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BEST CHEBYSHEV QUADRATURES 

RICHARD FRANKE1 

Introduction. The Chebyshev quadrature 

ri m 

(1) x(s)ds = u £ x(ajk-i), 
J ~l k=i 

will be considered. Following the method of Sard [1], it will be 
assumed that dn~lxldsn~l is absolutely continuous, and that the 
approximation is precise for degree = n — 1. Under these assump­
tions, the remainder, or error term, 

f1 v« 
(2) Rx — x(s)dx — u ZJ x(dk-i) 

J ~l k=i 
may be written in the form (see [ 1, p. 25] ) 

(3) Rx= J^ K(t)^(t)dt. 

One possible appraisal of the magnitude of the error term is ob­
tained by applying the Schwarz inequality to (3), obtaining 

where 

(4) / = f^KiWdt. 

Any Lp norm ( p ^ 1) of K(t) could be considered. The h% norm was 
chosen because of the resulting simplicity of the calculations. 

This paper will obtain "best" Chebyshev quadratures in the 
sense of Sard, i.e., those which minimize / . We will require that 
- l â f l o < f l i < • • • < am-i = 1, and that the Uk be symmetric, 
i.e., Oj_i = —am-i, i = 1, • • •, m. Precision zero will be required 
in all cases, thus n = 1 and u = 2/ra. 
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The cases to be considered numerically are n = 1, all m; and 
n = 2, 2 ë m ë l l . These choices of n allow minimization of / 
with no constraints on the ak, under the above assumptions. The 
values of / obtained in each case will be compared with the corre­
sponding value for the classical Chebyshev approximations, where 
the highest possible precision is required. For m = 8, 10, and 11, the 
classical Chebyshev approximations do not exist under our restric­
tions. For those values of m, Barnhill, Dennis, and Nielson [4] have 
obtained Chebyshev type quadratures, and the best approximations 
for n = 2 will be compared with them. 

The functions K(t) and J(a0, ' ' ', am-i)- We define r(i) = rlli\ and 

6(t, s) = 1 - (p(t, s) = 1, t < s, 

= 0, t^s. 

Then, by Sard's Kernel Theorem [1, p. 25], 

K(t)= -R[(s-ty»-»0(t,S)] 

= R[(«- ty»->V(«,*)] , 

for t ^ ao> * ' *> 0m-1- Here R acts on the argument only as a func­
tion of s. 

We consider the two equivalent forms of the kernel K(t). We have 

K(t)= -R[(s-ty"-V0(t,s)] 

= - P (s- tyn-V0(t,s)ds 

m 

+ u 2(a f c-i-*) ( n-1 )»(*>ûfc-i) , 
k = l 

which, when simplified, yields 

K(t) = ( - 1 - t)(n); - l ^ t < a0, 

k 

= ( - 1 - *)<»>+ U S (a, .! - *)<»-!>; 
i = l 

(6) flfc-i < t< ak, k = 1, • • -, m - 1, 

m 

= ( -1 -* )<») + « S (fli-i - t ) ' - 1 ' ; 
i = l 

Similarly, 
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K(t) = R[(s-ty»-"<p(t,s)i 

ri m 

= (s - tyn-v<p(t,s)ds - u 2 («fe-i - tyn~iw,flfc-i), 
which, when simplified, yields 

m 

K(f) = (i - o " " - " S («i-i - *)<n"1); - i = *< «o. 
i = l 

(7) = ( l - * ) < " ) - « S <*-i - ^ " " " J 

öfc_i < t < a*, fc = 1, • • % m — 1, 

= (1 -*)<»>; a ^ ^ ^ l . 

Under the assumption of symmetry of the nodes it is easily verified, 
using equations (6) and (7), that K ( - t) = ( - l)nK(f). Thus 

/ = J ^ [K(t)]2dt = 2 ^ [K(t)]2dt, 

and we need only to minimize 

J,= (° [K(t)]*dt. 
J —I 

Let ra* be the number of nodes in [ — 1, 0), i.e., 

ra* = m/2, ra even 

= (ra — l)/2, ra odd. 

Then make the following definitions: 

Jo- J* [K(*)W 

I* = f* [K(*)] 2dt, k = 1, 2, • • -, ra* - 1, 

We have 
m* 

/i = E ft-
fc=0 
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m 

2 
3 
4 
5 
6 
7 
9 

n = 
7b 

1.67 X 10-! 
7.41 X IO-2 

4.17 X IO-2 

2.67 X IO"2 

1.85 X 10-2 
1.36 X IO-2 

8.23 X IO"3 

TABLE 1 

./best a n c "/c lass ica l 

= 1 
Je 

1.79X10-1 
7.63 X IO-2 

4.76 X IO-2 

2.80 X IO-2 

2.99 X IO-2 

1.58 X IO"2 

1.49 X IO-2 

n = 
7b 

4.08 X IO-3 

7.25 X 10-* 
2.15 X IO"4 

8.48 X 10-5 

3.98 X 10-5 

2.11 X 10-5 

7.50 X IO"6 

= 2 
h 

4.75 X IO"3 

7.80 X IO"4 

4.19 X 10-4 

1.15 X IO-4 

2.28 X IO"4 

5.29 X IO"5 

6.11 X IO-5 

We must obtain a simplified expression for JY. 
Rewriting the l^, we have 

lo= £ [ ( - 1 -*) (n )] 2dt 

k 9 

h= r r(-!_*)<»>+„ 2><-i- ' ) ( n- i 
jak-\ L i = i J 

= r [(-î-*)<->]2 
Jak-i 

k raie 

+ iu 2 ( - 1 - t)(B)(fli-i - ty—i>dt 

2 

dt 

\2dt 

*=i "ttk-i 

k 

fc= 1, • • - , m * - 1. 

ro r T 

^ = I | ( - i - *)<n) + u 2 <«,_! - ty»-»\ 

= f° [ ( - 1 - *)(n)}2<ft 

-h 2 u T f° ( - 1 - 0<n)(o;-i - f)*""1^* 

2 
eft 
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Then, 

/ i= 5 4= f [(-i-*) ( n )]2^ 

{
m * - l fc f 

S S r ( - 1 - ^"'(«i-! - ty»-vdt 
fe-l i = l J a f c - 1 

m* r 0 

i = l Jam*-l J 

{
m*~l k r«k 
I S (ai-! - ty»-v(<h-i - ty»-»dt 

k = l i,j = l Jak-i 

i, j = 1 J a m * - 1 J 

= Ĵ  [ ( - I " t)^]2dt 

+ 2M S f° (-1 - tyn\ak-l - tyn-»dt 
fc=l J f l fc-1 

The sum in the last term is to be interpreted as zero when k — 1 = 0, 
as are any sums in the following work where the upper limit is smaller 
than the lower limit. Integrating the above expressions, by parts 
several times in the last two terms, one obtains 

-| m 11 

m* - n2n~l 

<8> + - ' g , [ - [ ( — I W ^ . - D 

+ 2É1 s (-i)t«rr,,'a(,-?i 
1 = 1 £=1 J 
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m 

2 

3 

4 

5 

6 

7 

9 

TABLE 2 

Nodes: n = 2, and classical case 
n = 2 

± .55051 

± .69722 
.0 

±.77315 
± .24721 

± .81850 
± .39799 

.0 

± .84875 
± .49831 
± .16685 

± .87036 
± .56998 
± .28585 

.0 

± .89917 
± .66554 
± .44455 
± .22221 

.0 

02572 

43623 

45618 
76225 

45407 
68704 

53923 
19555 
25367 

16256 
33013 
74954 

01631 
24529 
69674 
09597 

Classical [3, 

±.57735 

±.70710 
.0 

±.79465 
±.18759 

±.83249 
±.37454 

.0 

±.86624 
± .42251 
±.26663 

±.88386 
±.52965 
±.32391 

.0 

±.91158 
±.60101 
±.52876 
±.16790 

.0 

p. 920] 

02692 

67812 

44723 
24741 

74870 
14096 

68181 
86538 
54015 

17008 
67753 
18105 

93077 
86554 
17831 
61842 

The case n = 1. Making the appropriate simplifications to (8), we 
find 

1 . 4 (9) h = i + — S K - i + Ofc-i] + \ S ( - 2fc + l K ^ . 
3 m fe=i m* k=i 

The ak-i are independent in this case, so setting the partial derivatives 
to zero we obtain the equations 

(10) 
l î^--^*-'+ 1>+à-A + 1>-* 

m 

This is the repeated midpoint rule, a result previously noted by 
Krylov [2, pp. 138-140]. The value of Ji can be obtained by substitut­
ing (10) into (9), and after laborious simplification, it is found that 
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m 

8 
10 
11 

TABLE 3 

/best and 
./Barnhill, Dennis, 

h 
1.22 X IO"5 

4.87 X 10-6 

3.30 X 10-6 

Nielson 

/B,D,N 

1.06 X IO"4 

2.88 X IO"4 

1.00 X IO"4 

TABLE 4 

Nodes: m = 8,10, 11; n = 2, and Barnhill, Dennis, Nielson 
Barnhill, Dennis, 

n = 2 Nielson [4] 

8 

10 

11 

±.88656 
± .62373 
± .37512 
± .12498 

±.90925 
± .69898 
± .50010 
± .29998 
±.10000 

± .91750 
± .72635 
± .54554 
± .36362 
± .18181 
.0 

64347 
52450 
67322 
59060 

31469 
82064 
12823 
97486 
11389 

28608 
29150 
66192 
70548 
91126 

±.90044 
±.55898 
±.45850 
±.0 

±.92106 
±.63181 
±.58191 
±.38366 
±.0 

±.92676 
±.70492 
±.51792 
± .45740 
±.0 
.0 

55323 
89280 
78272 

80558 
13569 
74110 
17341 

50132 
41194 
29707 
29197 

/ i = l/3ra2. Table 1 compares the values of/ corresponding to (10) 
and to the classical Chebyshev approximations. 

The case n = 2. Equation (8) reduces to 

/ i = 20 m Ä L 4 
3 4 

dk-l 1 

24 J 
(11) 

+ mf 

m* r 

S [ 
k = l L 

k-2„3 
Ö ak-l al-i 

24 

fc-i 

S «-il 
i = l J 

There are no constraints on the a^-i since symmetry assures precision 
n — 1 = 1. Equating the partial derivatives to zero, we have the 
system of equations 
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afc_! m L 2 2 6 J 

/ i r fc—* m* T 

+ \ \(k - 2)a£_1 - 2afc_! £ a ^ - £ ati = 0 

for fc = 1, • • -,ra*. 

Simplifying, we obtain the system 

3afc_i + 3al-i + dfc_i 

(12) _ e_ 
m [ k—l m* _| 

(k - 2 )aLi - 2a*_! £ a ^ - £ ^ - i = 0, 
k = 1, • • % ra*. 

Using Newton's Method for systems, (12) was solved for the ak-\ 
for 2 ^ ra = 9. / = 2/x was evaluated for those values, as well as for 
the classical approximations. The results are shown in Tables 1 and 2. 

During the computations on the system of equations (12), as 
expected, increasing m necessitates more accurate initial guesses at 
the solution. For ra = 10 and 11, convergence for all initial guesses 
attempted was to repeated nodes. An alternative, and in fact simpler 
procedure than the above, is as follows. We want 

dak. 
- f° [ K(t)] 2dt = 2u f° K(t)dt = 0, 
- l j - ! J ak-l 

dt 

where K(t) is given by equation (6), with n = 2. Since Jak_{K(t)dt 
= 0 must hold for k = 1, • • -, ra*, we have Ĵ fc_1 K(t)dt = 0 for k = 1, 
• • -,ra* — 1. Simplifying, we find 

Jak-i Jak-\ L Z I i = i J 

= (ak - ak ofa + a*)2 + a + «nog + gfc-i) + a + **-i) 
L 6 

+ w X öi-i - - y (a* + afc-i) 
i = l Z J 

= 0. 

Because we require that ak-\ < ak, the quantity in brackets must be 

2 
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zero, and this then simplifies to 

dk2 + öfc(3 — 3ku + ük-i) 

( k V 

3 + 3afc_! + af-i + 6u £ Û*-I ~ 3fci^_! ) = 0, 
i = l ' 

fc = 1, 2, • • -, m* - 1. 
We note that if the nodes a0, • • -, afc-i are known, afc can be com­

puted from (13). Equation (13) is a quadratic in a^ hence has two 
solutions. For n = 2, K(t) can be made continuous by properly defin­
ing it at the ak, and is piecewise parabolic, the parabolas all opening 
upward. We recall that the solutions of (13) correspond to 
J«*_i K(t)dt = 0. Proceeding inductively on fc, and assuming that the 
two solutions are real and distinct, the smaller solution corresponds 
to a point where K(t) < 0 and the larger to a point where K(t) > 0. 
Noting the shape of K(t) and that dKldt\a-> dJ£ldt\a+, one is con­
vinced that the larger of the two solutions leads to the smaller value 

The numerical procedure is as follows. For an initial guess at ao, 
one can compute in turn, ai, a2, • • •, ßm»-i from equation (13). Then 
let 

F(a0)= f° K(t)dt 
J am*-\ 

a * r m* 
= m*~1 I 3 + 3am*_i + a^*_! + 6u ^ d-i ~ 3um*am*-i I. 

From above, we must have fa. „_ K(t)dt = 0, thus we want to solve 
the equation F(OQ) = 0. The procedure is quite sensitive, and some 
choices for a0 result in complex nodes. However, searching for an 
appropriate initial guess is considerably simplified over that for 
equation (13), since only one variable is involved. This procedure was 
successfully applied for m = 10, 11, as well as for previously solved 
values, as a check on the two methods. The results for m = 8, 10, 
and 11 are shown in Tables 3 and 4, along with the approximations of 
Barnhill, Dennis, and Nielson. 

Conclusion. Some observations may be made from the tables. First 
note that the classical approximation for m = 6 seems to be relatively 
poorer than the others, and in fact for the cases considered, the 
corresponding value for / exceeds that for m = 5. Without exception, 
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the nodes move toward their classical position from their position for 
n = 1, when n is increased to 2. 

The existence of approximations for values of m for which the 
classical approximations do not exist is noted for n = 1 and 2. It 
should be mentioned that the criterion used by Barnhill, Dennis, and 
Nielson to obtain their approximations is different from that used here. 
The approximations obtained here would not compare favorably 
against theirs, using their criterion. 
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