## ON THE HURWITZ ZETA-FUNCTION

BRUCE C. BERNDT

1. Introduction. Briggs and Chowla [2] and Hardy [3] calculated the coefficients of the Laurent expansion of the Riemann zeta-function $\zeta(s)$ about $s=1$. Kluyver [4] found a certain infinite series representation for these coefficients. In another paper [1] Briggs found estimates for the coefficients. These estimates were improved by Lammel [6]. Using these estimates, Lammel also gave a simple proof of the fact that $\zeta(s)$ has no zeros on $|s-1| \leqq 1$.

Using the same technique as in [2] and [6], we derive expressions for the coefficients of the Laurent expansion of the generalized or Hurwitz zeta-function $\zeta(s, a), 0<a \leqq 1$, about $s=1$. A similar formula for these coefficients has been given by Wilton [11]. We then obtain estimates for these coefficients. Our technique here is somewhat simpler than in [6], and as a special case we obtain improved estimates for the Laurent coefficients of $\zeta(s)$. Next, we use our estimates to show that $\zeta(s, a)-a^{-s}$ has no zeros on $|s-1| \leqq 1$. We conclude by indicating a new, simple proof of a representation formula for $\zeta(s, a)$ that was first discovered by Hurwitz.
2. Calculation of the Laurent coefficients. In the sequel we shall need a slightly different version of the Euler-Maclaurin summation formula from what is usually given. Let $f \in C^{n}$ on $[\alpha, m]$, where $m$ is an integer. Then,

$$
\begin{align*}
\sum_{\alpha<k \leqq m} f(k)= & \int_{\alpha}^{m} f(x) d x+\sum_{k=1}^{n}(-1)^{k} \frac{B_{k}}{k!} f^{(k-1)}(m)  \tag{2.1}\\
& +\sum_{k=1}^{n}(-1)^{k+1} P_{k}(\alpha) f^{(k-1)}(\alpha)+R_{n},
\end{align*}
$$

where

$$
R_{n}=(-1)^{n+1} \int_{\alpha}^{m} P_{n}(x) f^{(n)}(x) d x
$$

Here, $B_{k}, \quad 1 \leqq k \leqq n$, denotes the $k$ th Bernoulli number, and $P_{k}(x)$,

Received by the editors February 20, 1970 and, in revised form, November 2, 1970.

AMS 1969 subject classifications. Primary 1041; Secondary 1040.
Copyright © 1972 Rocky Mountain Mathematics Consortium
$1 \leqq k \leqq n$, has period 1 and equals $k!B_{k}(x)$ on $[0,1]$, where $B_{k}(x)$ denotes the $k$ th Bernoulli polynomial. The proof of (2.1) follows along the same lines as the proof of a somewhat less general version in [5, pp. 520-524].

It is well known that $\zeta(s, a)$ is a meromorphic function on the entire complex plane and that its only pole is a simple pole at $s=1$ with residue 1 . Thus, if we set

$$
(s-1) \zeta(s, a)=1+\sum_{n=0}^{\infty} \gamma_{n}(a)(s-1)^{n+1}
$$

our aim is to prove
Theorem 1. For $0<a \leqq 1$ and $n=0,1,2, \cdots$,

$$
\begin{equation*}
\gamma_{n}(a)=\gamma_{n}=\frac{(-1)^{n}}{n!} \lim _{m \rightarrow \infty}\left(\sum_{k=0}^{m} \frac{\log ^{n}(k+a)}{k+a}-\frac{\log ^{n+1}(m+a)}{n+1}\right) \tag{2.2}
\end{equation*}
$$

If $a=1$, (2.2) gives the coefficients in the Laurent expansion of $\zeta(s)$ about $s=1$.

Proof. Let $f(x)=(x+a)^{-s}$ and $n=1$ in (2.1). Then,

$$
\begin{aligned}
\sum_{n=0}^{m}(n+a)^{-s}= & \frac{1}{2}(m+a)^{-s}+\frac{1}{2} a^{-s}+\int_{0}^{m}(x+a)^{-s} d x \\
& -s \int_{0}^{m}\left(x-[x]-\frac{1}{2}\right)(x+a)^{-s-1} d x
\end{aligned}
$$

If $\boldsymbol{\sigma}=\operatorname{Re} s>1$, we obtain upon letting $m$ tend to $\infty$,

$$
\begin{equation*}
\zeta(s, a)=a^{-s}+\frac{a^{1-s}}{s-1}-s \int_{0}^{\infty}(x-[x])(x+a)^{-s-1} d x \tag{2.3}
\end{equation*}
$$

The proof now parallels that of Lammel [6] for the case $a=1$, and consequently we omit the remainder of the details.
3. An upper bound for the Laurent coefficients. Instead of estimating $\gamma_{n}$, we, in fact, will estimate

$$
c_{n}(a)=c_{n}=\gamma_{n}-\frac{(-1)^{n} \log ^{n} a}{a n!}
$$

For the case $a=1$ our estimates are better than Lammel's by a factor of $1 / n$. We shall now prove

Theorem 2. For $0<a \leqq 1$ and $n \geqq 1$,

$$
\begin{aligned}
\left|c_{n}\right| & \leqq 4 / n \pi^{n}, & & n \text { even } \\
& \leqq 2 / n \pi^{n}, & & n \text { odd }
\end{aligned}
$$

Proof. Let $\quad \alpha=1-a \quad$ and $\quad f(x)=\left\{\log ^{n}(x+a)\right\} /(x+a) n!$. Note that $f^{(k)}(1-a)=0, k=0, \cdots, n-1$, and $\lim _{m \rightarrow \infty} f^{(k)}(m)=0$, $k \geqq 0$. We then obtain from (2.1) upon letting $m$ tend to $\infty$,

$$
\begin{equation*}
(-1)^{n} c_{n}=\frac{1}{n!} \lim _{m \rightarrow \infty}\left(\sum_{1-a<k \leqq m} \frac{\log ^{n}(k+a)}{k+a}-\frac{\log ^{n+1}(m+a)}{n+1}\right)=R_{n}, \tag{3.1}
\end{equation*}
$$

where

$$
R_{n}=(-1)^{n+1} \int_{1}^{\infty} P_{n}(x-a) f^{(n)}(x-a) d x .
$$

We must estimate $f^{(n)}(x-a)$.
To that end, put $F_{l}(x)=\log ^{l} x$. An elementary calculation shows that for $1 \leqq k<l$,

$$
\begin{equation*}
F_{l}^{(k)}(x)=x^{-k} \sum_{j=1}^{k} l \cdots(l+1-j) a_{j}^{(k)} \log ^{l-j} x, \tag{3.2}
\end{equation*}
$$

where the constants $a_{j}{ }^{(k)}$ satisfy the recursion formulae,

$$
\begin{align*}
a_{1}{ }^{(k)} & =-(k-1) a_{1}{ }^{(k-1)}, \\
a_{j}{ }^{(k)} & =-(k-1) a_{j}{ }^{(k-1)}+a_{j-1}^{(k-1)}, \quad j=2, \cdots, k-1,  \tag{3.3}\\
a_{k}{ }^{(k)} & =1 .
\end{align*}
$$

We will show by induction on $k$ that

$$
\begin{equation*}
\left|a_{j}(k)\right|=\sum_{1 \leqq i_{1}<i_{2}<\cdots<i_{k-j} \leqq k-1} i_{1} i_{2} \cdots i_{k-j}, \quad 1 \leqq j \leqq k, \tag{3.4}
\end{equation*}
$$

where the sum is over all possible choices of the integers $i_{1}, \cdots, i_{k-j}$ satisfying the given conditions. If $j=k$, the sum is to be interpreted as equaling 1. For $k=1$, (3.4) is trivial. Now, from (3.3) for $j=2$, $\cdots, k-1$,

$$
\begin{aligned}
\left|a_{j}^{(k)}\right|= & (k-1)\left|a_{j}^{(k-1)}\right|+\left|a_{j-1}^{(k-1)}\right| \\
= & (k-1) \sum_{1 \leqq i_{1}<\cdots<i_{k-1-j} \leqq k-2} i_{1} \cdots i_{k-1-j} \\
& +\sum_{1 \leqq i_{1}<\cdots<i_{k-j} \leqq k-2} i_{1} \cdots i_{k-j} \\
= & \sum_{1 \leqq i_{1}<\cdots<i_{k-j} \leqq k-1} i_{1} \cdots i_{k-j} .
\end{aligned}
$$

For $j=1$ and $j=k,(3.4)$ is trivially established, and thus the proof of (3.4) is complete.

It follows from (3.4) that for $1 \leqq j \leqq k-1$,

$$
\begin{equation*}
\left|a_{j}{ }^{(k)}\right| \leqq\binom{ k-1}{k-j}(k-1)(k-2) \cdots j \tag{3.5}
\end{equation*}
$$

Since $f(x-a)=F_{n+1}{ }^{\prime}(x) /(n+1)$ !, we find from (3.2) and (3.5) that for $x \geqq 1$,

$$
\left|f^{(n)}(x-a)\right|
$$

$$
(3.6) \leqq \frac{1}{(n+1)!} x^{-n-1} \sum_{j=1}^{n+1} \frac{(n+1)!}{(n+1-j)!}\binom{n}{n+1-j} \frac{n!}{(j-1)!} \log ^{n+1-j} x
$$

$$
=x^{-n-1} \sum_{j=1}^{n+1}\binom{n}{n+1-j}^{2} \log ^{n+1-j} x
$$

Now, for $n \geqq 1$,

$$
\begin{align*}
\left|P_{n}(x)\right| & \leqq 4 /(2 \pi)^{n}, & & n \text { even } \\
& \leqq 2 /(2 \pi)^{n}, & & n \text { odd } \tag{3.7}
\end{align*}
$$

The estimate $4 /(2 \pi)^{n}, n \geqq 1$, is given in [5, p. 525]. Ostrowski [8] has observed that for $n$ odd, the 4 can be replaced by 2 . That this cannot be done for $n$ even can be seen from a theorem of Lehmer [7, p. 534]. Hence, from (3.6) and (3.7) for $n$ even,

$$
\begin{aligned}
\left|R_{n}\right| & \leqq \frac{4}{(2 \pi)^{n}} \sum_{j=0}^{n}\binom{n}{j}^{2} \int_{1}^{\infty} \frac{\log ^{j} x}{x^{n+1}} d x \\
& =\frac{4}{(2 \pi)^{n}} \sum_{j=0}^{n}\binom{n}{j}^{2} \frac{j!}{n^{j+1}} \\
& \leqq \frac{4}{(2 \pi)^{n} n} \sum_{j=0}^{n}\binom{n}{j}=\frac{4}{n \pi^{n}}
\end{aligned}
$$

For $n$ odd, the 4 may be replaced by 2 . Thus, the proof is complete by (3.1).
4. Zeros in a neighborhood of $s=1$. We shall prove

Theorem 3. $\zeta(s, a)-a^{-s}$ has no zeros on $|s-1| \leqq 1$, where now we can take $0 \leqq a \leqq 1$.

Note that if $a=0, \zeta(s, a)-a^{-s}=\zeta(s)$.

Proof. From the definition of $c_{n}$, we have for $|s-1| \leqq 1$,

$$
\begin{align*}
\left|(s-1)\left(\zeta(s, a)-a^{-s}\right)\right| & =\left|1+\sum_{n=0}^{\infty} c_{n}(s-1)^{n+1}\right| \\
& \geqq 1-\sum_{n=0}^{\infty}\left|c_{n}\right| . \tag{4.1}
\end{align*}
$$

Thus, we shall be done if we can show that the right-hand side of (4.1) is positive. We shall need to obtain precise estimates for $c_{0}$, $c_{1}$ and $c_{2}$.

To estimate $c_{0}$ we put $f(x)=1 /(x+a), \alpha=1-a$ and $n=3$ in (2.1). Upon letting $m$ tend to $\infty$, we obtain

$$
\begin{aligned}
c_{0} & =\lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m} \frac{1}{k+a}-\log (m+a)\right) \\
& =P_{1}(1-a)+P_{2}(1-a)+2 P_{3}(1-a)+R_{3} .
\end{aligned}
$$

Now, on $[0,1],\left|P_{1}(x)\right|=\left|x-\frac{1}{2}\right| \leqq \frac{1}{2}$ and $\left|P_{2}(x)\right|=\left|\frac{1}{2} x^{2}-\frac{1}{2} x+1 / 12\right|$ $\leqq 1 / 12$. Thus, using (3.7) we obtain

$$
\begin{equation*}
\left|c_{0}\right| \leqq \frac{1}{2}+1 / 12+4 /(2 \pi)^{3}+4 /(2 \pi)^{3} \leqq .617 . \tag{4.2}
\end{equation*}
$$

To estimate $c_{1}$ we put $f(x)=\{\log (x+a)\}(x+a), \quad \alpha=1-a$ and $n=3$ in (2.1). Upon letting $m$ tend to $\infty$, we obtain

$$
c_{1}=P_{2}(1-a)+3 P_{3}(1-a)-\int_{1}^{\infty} P_{3}(x-a) x^{-4}(11-6 \log x) d x .
$$

Thus, from (3.7) and the above estimate of $P_{2}$,

$$
\begin{equation*}
\left|c_{1}\right| \leqq 1 / 12+6 /(2 \pi)^{3}+2 /(2 \pi)^{3} \cdot 13 / 3 \leqq .144 . \tag{4.3}
\end{equation*}
$$

To estimate $c_{2}$ we put $f(x)=\left\{\log ^{2}(x+a)\right\} / 2(x+a), \alpha=1-a$ and $n=3$ in (2.1). Upon letting $m$ tend to $\infty$, we obtain

$$
c_{2}=P_{3}(1-a)+\int_{1}^{\infty} P_{3}(x-a) x^{-4}\left(-6+11 \log x-3 \log ^{2} x\right) d x .
$$

From (3.7),

$$
\begin{equation*}
\left|c_{2}\right| \leqq 2 /(2 \pi)^{3}+2 /(2 \pi)^{3} \cdot 31 / 9 \leqq .036 . \tag{4.4}
\end{equation*}
$$

Now, by Theorem 2,

$$
\begin{equation*}
\sum_{n=3}^{\infty}\left|c_{n}\right| \leqq 4 \sum_{n=3}^{\infty} 1 / n \pi^{n} \leqq 4 / 3 \pi^{2}(\pi-1) \leqq .064 . \tag{4.5}
\end{equation*}
$$

From (4.2)-(4.5),

$$
1-\sum_{n=0}^{\infty}\left|c_{n}\right| \geqq 1-.617-.144-.036-.064=1-.861>0
$$

and the proof of Theorem 3 is complete.
5. A formula of Hurwitz. The following representation was proved by Hurwitz.

Theorem 4. For $0<a \leqq 1$ and $\sigma<0$,

$$
\begin{equation*}
\zeta(s, a)=\frac{2 \Gamma(1-s)}{(2 \pi)^{1-s}}\left\{\sin \left(\frac{1}{2} \pi s\right) \sum_{n=1}^{\infty} \frac{\cos (2 \pi n a)}{n^{1-s}}\right. \tag{5.1}
\end{equation*}
$$

$$
\left.+\cos \left(\frac{1}{2} \pi s\right) \sum_{n=1}^{\infty} \frac{\sin (2 \pi n a)}{n^{1-s}}\right\}
$$

The proofs of (5.1) given in [9, p. 37] and [10, p. 268-269] depend upon the evaluation of a loop integral. The following simple proof does not appear to have been previously noticed.

Proof. Again, from (2.1) for $\boldsymbol{\sigma}>1$,

$$
\zeta(s, a)-a^{-s}=\frac{1}{s-1}+\left(1-a-[1-a]-\frac{1}{2}\right)
$$

$$
\begin{equation*}
+s \int_{1-a}^{\infty} \frac{[x]-x+\frac{1}{2}}{(x+a)^{s+1}} d x \tag{5.2}
\end{equation*}
$$

By analytic continuation (5.2) is valid for $\sigma>-1$. Now, if $\sigma<0$,

$$
s \int_{-a}^{1-a} \frac{[x]-x+\frac{1}{2}}{(x+a)^{s+1}} d x=\frac{1}{2}+a^{-s}-a-\frac{1}{1-s} .
$$

Thus, for $-1<\sigma<0$,

$$
\begin{equation*}
\zeta(s, a)=s \int_{-a}^{\infty} \frac{[x]-x+\frac{1}{2}}{(x+a)^{s+1}} d x \tag{5.3}
\end{equation*}
$$

The proof now proceeds as in [9, p. 15]. We merely use (5.3) instead of (2.1.6) in [9].

## References

1. William E. Briggs, Some constants associated with the Riemann zetafunction, Michigan Math. J. 3 (1955/56), 117-121. MR 17, 955.
2. W. E. Briggs and S. Chowla, The power series coefficients of $\zeta(s)$, Amer. Math. Monthly 62 (1955), 323-325. MR 16, 999.
3. G. H. Hardy, Note on Dr. Vacca's series for $\gamma$, Quart. J. Pure Appl. Math. 43 (1912), 215-216.
4. J. C. Kluyver, On certain series of Mr. Hardy, Quart. J. Pure Appl. Math. 50 (1927), 185-192.
5. Konrad Knopp, Theory and application of infinite series, Blackie and Sons, London, 1951.
6. Ernst Lammel, Ein Beweis, dass die Riemannsche Zetafunktion $\zeta(s)$ in $|s-1| \leqq 1$ keine Nullstelle besitzt, Univ. Nac. Tucumán Rev. Ser. A. 16 (1966), 209-217. MR 36 \#5090.
7. D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly 47 (1940), 533-538. MR 2, 43.
8. Alexander Ostrowski, Note on Poisson's treatment of the Euler-Maclaurin formula, Comment. Math. Helv. 44 (1969), 202-206. MR 41 \#2092.
9. E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951. MR 13, 741.
10. E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press. Cambridge, 1962. MR 31 \#2375.
11. J. R. Wilton, A note on the coefficients in the expansion of $\zeta(s, x)$ in powers of s - 1, Quart. J. Pure Appl. Math. 50 (1927), 329-332.

University of Illinois, Urbana, Illinois 61801

