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A MAXIMUM PRINCIPLE FOR WEAKLY COUPLED 
SYSTEMS OF SECOND ORDER PARTIAL 

DIFFERENTIAL EQUATIONS WITH 
NONNEGATIVE CHARACTERISTIC FORM 

CHRIS COSNER 

ABSTRACT. The maximum principle of Fichera for a single second 
order partial differential equation with nonnegative characteristic 
form is extended to weakly coupled linear systems of such equa
tions. A Phragmen-Lindelöf principle for such systems, giving 
conditions for the maximum principle to hold in unbounded 
domains, is proved. Comparison theorems for degenerate para
bolic semilinear systems in bounded and unbounded domains 
are also proved. 

1. In recent years there has been considerable interest in second order 
partial differential equations with nonnegative characteristic form. This 
class of equations includes elliptic and parabolic equations as special 
cases. Current interest in the subject began with the work of Fichera 
[4], [5]. Fichera stated the appropriate boundary value problem, corres
ponding to the Dirichlet problem, for a general second order equation 
with nonnegative characteristic form, and found conditions for the 
existence of a weak solution to that problem. Fichera also proved a 
maximum principle for second order equations with nonnegative char
acteristic form. The object of the present article is to extend Fichera's 
maximum principle and related results to weakly coupled systems of 
second order equations with nonnegative characteristic form. This is 
done by combining Fichera's techniques with those used by Protter and 
Weinberger [10] to obtain maximum principles for weakly coupled sys
tems of elliptic and parabolic equations. 

Let Q be a bounded domain in Rn, with piece wise C2-boundary. Denote 
the boundary of Q by 2. Let 

n n 

L[u] = 2 aikx)uxiXi * 2 btix)uXi + c(x)u. 

Assume that the coefficients of L are all bounded and continuous in ß, 
and that the matrix ((at-j{x))) is symmetric and positive semi-definite for 
all x e Q. Let 2° be the set of points x e ^ s o that a vector (y1? . . . , vn) 
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normal to Q exists at x, and ^"j^a^ViVj = 0. Then define 2* to be the 
set of points x0 G 2° such that 2 is given, in a neighborhood of x0, by 
F(x) = 0, where F(x) is a C2-function with F(x) > 0 for x e Q, grad 
F ^ 0, and L(F) ^ 0 at x0. Consider the equation 

(1.1) L(u) =f in Q. 

Let #•* be the set of points xQ e 2* such that in some neighborhood of 
x0 in Q, u is C2 and (1.1) is satisfied, together with the conditions on the 
coefficients of L. The set o* is invariant under nondegenerate coordinate 
changes. This is proved in [9]. 

THEOREM (Fichera). Suppose that u e C°(Q) Ç] C2(Q U a*). Suppose 
that c < 0 on Q and that (1.1) is satisfied in Q (J <T*. Then 

, max Iwl} 

for all xeQ. 
This theorem is proved in [9]. The primary result of §2 is a generaliza

tion of this theorem to weakly coupled systems of second order equations 
with non-negative characteristic form. Let 

L«[u] = £ ctfj{x)u + S b?(x)uXi, a = 1, . . . , N. 

Consider the system 

(1.2) L*[u«\ + 2 > « V 5: 0. 
ß=i 

For each operator La, a set ( j j i l may be defined in the same way that 
(7* was defined for L. Suppose that for a ^ ß, ca$(x) ^ Oin Q [J a%. The 
main result of section 2 is the following theorem. 

THEOREM 1. Suppose that for a = 1, . . . , N the functions ua e C°(Q) f] 
C2(Q (J a a) satisfy the inequalities 

N 

La[ua] + 2 caßuß =̂  ° inQ\J o*9 
] 3 = 1 

arti/ that for some constant c0 > 0, 
N 

2 c « ^ - c0 < 0 

w f l U ^ » a = 1 ^ ^ ^ wa 5? 0 /rt Ö, a = 1, . . . , Â . 

A maximum principle of the same form as Fichera's follows from 
Theorem 1 as a corollary. 

\u(x)\ ^ max{sup 
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The main result of §3 is a Phragmén-Lindelof principle which gives 
conditions under which Theorem 1 extends to the case where the domain 
0 is unbounded. 

In §4, results similar to those of §2 and §3 are proved for semi-linear 
systems of degenerate parabolic equations. Such systems, also known as 
reaction-diffusion equations, are important in many applications. Reac
tion-diffusion equations are discussed at some length by Fife in [6]; that 
article also includes an extensive bibliography. Some of the techniques 
used in §4 are adapted from those used by Fife in [7]. 

2. Let Û be a bounded domain in Rw, with piecewise C2-boundary. 
Denote the boundary of Û by 2. We consider the system of differential 
inequalities 

(2.1) L«[w«] + 2 > « M ^ 0 
0=1 

in Q, a = 1, . . . , N, where 

L«[v] EE £ afj(x)vXiX. + £ bf(x)vxr 
*,/=i i=i 

We assume throughout this section that all the coefficients of the system 
(2.1) are bounded and continuous in Û. We assume that for each a, the 
n x n matrix (((afj(x))) is symmetric and positive semi-definite for all 
xeQ, and that c«ß(x) ^ 0 for a =£ ß. For a = 1, . . . , N define 2% to be the 
set of points x e 2 such that a vector (yb . . . , y„), normal to £?, exists at 
x and satisfies 

S a?j(x)v;Vj = 0. 

Then, for each a, define 2* to be the set of points xQ e 2% such that 2 is 
is given, in a neighborhood of x0, by F(x) = 0, where F(x) is a C2-function 
with F(x) > 0 for x e Q, grad F ^ 0, and La[F] ^ 0 at JC0. Suppose that the 
functions u\ ...,uN satisfy (2.1) in Û, with ua e C°(Ö) U C2(û), or = 1, . . . , 
JV\ For each a, define <j* to be the set of points x0 e 2* such that in some 
neighborhood of x0 in R", ua is C2 and the crth inequality of (2.1) is 
satisfied, with all the conditions on the coefficients remaining true. The 
sets #•* are invariant under nondegenerate changes of independent vari
ables. The proof is the same as in the case of a single equation, which is 
discussed in [9]. 

THEOREM 1. Suppose that for a = 1, . . . , N the functionsuae C°(Q) fl 
C2(Q fl 0"*) satisfy the inequalities 

La[u«] + Y\ c«ßuß ^ 0 in Q (J <£, 
(2.2) i8=i 

ua ^ 0 on 2VÏ-
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Suppose also that for some constant c0 > 0, 

(2.3) 2 c"fi(x) ^ - c0 

fei 
in Q \J a*,a= l, ..., N. Then u<* ^ 0 in Q, a = 1, . . . , N. 

PROOF. Suppose that for some a, ua(x) > 0 at some point x e Q. Then 
sup{tta(X): a = 1, . . . , N9 x G Q) = M > 0. Since Q is compact, for some 
y and for some x0 e Q, ur(x0) = M. By the definition of M, u?{x) has its 
maximum on Q at x0. Since u? ^ 0 on 2\a* by hypothesis, it follows that 
x0eQ U tf-*. We consider the cases where x0eQ and where x0 e a* 
separately. 

Case I. x 0 e ö . In this case u? must have a local maximum at x0, so 
w*/*o) = 0 for / = 1, . . . , « and the matrix ((w£,,.(x0))) (i, y = 1, . . . , w) 
must be negative semi-definite. Since the matrix {{a^j)) is assumed to be 
positive semi-definite and symmetric, 

2 atjur £ 0 
t'J=i 

at x0. Further, since caß ^ 0 for a ^ /3, and uß ^ M for each /3 by the 
definition of M, 

JV AT 

2 crßuß ^ errur + 2] crßM. 
fei fei 

fer 
At x0, ŵ  = M, so 

2 c^(*oM*o) =̂  crr(x0)M + 2 ^ o W 
fei fei 

fer 
= Mj]crß(x0) 

fei 
g - M c 0 < 0 

by assumption (2.3). Hence, at x0, U[UT] + 2 fe i cTßuß = ~Mco < °> 
which contradicts hypothesis (2.2). Thus we cannot have x0 G Q. 

Case II. x0 G <?*. Since <?* E 2**, there exists a function F(x) such that 
2 is given, in a neighborhood of #0, by F(x) = 0, with grad F ^ 0 and 
F(x) > 0 for x G Q. We can change coordinates from x = (xb . . . , xw) 
to j> = (yl9 ...,yn) with j ^ = Fk(x) for fc = 1, . . ., n and yn = F»(x) = 
F(x). Then 2 can be written, in a neighborhood of x0, as { :̂ j„ = 0}. In 
terms of the new coordinates, we have 

(2.4) Lr[u] = £ 5fri/y,y, + 2 foyi> 
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where 

älj = 2 äijFifi, 
k,/=i 

for i, y = 1, . . . , /*. An inward normal to 0 at x0 is given by grad F = 
(F£, . . . , F ; Ä ) ; since x0 e a$., it follows that 

2 « n = o 
*,/=l 

at x0. Thus, since ((al7)) is positive semi-definite and symmetric, J^k=ial,t^xk 

= 0 at XQ for / = 1, . . . , « . Hence, at x0, 

(2.5) a?, = ^ = t *SW£ = 2 Œ «UW, = o 
*,/=i /=i *=i 

for y = 1, . . . , A*. Now, F». = 0 and thus F*.yy == 0 for ij ^ n, and FJ, = 1, 
so it follows from (14) and (2.5) that at x0, Lr[Fn] = S*. Since x0eo*, 
0 g Z/[F] = L [̂FW] at x0, so 5j ;> 0 at x0. We may now change coordi
nates again, leaving the y „-axis fixed, so that the change diagonalizes the 
matrix ((<%)), /, j = 1, . . . , n — 1, at x0. Call the new coordinates (zl5 . . . , 
zn-i> y to- I n ^ i s last coordinate system we have, at the point JC0, 

(2.6) Lr[u] = 2 â!jum + 2 b\uZi + bnuyn 
i , / = l i = l 

with #£,- = 0 for / ^ j , âu ^ 0 for i = 1, . . . , « — 1. Now, uT attains its 
maximum on Q at x0. Since xQ e 2, wr(x) need not have a local maximum 
at x0; however, the function ur(zh . . . , z„_1? 0) with argument restricted to 
2 must have a local maximum with respect to z b . . . , zn_i at x0. Thus, at 
*o» w£ Ä 0 an(* wï,z, = 0 for / = 1, . . . , « — 1. Also, WyM ^ 0 at x0 since 
otherwise w (̂x) would increase as x moved from x0 into Q. Hence, it follows 
from (2.6) that at x0, Lr[uT] <> 0. We have, at x0, 

Lr[ur] + £ c"ßuß S 2 c r ^ ^ - M c 0 < 0 
j8=l 0 = 1 

as in Case I, which contradicts (2.3). Thus x0 cannot belong to a*; this 
completes the proof of Theorem 1. 

REMARK. Suppose that for each a, r* is an open subset of #*. If for 
each a, ua ^ 0 on 2\z* and the inequality 

N 

L«[u«] + 2 c<xßuß ^ 0 
/3=i 

holds on Q (J T*, then if wa > 0 in fl for some ce, a contradiction results 
just as in the proof of Theorem 1. Thus, Theorem 1 still holds if <T* is 
replaced by r*. 
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EXAMPLE 1. Suppose n = 2. Let Q = (0, 1) x (0, 1). Define a function 
/ty)by 

(0, 0 ^ 97 S 1/2, 
/ ( 5 ? ) 127 - 1, 1/2 £ 7 £ 1. 

Suppose that for a: • = 1, 2, M" e C°(ß) fi C2(Q) and the functions M« satisfy 
the following system in Ü: 

ul1Xi+f(x2)ul2X2-W + " 2 ^ 0 , 

ullxl + ul2 + iii - 3W2 è 0. 

For the domain Ö and the system (2.7), 2 = 30, J? = (0, 1) x {0}, 
^o = (o, 1) x {0} U (0, 1) x {1}, and 2f = 2$ = (0,1) x {0}. Since we 
assume nothing about the behavior of ul and u2 outside Ö, we cannot 
determine of and öf. However, suppose that for a = 1, 2, ua ^ 0 on 
2'\[(0, 1) x {0}]. If x0 e Q, there exists a number e satisfying 0 < e < 1/2 
such that x0 e (0, 1) x (e, 1). Let £e = (0, 1) x (e, 1), and consider the 
system (2.7) in Q£. For the system considered in Q£, 2* = 2* = (0» 1) x 

{«s}. Now, the functions w1 and u2 were assumed to satisfy (2.7) in £?, and 
Q contains Q£ {] [0, 1] x {e}]9 so for the system considered in Q£, of = 
of = (0, 1) x {e}. Since S££V* £ 2\[(0, 1) x {0}] for a = 1, 2, the 
functions wa satisfy i/a ^ 0 on dQ£\o*. The other hypotheses of Theorem 
1 are satisfied, so wa ^ 0 on Q£ for a = 1, 2. In particular, wa ^ 0 at x0 

for each a. Since xQ was an arbitrary point in Q, ua S 0 in 0, and hence by 
continuity in 0, for each a. Thus, for system (2.7) we may omit data on 
(0, 1) x {0} and still conclude that ua g 0 on Q for a = 1,2, although we 
cannot determine a* and of for (2.7) in Q. 

Theorem 1 immediately yields the following results. 

COROLLARY 2.1. Suppose that for a = 1, . . . , N, the functions ua e C°(D) 
fi C2(Q U a*) satisfy the inequalities 

N 
L«[ua] + 2] c«ft/0 ^ 0 ï/i Q U (7*, 

(2.8) ^ i 
u« ^ 0 ö/i 2̂ \<7*, 

tftfrf hypothesis (2.3) 0/ Theorem 1 w satisfied. Then ua ^ 0 on Q. 

PROOF. Apply Theorem 1 to the functions —ua, a = I, ..., N. 

COROLLARY 2.2. Suppose that fora = 1, . . . , N, the functions ua e C°(Q) 
fi C2(Q U (T*) satisfy the equations 

L°[u*] + S ^ ^ = / " w ÛUff î 
(2.^) 0=1 
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where fa and ga are bounded continuous functions on Q (J a% and 2\a* 
respectively for a = 1, ..., N. Suppose that hypothesis (2.3) of Theorem 1 
holds for some constant c0. Then for each a, ua satisfies 

(2.10) \u«\ g max 
sup (|/«(*)|/c0), sup \g*(x)\ 

a=l,...,N a=l,...,jtf 

in 0. Further, if the functions va satisfy the system (2.9), with va e C°(Q) f| 
C2(Q U <?%),for <x = 1, . . -, N9 then va = ua in Q for each a. 

PROOF. Let 

M = maxi 
sup (\fa(x)\lc0), sup \g«(x)\~ 

a=l,...,N a=l,...,AT 

Then for each a, ua - M = ga - M ^ 0 on 2V*. Also, 

L«[w« - M] + 2 c«/V - M] 
0=1 

= L«[w«] + 2 ca/?w/3 - Mj^caß 
ß=i ß=i 

è / a + CQM ^ 0 

in Q U <j*. Thus Theorem 1 applies to the functions ua — M, and hence 
ua — M ^ 0 or ua ^ M in Û. Similarly, Corollary 2.1 applies to the 
functions ua + M, so ua ^. —M in Û. It follows that \ua\ ^ M inQ for 
a — 1, . . . , N, which is precisely (2.10). If the functions va also satisfy (2.9), 
then the functions wa = ua — va satisfy 

(2.11) ß=i 
w« = 0 on 2V*-

Theorem 1 and Corollary 2.1 both apply to (2.11); so wa g 0 in Q and 
wa ^ 0 in Q for each a. Thus wa — va = 0 or wa = va in ß for each <x. 

Theorem 1 is a weak maximum principle; it asserts that if the functions 
ua satisfy the system 

N 

La[ua] + 2 c«ßuß ^ 0 
ß=i 

in 0 [j a* and ŵ  has a positive maximum at a point of Q U <7*, then for 
some a, ua must be positive at some point of 2\<r*. Theorem 1 says nothing 
about the behavior of u? elsewhere in Q U er*. In contrast, suppose that 
u satisfies the uniformly elliptic equation 

S a\)(x)u + S i'Wii,, + C(JC)H = 0 
tj=i i=i 
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in Q with w g O o n dQ, where c(x) ^ — cQ < 0. The strong maximum 
principle for elliptic equations asserts that if u has a positive maximum at 
x0 e Û, with u(x0) = M, then w(x) = M in Ö. Strong maximum principles 
for weakly coupled systems of elliptic and parabolic equations have been 
proved by Protter and Weinberger [10]. Their proof is accomplished by 
showing that each component ua of the solution of the system must itself 
satisfy a differential inequality. Then, the usual strong maximum principles 
for a single equation may be applied. For general second order equations 
with nonnegative characteristic form, the question of strong maximum 
principles for a single equation is much more complicated than in the 
elliptic or parabolic case. However, some very general strong maximum 
principles have been proved by Bony and Aleksandrov; these are discussed 
in [9]. The following corollary permits the extension to systems of whatever 
strong maximum principles are available for a single differential equation 
with nonnegative characteristic form. 

COROLLARY 2.3. Under the hypotheses of Theorem 1, each of the functions 
ua satisfies the inequality 

La[ua] + caaua ;> 0 in Q U a*. 

PROOF. By assumption, La[ua] + J^f^c^uß ^ Oinö (J a*. By Theorem 
1, uß ^ 0 in Q for ß = 1, . . . , N; since we assume that caß ^ 0 for a ^ ß, 
it follows that 

N 
La[ua] + caaua è - 2 caßuß ^ 0, 

/3=i 

which proves the corollary. 

It should be noted that condition (2.3) implies that caa ^ — c0 < 0. 

REMARKS. Suppose that the operators La in (2.2) are degenerate para
bolic, that is, 

L«[u] = 2 a?j(x)uXiX. + 2 bf(x)uXi - uXn 
i, /=1 r=l 

for a = 1, . . . , N, with ((afj(x))) (i,j = 1, . . . , n — 1) positive semidefinite. 
If Q is a cylindrical domain, that is, Q = co x (0, T) where co is a smooth, 
bounded domain in Rw_1, then for each <x, 2* contains all of co x {T} 
and none of co x {0}. Which parts of dco x (0, T) lie in 2* will vary, 
depending on La. If all the operators La are degenerate parabolic, data 
may always be omitted on co x {7}, even though a% may not be known. 
Theorem 1 may be applied by using the same trick as in example 1. 
Further, if the operators La are degenerate parabolic, condition (2.3) of 
Theorem 1 may be omitted. The functions caß are assumed to be bounded; 
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so even without condition (2.3), 2$=ica/3 = M in Q for some constant M9 

a = 1, . . . , N. If we let wa = ua exp( —(M + l)*w), and the functions ua 

satisfy the system 

(2.13) g <Ww + 2*?«?, - «5. + S ' " ^ ^ ° 
i,y=i i= i j8=i 

in Û (J a*, then the functions w satisfy the system 

(2.13) S flfywjfw + S *f w« - w«w + S c«W è 0 
i , /= l i= l 0=1 

in Q U <r*, where caß = ca^ for a ^ /3 and caa = c a a - M - 1. Thus, 2j£=i ^ 
^ - 1 , so condition (2.3) holds for system (2.13). If ua ^ 0 on 2 > * , 
then w« = 0 on 2V*- Thus, Theorem 1 applies to the functions wa, so 
wa S 0 in Ö, and thus wa ^ 0 in £?, a = 1, . . . , N. Hence, condition (2.3) 

may be omitted and Theorem 1 will still apply, in the degenerate parabolic 
case. 

3. In this section, Q will be an unbounded domain in Rw, with dQ 
piecewise C2. The operators La are as in §2, but their coefficients and the 
functions caß are only assumed to be bounded on each bounded subdo
main of Q. Thus the coefficients may grow as \x\ -+ oo. Suppose that the 
functions ua,a = 1, . . . , N, satisfy the system 

IAua] + S caßuß ^ ° influx 

u« g 0 on 2\c%. 

THEOREM 2. Suppose that the functions ua, a = 1, . . . , N, satisfy the 
system (3.1), with uaeC°(Q) Ç] C2(0 U a*). Suppose that there exists 
a function H(x) such that for a = 1, . . . , N. 

(3.2) La[H] + 2 c°ßH g 0 
ß=i 

in Q [J (7*, with H(x) > 0 in Q. Assume that for each R > 0 there is a 
constant c0(R) > 0 so that for a = 1, . . . , N9 

(3.3) Ec«ß(x)£ -c0(R) 
0=1 

> r û / / j c e û [ J ^ with \x\ g £. / / 

(3.4) l i m i n f L l ^ ^ « / ^ ) ) 
#-+oo L a=l...,N, 

then u« <£ 0 m Ö, a = 1, . . . , iV. 

^ 0 

PROOF. Suppose x0 e Ö. Given any e > 0, condition (3.4) implies that 
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there exists some R > \x0\ such that for a = 1, . . . , N, ua(x) — eH(x) <; 0 
for all x e Q with \x\ = R. Since H > 0 in Q and ua g 0 on 2 > * , w« -
s # ^ 0 on 2 > * for each a. Let ß* = Ûfl {x: M ^ R}. Let <j$a be 
defined for QR in the same way that a* was defined for Q in §2. Then 
a% f) {x: \x\ < R} E <?*,. Let T* = <7* f] {x: \x\ < R}. Since u« - eH 
<: 0 for |x| = Ä and x e 2\<r*, 

(3.5) u« - eH S 0 on 9ÛA \T*, a = 1, . . . , N. 

(By the definition of QRidQR = [Q fl {*: M = ^}] U [^ f~i {*: M < /*}], 
so the only part of dQR where wa — eH is not known to be nonpositive 
is <7* H {*: IJC| < 7?} = T*). For each a, r* E **, so by (3.1) and (3.2), 

(3.6) L"[ua - eH] + J] c«ß(uß - eH) ^ 0 

Ì H U A U 7 Î » a = 1, . . . , ^ . Condition (3.3) insures that hypothesis (2.3) 
of Theorem 1 holds in QR, so it follows from the remark at the end of the 
proof of Theorem 1 that (3.5) and (3.6) imply ua — eH g 0 in QR for 
a = 1, . . . , N. In particular, wa(*o) ^ eH(x0). Since «s > 0 was arbitrary, 
wa(x0) g 0 for each a. Since x0 e Q was arbitrary, ua ^ 0 in Ö, and hence 
by continuity in Q, for a = 1, . . . , N. 

REMARKS. Theorem 2 is a Phragmén-Lindelof principle for weakly 
coupled systems of second order equations with nonnegative characteristic 
form. Various types of Phragmén-Lindelof principles have been proved 
for elliptic and parabolic equations. Some of these results are discussed 
in [10]. In the case of elliptic equations, the condition (3.3) may be modified 
or eliminated; how this can be done is discussed in [10]. However, the 
techniques used in [10] for elliptic equations cannot be used in equations 
with nonnegative characteristic form without modification. (The argu
ments allowing data to be omitted on a* are rather delicate, since they 
consider the behavior of both the first and second order terms in La.) 

The usefulness of a result such as Theorem 2 depends on whether or 
not one can construct an appropriate comparison function H(x). In 
general, finding the proper H(x) may be difficult or impossible. However, 
if the operators La are degenerate parabolic and Q is cylindrical, then 
comparison functions H(x) can be constructed under a rather wide 
range of conditions. 

Suppose that for a = 1, . . . , N. 

L«[ua] = 5 a?j<x)uXiXJ + §*?(*K- ~ ^ 

and Q — co x (0, T) where co is an unbounded domain in Rw_1, with 
dco piecewise C2. The proof of Theorem 2 may be modified slightly by 
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replacing QR = Q f] {x: \x\ < R} with coR x (0, T) where coR = co [] 
{(*!, . . . , xw_i): (2]?=i^?)1/2 < R}> a n d replacing (3.4) with the condition 

lim inf 
r—oo 

sup [w(x)//f(x)] 
x^Q, \(xi,...,x„-i)\=r 

a=l,...,tf 
< 0 . 

The proof of Theorem 2 remains essentially the same, but since coR x 
(0, T) is cylindrical and the operators La degenerate parabolic, hypothesis 
(2.3) of Theorem 1 may be omitted, and hence condition (3.3) may be 
omitted in Theorem 2. Further, suppose that the coefficients of (3.1) 
satisfy, for each a, the conditions 

£"?,<*)£& ^ *i0 + >-2)wlfl2, 

M £ K2(ì +r2)i/2, / = 1, . . . , i , - 1, 

and 

for some, A, A ,̂ tf2, tf3 > 0, where r = (I!?=i *2)1/2- Then if k and /3 are 
properly chosen positive constants, the function H(x) = exp{&(l + 
r2)A^x„j wjn satisfy (3.2) in co x (0, T{) for some Tx > 0. This particular 
H(x) was introduced by Bodanko [1], and used to prove a Phragmén-
Lindelöf principle for systems of parabolic equations. Bodanko's argu
ments extend to the degenerate case, but do not allow for the omission 
of data on [dco x (0, T)] f| a* even if the form 2]?=itf?y(*)£i£/ degenerates. 
Comparison functions similar to Bodanko's but allowing a wider range 
of growth conditions on the coefficients of (3.1) have been constructed by 
Kusano, Kuroda, and Chen [8], Chabrowski [2], and the author [3]. 
A detailed analysis of the degenerate parabolic case is given in [3]. The 
Phragmén-Lindelòf principle, together with comparison functions, can 
be used to study the asymptotic behavior of solutions of weakly coupled 
systems of degenerate parabolic equations. This application is discussed 
in [3]. 

4. The object of this section is to extend the results of §2 and §3 to 
certain semi-linear systems of degenerate parabolic equations. Let co 
be a domain in Rw, either bounded or unbounded, with dco piecewise C2. 
Let Q = co x (0, T). In this section the operators La are assumed to have 
the form 

(4.1) L«[n] = 2 afj(x, t)u + S b?(x> t)uXi + c"(x, t)u - ut9 
*,/=i i=i 

where E ^ i f i f / x , f)£«£/ ^ 0 for (JC, /) e Q, £ e R", and a = 1, . . . , N. 
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The type of operator in (4.1) is a special case of the types of operators 
considered in §2 and §3. For the operator in (4.1) and the domain Q, it is 
easy to verify that 2* contains all of co x {T}, none of co x {0}, and 
may or may not contain points of dco x (0, T). Further, the device of 
Example 1 in §2 can often be used to omit data on co x {T}. 

Let u = (w1, . . . , uN) and let 1 = (1, 1, . . . , 1) e R*. Let F(x, t, u) 
and 3(x, t, u) be functions from Q x Rn to Rn, with components Fa and 
$* respectively, such that Fa(x, t, u) ^ %a(x, t, u) for (x, t) G Q, U G R^, 
and a = 1 , . . . , N. Assume that 5(x, /, u) is Lipschitz in u, uniformly for 
(x, t)eQ, with respect to the norm |u| = supa=1>...,#|wa|. Assume also 
that for each a, 5a(jc, /, u) is nondecreasing in each component u$ of 
u with ß ^ a. 

In the following theorem, the operators La are assumed to satisfy the 
same general conditions as in §2. 

THEOREM 3. Suppose that co is bounded and Q = co x (0, T). Suppose 
also that the vector functions u and u satisfy 

L«[u«] + F«(x, /, n) £ 0 

' i>[u*] + da(x, /, u) è 0 

I/I Q U <7*, a = 1, . . . , N. with u«, ua G C°(Ö) fi C2(ß U *î) M each a, 
and that for each a, 

(4.3) u« ^ u« 0/1 2 > * . 

Then for each a,ua^ua inD, a = 1, . . . , iV. 

PROOF. The proof is adapted from that used in [7] for the uniformly 
parabolic case. Let p = sup(x^e^|ca(x, £)| -f- Af, where Af is the Lips
chitz constant for 5 . Then for e = 0, define v by 

(4.4) v = u - £#* 1. 

For each a, va = ua — eef; so 

La[va] = La[\xa] - £La[e^] 

^ - g a ( x , J, u) + e(^ - c«)et« 

è - $"(*, ', v + 5^1) + S(M - ca)^< 
(4.5) ^ - $ a ( * , ', v) - M ^ ' + e(ju - ca)e^ 

^ - ï H * , *> v) + *(/* - r" - M ) ^ 

for (x, /) G ß (J <jj. Now let w = u - v. Define r G [0, T] by r = sup{f G 
[0, T]: wa ^ 0 in à) x [0, t] for a = 1, . . . , # } . Since wa ^ e for t = 0, 
a: = 1, . . . , N, it follows by continuity that r > 0. Theorem 3 will be 
proved by showing that if z < T, a contradiction results. 
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Let uß denote the N — 1 vector whose components are the functions 
ua, a ^ ß. Then write %a(x, f, u) = %a(x, t, ua, ua). Since by hypothesis 
ga(x, t, u) is nondecreasing with respect to u$, ß ^ a, it follows that on 
( O l j a î ) fi {(x, t):t e [0,T]}9 

-$*(* , u u) = -d"(x9 t, u°, u«) 
(4.6) g -g«(x, f, v«, w«) 

g - g a ( x , f, v) + M(wa - va). 

Combining (4.5) and (4.6) and using the definition of w yields, for each a, 

L«[wa] = La[ua] - La[va] 

^ -Fa(x, y, u) + $«(JC, /, v) 

(4.7) £ -g*(x, r,u) + 3f«(x, r, v) 

^ -??*(*, *, v) + Mw« + 5a(x, /, v) 

in (Q U a*) fi {(*> t):te [0, r]}. Thus, for each a, 

(4.8) (L<* - M) [H>«] g 0 

in (Q U **) fi {(x, t): f e[0, z]}. Now, wa ^ ^ ' ^ ee-f* on 2\cr*; 
so wa - ee-t* ^ 0 on 2\G%- Also, 

(L« - M)[wa - £<?-#] = (L<* - M)[wa] - (L<* - M)[ee~i*] 

(4.9) g - ( / / + ca - M)<?"^ 
S O 

on (Û U fl£) (I {(x, t): / e [0, z]}. It follows from corollary (2.1) (or in 
fact from Fichera's original maximum principle, see [4], [5]) that for each 
a, wa — ee-f* ^ 0 or wa ^ ee-f* ^ ee~tiT> 0 on ô) x [0, T]. (It is easy 
to check that boundary data may be omitted on Û) x {r}, and condition 
(2.3) of Theorem 1 is unnecessary since La is degenerate parabolic; see the 
remarks at the end of §2.) But if wa ^ e0 = ee~^ > 0 for all a on &) x 
[0, T), and T ^ T, then it follows by continuity that for some ô > 0, 
wa > 0 on a) x [0, r + 5], contradicting the definition of z. Thus z = T, 
so for each a, wa ^ 0 on Ö, or wa — ua + £<?̂  ^ 0 on Ö. Since e > 0 
was arbitrary, wa ^ u a o n û for each a, as desired. 

REMARK. The remarks following the proof of Theorem 1 also apply 
here; so o% may be replaced by any open subset of o% in (4.2) and (4.3). 

The following theorem extends Theorem 3 to unbounded domains, just 
as Theorem 2 extends Theorem 1. Here the operators La are assumed to 
satisfy the same general conditions as in §3; in particular, their coefficients 
are assumed to be bounded on any bounded subset of Q. The functions F 
and 5 are assumed to satisfy the same hypotheses as for Theorem 3. 



72 C. COSNER 

THEOREM 4. Suppose that co is unbounded, and Û = co x (0, T). Suppose 
that the vector functions u and u satisfy the inequalites (4.2) and (4.3), with 
ua, ua e C°(Q) fi C2(Q U a*) for each a. Let M > 0 be the Lipschitz 
constant for 5 . Assume that the operators La are such that there exists a 
function H(x, t) > 0 in Q such that for each a, 

(La + M)[H] g 0 (4.10) 

inQ U 

(4.11) 

Then ua 

(T* 

All 

and 

lim 

ua in 

sup 
oo |_ 

£?, a 

inf {(ua(x, t) - ua(x, t))/H(x ,t)Y 
(x,t)<=Q,\x\=R 

L a=l,...,N 

1, ...,N. 

> 0. 

PROOF. Theorem 4 follows from Theorem 3 essentially as Theorem 2 
follows from Theorem 1. Some of the notation developed in the proof of 
Theorem 2 will be used here. Given e > 0, let v = u — HI. Then it 
follows as in (4.5) that for each oc, 

La[va] = La[\xa] - eLa[H] 

è - g * ( * , M i ) - eL"[H] 
(4.12) ^ -%a(x, t, y) - Me H - eLa[H] 

^ -$«(*» f, v) - e(L* + M)[H] 
£ -%«(x,t, v) 

in Ö U (j*. (The last step follows from (4.10).) Thus, the vector functions u 
and v satisfy the system 

£«[««] + F«(x, t, u) ^ 0 

in ß U (?%, a = 1, . . . , JV. Now, suppose that (x0, t0)eQ. Condition 
(4.11) implies that there exists some R > \x0\ such that for a = 1, . . . , N, 
u<* - va = ua - ua + eH ^ 0 for all (je, O ^ û with \x\ = i?. Let D# = 
Ö H {̂  G RM: |*| < R}, and let <7$a be defined for QR as <j* was for Û. 
Then, by the same reasoning as in the proof of Theorem 2, ua — va ^ 0 
on a set containing dûR\a$a, and (4.13) holds on the remainder of QR , for 
each a. Thus it follows from Theorem 3 (see also the remarks at the end of 
the proof of Theorem 1) that ua — va ^ 0 on QR, and in particular at 
(x0, 70).Thus, at (x0,t0),u

a - v« = ua - ua - eH ^ 0,for a = 1, . . . , N. 
Since e > 0 was arbitrary, wa — ua ^ 0 at (x0, f0). Since (x0, f0) G ö was 
aribitrary, ua — ua ^ 0 in Q and thus by continuity in Q. 

REMARKS. If Theorem 3 or Theorem 4 is to be used to analyze the be
havior of solutions of a given system La[ua] + Fa(x, t, u) ^ 0 in Q [} a*, 
a = 1, . . . , N, it is necessary to construct another system, Z/*[ua] — 
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%a(x, t9 u) ^ 0 in Q U <?t, oc = 1, . . . , N, such that u and u may be 
compared. Furthermore, enough must be known about u so that the com
parison actually yields some information. Methods of constructing such 
systems are discussed in [7]. Also, for Theorem 4 to apply, it is necessary 
to construct the function H. In the remarks at the end of §3, some condi
tions are given under which such a function can be constructed. The 
function H may only satisfy the required conditions in a strip, co x [0, 7\] 
but Theorem 4 can be applied first in œ x [0, 7\], then again with a new H 
in œ x [7\, r2] , and so on. Conditions under which this process exhausts 
Q and more general ways of constructing H are discussed in [3]. Condi
tion (4.11) is of course satisfied if the inequalities 

lim 
j?->oo] co ï ïL* ( l ^ t)ilH(x> '» = 0, a= 1, ...,N 

and the corresponding inequalities for the functions ua hold; however, 
(4.11) is a weaker condition. Finally, the same sort of analysis used in 
Theorems 3 and 4 can be used to obtain comparison results in which the 
Lipschitz condition is imposed on F rather than 3 ; such a variation is 
useful in some applications. 
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