A NEW PROOF OF THE CWIKEL-LIEB-ROSENBLJUM BOUND

JOSEPH G. CONLON

1. Introduction. Consider the operator $-\Delta+V$ acting on $L^{2}\left(\mathbf{R}^{3}\right)$, where $V(x)$ is a potential in $L^{3 / 2}\left(\mathbf{R}^{3}\right)$. Let $N(V)$ be the dimension of the spectral projection of $-\Delta+V$ on $(-\infty, 0]$. Then it is known $[\mathbf{1}, \mathbf{5}, 8]$ that

$$
\begin{equation*}
N(V) \leqq C \int_{\mathbf{R}^{3}}\left|V_{-}(x)\right|^{3 / 3} d x \tag{1.1}
\end{equation*}
$$

which C is a constant and V_{-}denotes the negative part of V. The inequality (1.1) was derived in three quite different ways by Lieb [5], Cwikel [1] and Rosenbljum [8]. The best value for the constant C was obtained by Lieb [5] and is $C=.116$. Attempts have been made to obtain the best constant C but the results are rather inconclusive [3]. However, it is known [5] that $C \geqq .0780$.

Here we obtain a new derivation of (1.1) with constant $C=.168$. Our approach is adapted from Lieb's method [6, 7] to show that Dirac's semiclassical formula for exchange energy [2] bounds the quantum exchange energy. In fact we merely paraphrase the arguments of [7] so that (1.1) may be regarded as a corollary of the exchange energy bound.

Another new proof of (1.1) has also recently been given by Li and Yau [4]. It is quite different from the one presented here as well as the three previous derivations. Despite the claim in [4] the constant obtained there is three times worse than Lieb's value of .116 .

We turn to our proof of (1.1). As is standard in all approaches to this problem, we consider a different problem, which is equivalent by the Birman-Schwinger principle [9]. Thus we assume $V(x) \leqq 0$, for all $x \in \mathbf{R}^{3}$, and put $V(x)=-W(x)^{2}$, where $W(x) \geqq 0$ for $x \in \mathbf{R}^{3}$. We consider the operator A on $L^{2}\left(\mathbf{R}^{3}\right)$ with integral kernel

$$
\begin{equation*}
a(x, y)=W(x) W(y)[4 \pi|x-y|]^{-1} . \tag{1.2}
\end{equation*}
$$

Since $W \in L^{3}\left(\mathbf{R}^{3}\right)$ with norm $\|W\|_{3}$ it follows that A is a positive HilbertSchmidt operator and thus has discrete spectrum $\mu_{1} \geqq \mu_{2} \geqq \cdots \geqq 0$. Then to prove (1.1) we need to show that for any $\lambda>0$,

Received by the editors on May 3, 1983, and in revised form on November 21, 1983.

$$
\begin{equation*}
\#\left\{\mu_{i} \geqq \lambda^{-1}: i=1,2, \cdots\right\} \leqq C \lambda^{3 / 2}\|W\|_{3}^{3} . \tag{1.3}
\end{equation*}
$$

The inequality (1.3) is a consequence of the following theorem of Cwikel [1], which we intend to derive.

Theorem.

$$
\sum_{i=1}^{N} \mu_{i} \leqq C^{2 / 3} N^{1 / 3}\|W\|_{3}^{2} .
$$

2. Proof of theorem. Let $\psi_{i}(x), 1 \leqq i \leqq N$, be an orthonormal set of functions in $L^{2}\left(\mathbf{R}^{3}\right)$ and $K(x, y)$ be the density matrix

$$
\begin{equation*}
K(x, y)=\sum_{i=1}^{N} \psi_{i}(x) \overline{\psi_{i}(y)}, \tag{2.1}
\end{equation*}
$$

and $\rho(x)$ be the one body density

$$
\begin{equation*}
\rho(x)=K(x, x) \tag{2.2}
\end{equation*}
$$

Let $g: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be a continuous nonnegative spherically symmetric function with support in the unit ball and L^{1} norm equal to 1 . We define a function $\mu: \mathbf{R}^{3} \times \mathbf{R}^{3} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\mu(x, z)=h(z) g\left[h(z)^{1 / 3}(x-z)\right], \tag{2.3}
\end{equation*}
$$

where $h: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is a positive function to be determined later.
Now, putting

$$
\begin{equation*}
f(x)=W(x) K(x, z)-W(z) \mu(x, z), \tag{2.4}
\end{equation*}
$$

we expand out the inequality

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \int_{\mathbf{R}^{3}} \frac{f(x) \overline{f(y)}}{|x-y|} d x d y \geqq 0, \tag{2.5}
\end{equation*}
$$

to obtain

$$
\begin{align*}
& \iint \frac{W(x) W(y) K(x, z) K(z, y)}{|x-y|} d x d y \\
& -2 \operatorname{Re} \int W(x) K(x, z) W(z) \int \frac{\mu(y, z)}{|x-y|} d y d x \tag{2.6}\\
& +\iint \frac{W(z)^{2} \mu(x, z) \mu(y, z)}{|x-y|} d x d y \geqq 0 .
\end{align*}
$$

Observe that the last integral on the left in (2.6) may be written as

$$
\begin{equation*}
\alpha W(z)^{2} h(z)^{1 / 3}, \tag{2.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha=\iint \frac{g(x) g(y)}{|x-y|} d x d y \tag{2.8}
\end{equation*}
$$

Next we integrate (2.6) with respect to z. Using the fact that

$$
\begin{equation*}
\int K(x, z) K(z, y) d z=K(x, y) \tag{2.9}
\end{equation*}
$$

we obtain the inequality

$$
\begin{align*}
& \iint \frac{W(x) W(y) K(x, y)}{|x-y|} d x d y \\
& \leqq \alpha \int W(z)^{2} h(z)^{1 / 3} d z \tag{2.10}\\
& +2 \operatorname{Re} \iint W(x) K(x, z) W(z)\left[\frac{1}{|x-z|}-\int \frac{\mu(y, z)}{|x-y|} d y\right] d x d z
\end{align*}
$$

We define a function $\boldsymbol{\xi}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\xi(v)=\frac{1}{|v|}-\int \frac{g(w)}{|v-w|} d w \tag{2.11}
\end{equation*}
$$

In view of the conditions on g it follows from Newton's theorem that ξ is spherically symmetric and decreases radially to zero with $\xi(v)=0$ in $|v| \geqq 1$. It is easy to see that the function in square brackets in (2.10) may be written as

$$
\begin{equation*}
h(z)^{1 / 3} \xi\left[h(z)^{1 / 3}(x-z)\right] . \tag{2.12}
\end{equation*}
$$

Thus from (1.2), (2.10) and (2.12) we obtain the basic inequality

$$
\begin{align*}
& 4 \pi \sum_{i=1}^{N} \mu_{i} \leqq \alpha \int W(z)^{2} h(z)^{1 / 3} d z \\
& \quad+2 \iint W(x) W(z) \rho(x)^{1 / 2} \rho(z)^{1 / 2} h(z)^{1 / 3} \xi\left[h(z)^{1 / 3}(x-z)\right] d x d z \tag{2.13}
\end{align*}
$$

Here we have chosen the functions $\psi_{i}(x)$ in (2.1) to be the first N eigenfunctions of the operator A defined by (1.2).

Next we make an appropriate choice for the function $h(z)$ by putting

$$
\begin{equation*}
h(z)=W(z)^{6 / 5} \rho(z)^{3 / 5} \tag{2.14}
\end{equation*}
$$

The first integral in (2.13) thus becomes

$$
\begin{equation*}
\int W(z)^{12 / 5} \rho(z)^{1 / 5} d z \tag{2.15}
\end{equation*}
$$

while the second integral may be written as

$$
\begin{equation*}
2 \iint h(x)^{5 / 6} h(z)^{7 / 6} \xi\left[h(z)^{1 / 3}(x-z)\right] d x d z . \tag{2.16}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
\int \rho(z) d z=N \tag{2.17}
\end{equation*}
$$

and Holder's inequality, we conclude that the integral (2.15) is bounded by

$$
\begin{equation*}
N^{1 / 5}\|W\|_{3}^{12 / 5} . \tag{2.18}
\end{equation*}
$$

We can bound (2.16) by making use of the Hardy-Littlewood maximal function [6, 10]. First note that $h(x)$ is integrable with

$$
\begin{equation*}
\|h\|_{1} \leqq N^{3 / 5}\|W\|_{3}^{6 / 5} . \tag{2.19}
\end{equation*}
$$

Let $M(x)$ be the maximal function corresponding to $h(x)^{5 / 6}$. Since $h(x)^{5 / 6}$ is in $L^{6 / 5}$, it follows [10] that $M(x) \in L^{6 / 5}$ and

$$
\begin{equation*}
\|M\|_{6 / 5} \leqq k\|h\|_{1}^{5 / 6} \tag{2.20}
\end{equation*}
$$

where k is a universal constant. Furthermore, for arbitrary $z \in \mathbf{R}^{3}$, we have [10]

$$
\begin{equation*}
\int h(x)^{5 / 6} h(z) \xi\left[h(z)^{1 / 3}(x-z)\right] d x \leqq\|\xi\|_{1} M(z) \tag{2.21}
\end{equation*}
$$

Thus (2.16) is bounded by

$$
\begin{equation*}
2\|\xi\|_{1} \int h(z)^{1 / 6} M(z) d z \tag{2.22}
\end{equation*}
$$

which by Holder's inequality and (2.20), is bounded by

$$
\begin{equation*}
2 k\|\xi\|_{1}\|h\|_{1} \leqq 2 k\|\xi\|_{1} N^{3 / 5}\|W\|_{3}^{6 / 5} . \tag{2.23}
\end{equation*}
$$

Putting (2.18) and (2.23) together we conclude from (2.13) that

$$
\begin{equation*}
4 \pi \sum_{i=1}^{N} \mu_{i} \leqq \alpha N^{1 / 5}\|W\|_{3}^{12 / 5}+2 k\|\xi\|_{1} N^{3 / 5}\|W\|_{3}^{6 / 5} \tag{2.24}
\end{equation*}
$$

If we go through our argument again replacing $W(x)$ by $\gamma W(x)$ where $r>0$ is an arbitrary parameter, then we evidently obtain

$$
\begin{equation*}
4 \pi \sum_{i=1}^{N} \mu_{i} \leqq \gamma^{2 / 5} \alpha N^{1 / 5}\|W\|_{3}^{12 / 5}+2 \gamma^{-4 / 5} k\|\xi\|_{1} N^{3 / 5}\|W\|_{3}^{6 / 5} \tag{2.25}
\end{equation*}
$$

Optimizing the right side of (2.25), for $\gamma>0$, yields the bound in the theorem, namely

$$
\begin{equation*}
4 \pi \sum_{i=1}^{N} \mu_{i} \leqq 3.2^{-1 / 3} k^{1 / 3} \alpha^{2 / 3}\|\xi\|_{1}^{1 / 3} N^{1 / 3}\|W\|_{3}^{2} \tag{2.26}
\end{equation*}
$$

One can improve the bound in (2.26) by proceeding directly from (2.16) to the estimate (2.23) without recourse to the maximal function. Again we follow the argument of [7]. Thus let

$$
\begin{equation*}
\chi_{a}(x)=\int_{a}^{\infty} \delta(h(x)-u) d u, \tag{2.27}
\end{equation*}
$$

where δ denotes the Dirac δ function. Then

$$
\begin{align*}
h(z)^{7 / 6} \xi\left[h(z)^{1 / 3}(x-z)\right] & =\int_{0}^{\infty} a^{7 / 6} \xi\left[a^{1 / 3}(x-z)\right] \delta(h(z)-a) d a \tag{2.28}\\
& =\int_{0}^{\infty} \chi_{a}(z) \frac{\partial}{\partial a}\left[a^{7 / 6} \xi\left(a^{1 / 3}(x-z)\right)\right] d a .
\end{align*}
$$

Hence the integral (2.16) may be written as

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbf{R}^{3}} \int_{\mathbb{R}^{3}} \frac{5}{3} b^{-1 / 6} \chi_{b}(x) \chi_{a}(z) \frac{\partial}{\partial a}\left[a^{7 / 6} \xi\left(a^{1 / 3}(x-z)\right)\right] d x d z d a d b . \tag{2.29}
\end{equation*}
$$

Letting the subscript " + " denote the possitive part of a function we see that

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left\{\frac{\partial}{\partial a}\left[a^{7 / 6} \xi\left(a^{1 / 3} w\right)\right]\right\}_{+} d w=K a^{-5 / 6}, \tag{2.30}
\end{equation*}
$$

where the constant K is given by

$$
\begin{equation*}
K=\frac{4 \pi}{3} \int_{0}^{1}\left\{\frac{\partial}{\partial r}\left[r^{7 / 2} \xi(r)\right]\right\}_{+} r^{-1 / 2} d r . \tag{2.31}
\end{equation*}
$$

Now we split the integral (2.29) into the sum of two integrals over the sets $\{a<b\}$ and $\{a \geqq b\}$. Thus we have

$$
\begin{equation*}
\int_{a<b} \leqq \int_{\mathbf{R}^{3}} \frac{5}{3} \int_{0}^{\infty} b^{-1 / 6} d b \int_{0}^{b} K a^{-5 / 6} d a \chi_{b}(x) d x=10 K\|h\|_{1} . \tag{2.32}
\end{equation*}
$$

In a similar fashion we have

$$
\begin{equation*}
\int_{b<a} \leqq \int_{\mathrm{R}^{3}} \frac{5}{3} \int_{0}^{\infty} K a^{-5 / 6} d a \int_{0}^{a} b^{-1 / 6} d b \chi_{a}(z) d z=2 K\|h\|_{1} . \tag{2.33}
\end{equation*}
$$

We conclude therefore that (2.16) is bounded by

$$
\begin{equation*}
12 K\|h\|_{1} . \tag{2.34}
\end{equation*}
$$

which leads to the bound

$$
\begin{equation*}
4 \pi \sum_{i=1}^{N} \mu_{i} \leqq 3^{4 / 3} \alpha^{2 / 3} K^{1 / 3} N^{1 / 3}\|W\|_{3}^{2} . \tag{2.35}
\end{equation*}
$$

This gives the constant C to be

$$
\begin{equation*}
C=9(4 \pi)^{-3 / 2} \alpha K^{1 / 2} . \tag{2.36}
\end{equation*}
$$

If we take the function $g(x)$ to be constant in the unit ball $|x| \leqq 1$, then we get from (2.8) the value $\alpha=6 / 5$. To evaluate the integral (2.31) for K, note that

$$
\begin{equation*}
\xi(r)=\frac{1}{r}-\frac{3}{2}+\frac{1}{2} r^{2}, \quad 0<r \leqq 1, \tag{2.37}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{\partial}{\partial r}\left[r^{7 / 2} \xi(r)\right]=\frac{5}{2} r^{3 / 2}-\frac{21}{4} r^{5 / 2}+\frac{11}{4} r^{9 / 2} . \tag{2.38}
\end{equation*}
$$

Thus K is given by

$$
\begin{equation*}
K=\frac{4 \pi}{3} \int_{0}^{R}\left[\frac{5}{2} r-\frac{21}{4} r^{2}+\frac{11}{4} r^{4}\right] d r . \tag{2.39}
\end{equation*}
$$

with $R=.57661$. This yields the value $K=.482$. Hence we obtain from (2.36) the value $C=.168$.

References

1. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106 (1977), 93-100.
2. P. Dirac, Note on exchange phenomena in the thomas atom, Proc. Cambridge Phil. Soc. 26 (1930), 376-385.
3. V. Glaser, H. Grosse, and A. Martin, Bounds on the number of eigenvalues of the Schrödinger operators, Comm. Math. Phys. 59 (1978), 197-212.
4. P. Li, and S-T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309-318.
5. E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Amer. Math. Soc. Proc. Symp. in Pure Math. (R. Osserman and A. Weinstein editors) 36 (1980), 241-252.
6. - A lower bound for Coulomb energies, Phys. Lett. 70 (1979), 444-446.
7. - and S. Oxford, An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chmn. 19 (1981), 427-439.
8. G. Rosenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245-249.
9. B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979.
10. E. Stein, and G. Weiss, Fourier analysis on Euclidean spaces, Princeton, NJ, 1971.
