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SOME QUESTIONS RELATED TO ALMOST 2-FULLY 
NORMAL SPACES 

HANS-PETER KÜNZI AND PETER FLETCHER 

1. Introduction and history. For notational convenience, we adopt the 
following conventions. All spaces considered are regular Hausdorff spaces. 
If ^ is a cover of a space X, <€* denotes the cover {st(x, <^): xeX}. 
A cover of the form ^* is called a point-star cover, and a subset A of X 
is called a refiner of ^ provided that A is a subset of some member of ^ . 
A cover of a space is directed (co-directed) provided that the union of 
finitely (countably) many members is a refiner of the cover. Let m be a 
cardinal number greater than 1. A space X is almost w-fully normal 
(almost finitely fully normal) provided that if ^ is an open cover of X 
there is an open refinement & of <g so that each refiner of ^ * that has 
m or fewer elements (that is finite) is a refiner of ^ . A space X is m-fully 
normal provided that if <$ is an open cover of X there is an open refinement 
^ of ^ so that if ^ ' is a subcollection of ^ for which Ç\ë%' ± 0 and 
card(^) ^ m, then ( J ^ is a refiner of ^ . 

Almost 2-fully normal spaces were first considered by H.J. Cohen [4], 
who showed that every almost 2-fully normal space is collectionwise 
normal and characterized the almost 2-fully normal spaces as those spaces 
for which the filter of all neighborhoods of the diagonal is the fine uni
formity. In [19], M.J. Mansfield coined the terminology "(almost) w-fully 
normal" and began the systematic generalization of full normality in which 
the study of almost 2-fully normal spaces is now embedded. (In the litera
ture almost 2-fully normal spaces are also called divisible [7], strongly 
collectionwise normal [10], doubly covered [14], entirely normal [13], and 
in the Russian literature almost pseudoparacompact [25].) In particular, 
Mansfield raised the following questions. 

Question 1. Is every almost 2-fully normal space 2-fully normal? 
Question 2. Is there a finitely fully normal space that is not K0-f

uUy 
normal? 

Question 3. Is every finitely fully normal space countably paracompact? 
Question 4. Is every almost 2-fully normal space almost «-fully normal 

for every integer n greater than 2? 
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The first of these questions was answered negatively by H.H. Corson 
who showed that A.H. Stone's space FQ is an almost «0-fully normal 
space that is not 2-fully normal [6]. Using Mansfield's result that every 
almost No-faMy normal space is countably paracompact, K.P. Hart 
recently answered Questions 2 and 3 in one fell swoop by showing that 
M.E. Rudin's Dowker space is finitely fully normal [11]. In [18], the 
authors showed that an example due to D.K. Burke and E. van Douwen 
provides an almost finitely fully normal countably paracompact space 
that is not almost K0-fully normal. Mansfield's last question remains 
unanswered, although a partial result was obtained by Corson [6, Lemma 
3]. 

2. Cofinal Completeness. The earliest and in many ways the most im
portant problem concerning almost 2-fully normal spaces was raised by 
J. Kelley in a conjecture, which may be rephrased as follows. A Hausdorff 
space is paracompact if and only if it is almost 2-fully normal and Dieu-
donné complete [17, 208]. As Corson pointed out in [5], the space FQ 

provides a counterexample to Kelley's conjecture, and so we are left with 
the underlying problem considered in this paper, i.e., how can Kelley's 
conjecture be emended? 

To begin with, let us consider properties that imply paracompactness in 
an almost 2-fully normal space. Since every almost 2-fully normal space is 
collectionwise normal, 0-refinability is one such property [24, Theorem 
(iii)]. In [13], N. Howes introduced the following property. A space X is 
cofinally J-complete provided that every cofinal J-Cauchy net has a 
cluster point, where a net <J)\ D -• Xis a. cofinal J-Cauchy net if for each 
open cover % of X there is a p e X and a cofinal subset C of D such that 
0(C) <z st(/?, <iï). A straightforward argument establishes a characteriza
tion of cofinal J-completeness in terms of open covers. A space X is 
cofinally J-complete provided that every directed open cover of X has 
an open point-star refinement. Howes proved that every metacompact 
space is cofinally J-complete and that every cofinally J-complete almost 
2-fully normal space is paracompact. It is natural to modify Howes's 
definition by saying that a space X is cofinally 0-complete provided that, 
corresponding to each directed open cover # of X, there is a sequence 
<^„> of open covers of X so that for each x e l there exists a natural 
number n(x) for which st(x, &n(x)) is a refiner of <̂ . We also say that X 
is cofinally 50-complete provided that the conditions given above hold 
for co-directed open covers. Arguments analogous to those given by Howes 
establish that every (5)0-refinable space is cofinally (d)0-complete and that 
every cofinally <?0-complete almost 2-fully normal space is paracompact. 
The latter result is established in Proposition 3.7. Notice that the omission 
of the world "directed" in the covering characterization of cofinal a-
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completeness (cofinal 0-completeness) yields full normality (subparacom-
pactness). Seemingly, in light of Proposition 2.6, cofinal J-completeness is 
a suitable substitute for Dieudonne completeness in Kelley's conjecture 
However, we have the following questions posed by Y. Katuta, which 
remain unanswered. 

Question 5 [16, Question 2.6(b)]. Is every cofinally J-complete space 
metacompact? 

Question 6 [16, Question 2.7(b)]. Is every cofinally 0-complete space 
0-refinable? 

Since every cofinally J-complete space is almost expandable [16, 
Theorem 2.2], every 0-refinable cofinally J-complete space is metacompact. 
Thus an affirmative answer to Question 6 would yield an affirmative 
answer to Question 5; and, as H. Junnila observed in [15], an affirmative 
answer to Question 6 would also yield an affirmative answer to the fol
lowing well-known outstanding question. Note that Junnila's observation 
follows from the fact that every strict /?-space is cofinally 0-complete. 

Question 7. Is every strict /espace 0-refinable? 

The following two propositions support the point of view that Questions 
5, 6 and 7 have affirmative answers. The first of these propositions is due 
to Junnila [15, Theorem 2.3]; the second is an immediate consequence of 
[16, Theorems 1.2 and 2.3]. 

PROPOSITION 2.1. A space X is d-refinable if and only if, corresponding to 
each open cover <g of X, there is a sequence (&„) of open covers of X so 
that for each x e X there is a natural number n{x) and a finite subcollection 
<g(x) of<% so that st(jt, &n{x)) c \J<g(x) and x e f)<g(x). 

PROPOSITION 2.2. Every cofinally 0-complete space is countably metacom
pact. 

There is some further evidence in support of an affirmative answer to 
Question 6. It is known, for example, that every locally compact cofinally 
0-complete space is 0-refinable [3, Proposition 2]. In order to admit one 
further piece of supporting evidence, which is a straightforward adaptation 
of a result of Junnila [8, Lemma 5.39], we need the following definition. 

A space X is preorthocompact provided that for each open cover ^ 
of X there is a reflexive relation F o n l s o that, for each j c e l , V(x) is 
open and V ° V(x) is a refiner of <$. 

The reader may verify the following proposition, using Proposition 2.1 
and the method of proof of the result of Junnila mentioned above. It is 
useful, for the proof of Proposition 3.2, to note also that it follows from 
this method of proof that, in a cofinally 0-complete space, every interior-
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preserving open cover <% has a sequence <^„> of open covers satisfying 
the conditions of Proposition 2.1. 

PROPOSITION 2.3. Every preorthocompact cofinally d-complete space is 
0-refinable. 

It is known that the space F0 is not preorthocompact; there are two 
ways to obtain this result. First, we may use the result of Corson, that 
F0 is almost 2-fully normal and not 2-fully normal, and the result of 
Junnila [14, Theorem 2.2.10] that every almost 2-fully normal preortho
compact space is 2-fully normal. A second approach is given in [8, Example 
5.22]. Following S.A. Peregudov [20], but departing from his terminology, 
we say that a space X is semi-metacompact provided that every open 
cover <% of X has an open refinement <% so that no non-empty open subset 
of X is a subset of infinitely many members of £%. It is known that F0 is 
semi-metacompact, and Junnila showed that every semi-metacompact 
preorthocompact space is metacompact [14]. Thus F0 is a semi-metacom
pact space that is neither cofinally 0-complete nor preorthocompact. 
Curiously, even the following special part of Question 5 appears to be 
unanswered. 

Question 8. Is every cofinally J-complete space semi-metacompact? 

A space X is nearly metacompact [12] provided that for each open 
cover ^ of X there is a dense set D and an open refinement <% of <£ so 
that <% is point finite on D. Evidently, every nearly metacompact space is 
semi-metacompact ; but, as the space F0 indicates, the converse fails (see 
Proposition 2.4). A well-known construction of B. Scott ([8, §5.14] and 
[12, 234-235]) associates with any infinite space X a nearly metacompact 
space &(X) that contains l a s a closed subspace and is metacompact 
whenever X is metacompact. 

The following proposition makes use of a characterization of almost 
2-full normality due to G. Aquaro [1]. A normal space X is almost 2-fully 
normal if and only if for each open cover <% of X there exists a locally finite 
open cover i^ of Xso that every two-element refiner of i^ is a refiner of # . 

PROPOSITION 2.4. Every almost 2-fully normal nearly metacompact space 
is paracompact. 

PROOF. Let X be an almost 2-fully normal nearly metacompact space 
and let <$ be an open cover of X. There is a dense set D and an open re
finement & of ^ so that & is point finite on D. There is a locally finite 
open cover <g of X such that every two-element refiner of ^ is a refiner of 
@. Let G e ^ . There exists de G f] D.LetxeG. Then there exists R e 0t 
such that {x, d) a R. It follows that, for each G e ^ , there is a finite sub-
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collection <g(G) of # so that G <= (J #(G). Thus (G fl C: C e #(G) and 
G e ^} is a locally finite open refinement of # . 

The method of proof of Proposition 2.4 establishes the following pro
position. 

PROPOSITION 2.5. Every separable almost 2-fully normal space is count-
ably paracompact. 

PROOF. Let X be a separable almost 2-fully normal space, let ^ = {Cn: 
n e co} be a countable open cover of X, and let D = {dn: n e œ} be a 
countable dense subset of X. For each y e co, set Rj = Cy — {dw: n ^ y 
and rfwe I J ^ C J . Then <% = {R„: ne co} is an open refinement of ^ 
that is point finite on D; and, as in the preceding proof, ^ has a locally 
finite open refinement. 

With regard to the previous proposition, it is interesting to note that 
there is a separable almost 2-fully normal space that is neither weakly 
orthocompact nor almost realcompact [18]. 

Since F0 is not preorthocompact, it appears that a reasonable start 
toward righting Kelley's conjecture is to add (pre)orthocompactness as a 
hypothesis. Indeed, while F0 is a Dieudonné complete almost 2-fully 
normal space that is not preorthocompact and coi is an orthocompact al
most 2-fully normal space that is not Dieudonné complete, the authors 
have not found a preorthocompact space in which Kelley's conjecture 
fails. The following proposition indicates a surprising parallel between 
cofinal J-completeness and Dieudonné completeness in the class of almost 
2-fully normal spaces. 

PROPOSITION 2.6. Let X be an almost 2-fully normal space. Then X is 
Dieudonné complete if and only if whenever <% is an ultrafilter without a 
cluster point, the directed open cover {X — U: Uefy} has an open point-
star refinement. 

3. Point-star Covering Properties. A topological space X is point-star 
(compact, paracompact, metacompact, orthocompact) provided that, if 
# is an open cover of X, there is a finite (locally finite, point-finite, interior-
preserving) open refinement <% of #* so that, for each xe X, there exists 
R(x) e & so that x e R(x) <= st(x, <g). 

There is an interesting characterization, in terms of quasi-uniformities, 
of the point-star covering properties we are considering. We let £? denote 
the collection of all neighborhoods of the diagonal of a space X, and as 
usual we let 0>, &>&, 3?fF, and <F3~ denote the Pervin, point-finite, locally 
finite, and fine transitive quasi-uniformities of X. 

PROPOSITION 3.1. A space X is pointwise star-compact (-paracompact, 
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-metacompact, -orthocompact) if and only ifSf <= gp {&> c j£?J% £f c ^ J^ , 

In [14], Junnila defined a space Xto be discretely orthocompact provided 
that, whenever J«1" is a discrete family of closed subsets of X and for each 
Fe js", UF is an open set containing F, there exists an interior-preserving 
open family {VF: FeS?} such that F a VF c UF for each Fe«f . By 
[14, Proposition 2.3.8], a 0-refinable space is orthocompact if and only if 
it is discretely orthocompact. The following lemma, which is a strengthen
ing of [2, Theorem 3], makes use of [14 Proposition 2.3.8] and is com
parable to it. 

LEMMA. A Q-refinable space is orthocompact if and only if it is point-star 
orthocompact. 

PROOF. Only one implication requires proof. Let X be a 0-refinable point-
star orthocompact space. It suffices to show that X is discretely ortho-
compact. Let <F be a discrete family of closed subsets of X and, for each 
F e J5", let Up be an open set containing F. We assume, without loss of 
generality, that for each F e J% UF meets only one member of SF. Set 
fé7 = {UpiFe^} (J {X — []&}. There is an interior-preserving open 
refinement & of fé7* so that, for each xe X, there exists R(x) e & such that 
xeR(x) c stO, #)• For each Fe & set V(F) = \J{R(x): xeF}. The 
collection (F(F): F e ^ } is the required interior-preserving family. 

PROPOSITION 3.2. Let Xbe a cofinally 6-complete point-star orthocompact 
space. Then X is O-refinable and hence orthocompact. 

PROOF. Let % be a well-monotone open cover of X. The proof proceeds 
as in the proof of Theorem 3.2 of [15] except that the definition of the 
open covers i^s is modified in the following way. Since X is pointwise 
orthocompact for each open cover £fS9 there is a transitive relation Ts so 
that, for each xe X9 Ts(x) is an open set about x contained in st(jc, J5?S). 

In the definition of Va(s ® /c) and Vr+a(s ® K) replace 

"St(X~ J W ^ s e * ) ° " by "Tm{X ~ U W r 

and 

"st(*~ u W> ^se*r by "T^or - u w r -
The proof given by Junnila also establishes that the modified collection 
"f'sftk is an open cover, which is obviously interior preserving. It follows 
from the remark preceding Proposition 2.3 that the covers &s may be 
chosen open and that the induction argument remains valid. Just as in 
[15], ( J { ^ : s is a finite sequence of natural numbers} is a ö-refinement 
o f <%. 
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The authors believe that, of the point-star covering properties we have 
been considering, only point-star orthocompactness is well known ([2] 
and [9]); but the concept of point-star covering properties originates with 
Junnila [14]. Indeed, Junnila defines the following property, which we call 
point-star preorthocompactness. A space X is point-star preorthocompact 
provided that, if ^ is an open cover of X, there is a reflexive relation V 
on X so that, for each x e X, V(x) is open and V2(x) c st(x, #) . Two 
important results of [14] relating point-star preorthocompactness and 
metacompactness are that a completely regular space X is metacompact if 
and only if A" x ßX is point-star preorthocompact and that every cofinally 
J-complete point-star preorthocompact space is metacompact [14, Corol
lary 1.2.9 and Theorem 1.2.6]. Neither preorthocompactness nor point-
star preorthocompactness has a natural characterization in terms of 
quasi-uniformities. It is known that each point-star covering property 
under discussion is strictly weaker than its corresponding covering pro
perty and that no two of these properties coincide. Using Aquaro's 
characterization of almost 2-full normality, we see that every almost 
2-fully normal space is point-star paracompact; our interest in the point-
star covering properties is primarily motivated by this result. 

In the theory of almost 2-fully normal spaces, the following generaliza
tion of preorthocompactness is important because, unlike preorthocom
pactness, it is implied by almost 2-full normality. We say that a space X is 
(countably) almost preorthocompact provided that, if ^ is a (countable) 
open cover of X, there is a reflexive relation V on X so that, for each 
ze X, V(z) is open and whenever yeV<> V{z) and xe V(z), {x, y} is a 
refiner of <g. It is easy to verify that every almost preorthocompact space 
is point-star preorthocompact. 

Propositions 2.4 and 2.5 follow readily from Proposition 3.3 and the 
corollary to Proposition 3.4. Whereas the proofs of Propositions 2.4 and 
2.5 are relatively straightforward, our proof of Proposition 3.3, which 
generalizes Lemma 1 of [12], makes use of one of the deep results of Jun
nila mentioned above. 

PROPOSITION 3.3. A nearly metacompact space is metacompact if and only 
if it is almost preorthocompact. 

PROOF. Let X be an almost preorthocompact nearly metacompact space. 
Since X is point-star preorthocompact, in order to show that X is meta
compact it suffices to show that X is cofinally J-complete. To this end, 
let ^ be a directed open cover of X and let <% be an open refinement of <g 
that is point finite on a dense set D. There is a reflexive relation V on X 
such that, for each x e X, V(x) is open and such that {y, z) is a refiner of 
£% whenever there is an x e X so that y e V(x) and z e V2(x). Set y = 
{V(x): xeX} and let xeX. Let de V(x) fl D and let z e st(x, or). Since 
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{x, z} c V(a) and d e V2(a) for some ae X, {d, z} is a refiner of ^ . It 
follows that st(x, *r) c st(d, ^ ) and so st(x, V) is a refiner of #. 

The following proposition is comparable with Proposition 5.13 of [8] 
and Remark 1 of [12]. 

PROPOSITION 3.4. Every countably nearly metacompact countably almost 
preorthocompact space is countably metacompact. 

PROOF. Let GQ = 0 and let ^ = {G0, Gh G2, . . .} be a countable 
increasing open cover of a countably nearly metacompact countably 
almost preorthocompact space X. In order to show that X is countably 
metacompact, it suffices to see, as in the proof of Proposition 3.3, that & 
has an open point-star refinement. For if V is an open point-star refine
ment of ^, then {Gn f] st(X — Gw_1? rT): ne co} is a point-finite open 
refinement of &. 

COROLLARY. Every separable countably almost preorthocompact space 
is countably metacompact. 

PROOF. Every separable space is countably nearly metacompact. 

PROPOSITION 3.5. Let X be a normal space. The following statements are 
equaivalent. 

(a) For each open cover <g of X there is a closed cover {Fa: a e A} and 
an open locally finite cover {Ga: a G A} so that, for each xe X, there exists 
a(x) e A such that x e Fa{x) c Ga{x) c= st(x, <£). 

(b) X is almost preorthocompact and point-star paracompact. 
(c) X is almost 2-fully normal. 

PROOF, (a) => (b). It is evident that condition (a) implies that X is 
point-star paracompact. We show that X is almost preorthocompact. 
Let ^ be an open cover of X. By hypothesis, there is a closed cover 
{Fa: a e A} and an open locally finite cover {Ga: a G A} so that for each 
xe X there exists a(x)e A so that xe Fa{x) c Ga(x) <= st(x, ^) . For each 
a G A set Ba =_{x G Fa'LGa <= st(x, ^)} and set V = \JxÇ=x{x} x [f]{Ga: 
x G Ba} - [j{Ba: x $ Ba}]. Let z G X, let x G V(Z), and let y G KO F(Z). 
There exists b e V(z) so that y G K(Ò). Let a G ^. Since j G K(i), if j G Ba 

so is b e Ba; and, since b G F(Z), if é G Ba so is z G î?a. Thus x G V(Z) CZ 
f|{Ga: zGi?a} c f]{Ga: yeBa). There is an a e A so that y e 5 a c 
Ba cz Fa a Ga cz st(y, <&). Thus x G st(y, <g) and so {JC, y] is a refiner of ^. 

(b) => (c). Let ^ be an open cover of X. There is a reflexive relation 
Kon Zso that, for each xe X, V(x)is an open set and such that, whenever 
y G V o K(z) and x G F(Z), the set {JC, j} is a refiner of #. Set «r = {^(x) : 
JC G X). There is a locally finite open refinement & = {Ra: a e A) of TT* 
such that, for each x G X, there is an a(x) e A so that x G Ra(x) c st(x, TT). 
For each a e A, set Ba = {y e Ra: Ra a st(y, <&)} and set & = {intC#a): 
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a e A}. We first show that St is a (locally finite open) cover of X. Let xeX. 
There is an a e A so that x G Ra <= st(x, i r) . We show that V(x) f) Ra<=. 
Ba, whence x G int(J5a). Let y e V(x) fi ^« and let a G \J{V(z): x e V(z)} 
= st(jc, y). There exists z e l s o that {a, x] <=. V(z) and y e V(x). Thus 
{a, >>} is a refiner of ^ and so st(x, rT) c st(>>, < )̂. Thus >> G i?a. 

Evidently every two-element refiner of the cover & is a refiner of ^ and 
so, by the characterization of Aquaro, X is almost 2-fully normal. 

(c) => (a). Let ^ be an open cover of X and let ^ = {Ra: a e i j b e a 
locally finite open cover such that every two-element refiner of & is a 
refiner of # . Since ^ is normal, there is an open c o v e r t = {Ha: at A) 
so that, for each a G A, Ha c Ra. Thus, for each xeX there exists a: G A 
so that xe Ha a Ra a st(x, ^ ) . 

The collection wise normal space attributed to R.H. Bing by H.J. Cohen 
[4] is not point-star paracompact. Indeed, this space is not point-star 
preorthocompact. Nonetheless, point-star paracompactness and col-

m lectionwise normality are related concepts. 

PROPOSITION 3.6. Every normal point-star paracompact space is collection-
wise normal. 

PROOF. Let X be a normal point-star paracompact space, let {Fa: a G A] 
be a discrete collection of closed sets, and let F = [j{Fa: at A}. For 
each a G A set Ga = X — \J{Fß: ß # a}. Since X is normal, for each 
a G A there is an open set Ha so that Fa a Ha a Ha a Ga. Let ^ = 
{X — JF} U {//a: a G >4}. There is a locally finite open cover S£ so that 
for each xe X there exists Lx G £g so that x G LX C= st(x, ^ ) . Set Sa1 = 
{Lx: x G F}, for each a G A set Ra = X - st({Jß^aFß, g") and set Ba = 
# a fi st(Fa, &'). Then for each aeA,FaaBa and £ a f| Bß = 0 when
ever a ^ j3. 

The terminology of [14] suggests that a space is almost preorthocompact 
if it is point-star preorthocompact. A negative answer to our last question 
would provide a counterexample to such a conjecture as a by-product. 
A straightforward modification of the proofs of Lemma 2.3.7 and Pro
position 2.3.8 of [14] establishes that preorthocompactness and point-star 
preorthocompactness coincide in 0-refinable spaces. Thus the conjecture 
holds in 0-refinable spaces. Note that Proposition 2.4 holds with "point-
star paracompact" replacing "almost 2-fully normal". 

Question 9. Is every collectionwise normal point-star paracompact 
space almost 2-fully normal? 

PROPOSITION 3.7. Every cofinally dd-complete point-star paracompact 
space is paracompact. 

PROOF. Let <g be an open cover of a cofinally 50-complete point-star 
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paracompact space X. There is a sequence <^w> of open covers of X so 
that for each x e X there is n(x) e co and a countable subset ^(x) of ^ 
so that st(x, &n(x)) <= U^(x). Without loss of generality, we assume that 
each <g(x) is countably infinite and index the members thereof as {C(/, x): 
ieco}. For each ne co, there is a locally finite open cover &?n so that, 
for each X G I , there is H(n, x) e j4?n so that x e H(n, x) c st(jc, &n). 
For each i e <a, set ^ = {//(/, J C ) : ^ G I a n d «(x) = i}. For each Hejtf>f

t. 
choose one x e l s o that H c (J{C(j, x); 7 e co} and set x = x(/7). For 
each (/, j)eœ x co set M(/, 7) = {H fl C(y, x(7/)): / / e ^ } . Then 
(J{M(/,y): / , ; 'e Û>} is a <7-locally finite open refinement of <̂ . 

The previous proposition is a slight extension of J. Worrell's assertion 
that every 2-fully normal 50-refinable space is paracompact [23, 431] (see 
also [22]). K.P. Hart has shown that M.E. Rudin's Dowker space is 
orthocompact and almost 2-fully normal [10, 11] and, using 0 + + , M.E. 
Rudin has recently constructed another Dowker space that is collection-
wise normal and metaLindelöf [21]. It follows that a space may be ortho-
compact and 2-fully normal or cofinally <50-complete and collectionwise 
normal and yet fail to be countably paracompact. 
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