formula for the 
computation of mp. We saw in Theorem 2 that a necessary condition for 
a e ^ to be in &(0>) is that 

(P) (y, F(y) - r), -> (a(y), aF(y) - r)„. 

We know that no rb(b e ¥q) can satisfy the implication in (P). And in 
Theorem 2 we saw that if jua(a e (Fp2) satisfies (P), then a<r~1)/(2dJ = 1. 
If o = fJ.aCbGfr then <r(y) = - 1 /(ay - b). Since y = O m o d ^ we have 
ovà%a( y) <; 0. Hence o(0>) # 0>. Since the set {id} U {oa\ a e F J re-
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presents the right cosets of the group {ob,c\c e¥g, be (Fp2} in ^ , so does 
the set {a0} U Wa^o\a 6 F J . Now consider the elements of the form 

& = fl>aCbGC0Q-

We have a(y) = (ay - b)/(acy - be + 1). If a(0>) = 0>, then 

(Q) o r d ^ ^ ) = o r d ^ > 0 . 

If be = 1, then b ^ 0 and we obtain 

ordj; a(y) = ord^(ay — b) - ord^iacy — be + 1) 

= — ord^acy < 0, a contradiction. 

We conclude that be # 1, and hence ord^(acy — be + 1) = 0. So by 
equation (Q) we have ord^(ay — b) > 0, and therefore è = 0. Thus 
fiaTbac(7o(^) = ^ implies that 6 = 0. Now suppose that {iaacao(0>) = ^ . 
Given ce¥q we want to determine the set {a e (Fp2 | fjLaGcCo e ^ ( ^ ) } . If 
a = [JLaGcGto then we obtain 

(R) aF(y) - r = a^-^'2^ F(<y\ - r. 

But X ^ ) = 0, so acy + 1 = lmod^. Therefore, if Ö-(^) = ^ , then(P) 
and (R) imply that a^

2-^/(2d^ = 1. We conclude that 

&(&) <=$ :={* eâr|<7 = ^ ^ ce¥q,ae (Fp2, a^"1)/(2^ = 1}. 

The cardinality of S is (q2 - ?)/(2</p) = | ^ (^ ) | . Hence <$(&) = S. 
Let tp e K be a local parameter at p. Since p is unramified over K, 

tp is also a local parameter at p in Lz(0>). Since X^9 = 0> equation 
(L) and Theorem 2 yield ord^j = — (ordf z)\dp. Therefore there are 
integers r and s satisfying rep + s ordf y = 1 ; we may assume s > 0. 
Then the element / = t£ys is a local parameter at 2P. Furthermore the set 
{1, /, . . . , f»'1} is an integral basis at 0> over Lz(0>). Let <&v denote the 
yth ramification group at ^ . We have <&x — &(0P\ Now we compute 
<gv for v > 1. If G = iia where a e (Fp2, a(<7-iv(2^) = 1 and a ^ 1, then 

a(t) - t = t;(asys - ys) 

= (as - \)t. 

But 0, 0? - l)/(2dp)) = 1, so as - 1 # 0. Therefore ord§,0(f) - 0 = 1 
and hence pa$ &v for y > 1. If a = /ia<7c<70, where c 6 FJ, a e (Fp2, 
a{q-D/{2dp) = l a n d ß # l,then 
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«» — C H W - ' ) 
= (y + a-1c)-%r(cy - (3; + crlc)sys) 

= (y + crlc)~s t£[cs(\ — ars)ys + terms in y of degree > s]. 

Again we have a~s — 1 # 0 and cs ^ 0. So a(0 — t = ut where w is a 
unit mod^. Thus ord£(<T(f) — t) = 1, so /uaaca0^^v for v > 1. 

If a = <7ctf o(c e F*), then 

*»-'-'.'((7f^)'-'') 
= (y + c)-%(csys - (y + c)»y») 

= - ( 7 + *)- ys + ^ î ) ^ " 1 + • • • + ^(s 1 ijyjpy5 

= - (y + cy-'iy*-1 + c\s>>5-2 + . . . + cs~ls)ty. 

Now /? I s since /? | ep and (ep9 s) = 1. Also c ^ 0, so the coefficient of 
ty is a unit mod ^. We conclude that 

ordèfcKO - 0 = 1 + ordfcy = 1 - ^ ^ - . 

It follows from the above computationt that if v > 1 — (ordf z)/dp, then 
^v = {id}; if v = 1, #1 = ^ ( ^ ) ; and if 2 ^ y ^ 1 - (ordfz)/rfp, then 
^ = {(Tegolee F j and |^v| = q. The differential exponent mp of ^ over 
p can now be calculated via Hubert's formula as shown here. 

00 

«P = S (ISM - 1) 

The following corollary is immediate from Theorems 1, 2 and 3. 

COROLLARY 4. Lcf 

p»l . . . pmr 
divKz 

q»i . . . q«, > 

wAere m,, «y e Z+ a«rf («/, char k) = 1. Se/ rfPi. = ((# + 1/2, w,) and 
d,. = ((? - l)/2, «,). 7%<?n 

degL 0 t / j r = (r + s) 3s—JL _ ((?2 _ q) £ ^ 

- f o + l ) 2 4 , + fo2- l)[̂ :A:(z)]. 
7=1 
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6. Genus zero and genus one coverings of k(x). Let x be an indeterminate 
over k and set K = k(x). We will determine all genus zero and genus one 
PSL(F9)-Lüroth coverings L of K. Assume that L is given by the irreduci
ble Lüroth polynomial Lz(^\ z)(Y) where z e K — k satisfies 

dlVtf Z = -ii- tr__ 

qï1 • • • q?s 

m*, «y e Z+ and /> K nj. 
THEOREM 4. 7%e genus &L = 0 if and only if div^ z = p/q, i.e., z = 

(ax 4- /3)/(cx + d)for some a, b,c,de k, ad — be ^ 0. 

PROOF. It is obvious that if z = (ÛUC 4- b)/(cx + d), then <gL = 0. Tn 
order to establish the converse, we show that if [k(x): k(z)] ^ 2, then 
&L ^ 1; so assume [/c(x): fc(z)] ^ 2. By Corollary 4 and the Riemann-
Hurwitz formula we obtain 

2&L - 2 = (r + j - 2 ) ^ ^ + ( ^ - l ) [ ^ ) : k(z)] 

(S) 

Wehaverfp. ^ (? + l)/2, rfq/ ^ (? - l)/2 and [jfc(jt): &(z)] ^ j . Therefore 
from equation (S) we obtain 

2^L-2^(r + s^2)^^ + (q^l)[k(x): k(z)]-r^^- s^~ 
(T) 

= - ^ L [ C * - 2)? + 2[A(*): fc(z)] - 4 

From inequality (T) we see that if s ^ 2 or if s = 1 and [/c(x) : k(z)] ^ #, 
then 2^L - 2 > 0, i.e., &L > 1. We consider the case s = 1 and [k(x): 
k(z)] < q. From equation (S) we obtain 

2 « ? L - 2 ^ r - l ) ( - 2 ^ + ( < ^ 

(U) 

* (r- l ) ^ ^ + to2 - !)[*(*): *(z)] 

-(q2-q)[k(x): k(z)]-(q+l)[k(x): k(z)] 

= (r - 1) ̂ ^ - 2[*(x): k(z)] > (#• - 1) ̂ f ^ - 2 * 

If r ^ 2, then (r - 1)((#3 - <?)/2) - 2q > 0 since # > 2. Hence in this 
case <gL > 1. To finish the proof of the theorem we consider the case 
r = s = 1 and [&(>;): k(z)] < q, i.e., div^z = pf/qv where /* = [k(x): 
k(z)] and 1 < ju < q. From equation (S) we obtain 
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(V) 2 ^ - 2 = ^ 2 - l)-(q2-q)(2+ì, J)-(q + ï)(^,/t). 
From equation (V) we see that <gL = 0 only if 

<W> - . . ^ - ^ ( i + l ^ - l + ì ^ . ^ 

From equation (W) we conclude that (to + l)/2, fj) = 1. But then equa
tion (V) implies 

2^ L - 2 = fo2 _ I ) A I - (?2 - q) _ (̂  + l)(-t=-i-, /i) 

è to2 - l)/i - to2 - 9) - to + 1)AC 

= to2 - *Xj" - 1) - 2/1. 

Hence 2^L ^ (q2 — q — 2)(// — 1) > 2 since # > 2 and // > 1, a contra
diction. Therefore <gL ^ 1. 

A closer examination of the inequalities in the proof of Theorem 4 
reveals that there is a unique family of PSL(F9)-Lüroth coverings L of 
k(x) with <3L = 1 ; namely, 

THEOREM 5. 77*e genws- <̂ L = 1 */ a«rf o/i/y if q = 3 and àì\Kz = p2/q2, 
i.e., z = ((ax + b)/(cx + d))2 where a, b, c, dkandad — be ^ 0. 

7. Differentials of the first kind. In this section we will describe a k-
basis for the space Q(L) of differentials of the first kind of a particular 
type of PSL(Fg)-Lüroth covering L of K(x). Let L\K be a PSL(Fg)-Luroth 
covering of K = Ä(JC) and assume that div#z = (p! • • • pw)/pS (ft- 7e py 
if / # 7) with (m, (q2 — #)/2) = 1 and m > (q2 — q)/2. We have 

m 

& un = &<&! • • • »ir~ i w . i • • • Pu*-irm 

where AWPOO = (to2 — q)/2) - 1 + m(q — 1), the ^ r are the places of L 
lying over p^ and the <Pitj are the places of L lying over p,-. Define in
tegers Sp and r^ for 1 ^ // ^ (m — 1) by 

(X) J m - q 2 q) = sfm + r^ 

where \ ^ r^^ m (note that r^ > 0). If v e Z satisfies 0 ^ y ^ to + 1)^ 
- to + l)fy - 2, then for each p, 1 <; /i ^ (m - 1), set 

# 0 , v) = to + 1)// - to + l)sM - v - 2. 

Then we have 0(^, v) è 0. The following theorem is easily established by 
calculating the orders of the differentials. 
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THEOREM 6. For each pair of integers (ju, v) define the differential 

where t^ = (l/2)(q2 - 3q + 4 - 2s^ - 2/i). Then the set 

{a),J 1 £ fi Û (m - 1),0 £ v £ (q + l)fi - (q + 1)^ - 2} 

is a k-basis ofû(L). 

Note that using Theorem 6 we can show that m is a gap for infinitely 
many places of L, but that m is a non-gap for each 0>r9 0 ^ r ^ q. Hence 
each 3Pr is a Weierstrass point. 
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