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LAMBERT SERIES, FALSE THETA FUNCTIONS, 
AND PARTITIONS 
GEORGE E. ANDREWS l 

1. Introduction. One of the recent important results in the theory 
of partitions is the following theorem due to B. Gordon [5]. 

THEOREM. Let Ak>a(N) denote the number of partitions of N into 
parts f^O, ± a (mod2fc + 1). Let Bk?a(N) denote the number of 
partitions of N of the form N = ^=ifii (fi denotes the number of 
times the summand i appears in the partition) where f = a — 1 and 
fi + fi+1 ^ k - 1. Then Ak,a(N) = Bk>a(N). 

This theorem reduces to the Rogers-Ramanujan identities when 
fc = 2. 

In this paper we shall study a partition function Wkj(n; N) which is 
somewhat similar to Bkfi(N). Wkyi(n; N) denotes the number of parti
tions of N of the form N = 2?=ii& w i t n / i = *> fi — ̂  ~~ 1» an<^ 
fi + jÇ+1 = k or k + 1 for 1 g j g n - 1. We let wk}i(n; q) = 1 + 
]£]v=i Wk,i(n; N)qN. Our first result relates wk)i(n; q) to certain Lam
bert series. 

THEOREM l. For \q\ < 1, 

00 

(-l)"n;M(n;t7) 

, (I — 02ntfc-»)) 
(2lt-l)n2/2+n/2-(fc-i)n_ü T L 

1 + q« 
n = l ' 

= 1 + S „f x (1 + <7)(1 + q2) • • • (1 + 9») 

When i = k — 1, we see that the left-hand series in Theorem 
1 reduces to a false theta series. From Theorem 1 it is possible to 
prove results on partitions which we shall examine in §3. 

2. Proof of Theorem 1. We define the function fk,i(x) as follows: 

(2.1) fkti(x) = 2 x^qW-V^+^-^il - ^ 2 ^ ) " ( ~ 1 ) n n=0 ( XCj)n 
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where (a)n = (1 — a)(l — aq) • • • (1 — aqn~l). It may be noted that 

/*,*(*) = Ck}i(-l,q;x;q) 

in the notation of [2, equation (1.1), p. 433]. The results in [2] imply, 
therefore, that the fk,i(x) satisfy certain systems of homogeneous q-
difference equations. The following lemma establishes t h a t / ^ x ) also 
satisfy certain nonhomogeneous g-difference equations. 

LEMMA 1. 

c) = 1 ^— 
xq J ' " 1 + xq 

fKi(x) = 1 - l * fk,k-i(xq) - t
X

+
 q fkt-i-^xq). 

PROOF. 

fhfi(x)= 1 + 2 Xknq(2h-^2l^nl2-in ^ ^ n 

n = l ( X9)n 

(—1) 
— X1 T Xfcn0(2fc-l)n2/2+n/2+m V ,n 

n=0 (-Xq)n 

1 + xq ~ 0 ^ (-xc/2)n 

ÏÎ V xknq(2k-l)n2l2+nl2+in ( ~ 1 ) n ( 1 + Xqn+l) 

1 + xq ~ 0 ^ (-*92)n 

T i . / _ 1 \ 
= 1 V (xa)knn(2k-l)n2l2+nl2 -± ±IH-

1 + xqèo {q) q ( - V ) n 

• {qin~kn(l + xqn+l) - (x9)fc-*qf-in+(fc-1)n(l + qn)} 

x{ °° / — l ì 
= X V (Xq)knq(2k-l)n2l2+nl2-(k-i)n —± / n 

1 + *9 n=o \~~xq')n 

• (1 - (sg)*-^2^*-*)) 

xi + 1o °° ( — 1) 
-L— V (ra)kna (2fc-l)n2/2+n/2-(fe-i-l)n —i ^L_ 

1 + x9 „ t , l ^ 9 (-xq)n 

• (1 - (*qr)*-*~iqr2»<*-*-»>) 

.< + !/-_ X ' ^ 1 ^ 1 - T T ^ * - 1 ^ - T T ^ - 1 - 1 ^ -xg 1 -h xg 
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We now define 

(2.2) hKi(x) = (1 + **"< - fKk_i{x))l2xk~\ 

Since fk,o(x) = 0, we see that hk>k(x) = 1. Furthermore Lemma 1 may 
be rephrased in terms of hk>i(x). 

LEMMA 2. 

(2.3) hk>i(x) = 1 + Y ^ - ( l - hjt-iixq)- hkJc-i+l(xq)). 

LEMMA 3. If hkyi(x) is any function of x and q analytic around 
x = 0, q = 0, and 

(2.4) ht,k(x)=l, 

ht}i(x) = 1 + — - ^ — ( 1 - h*jk-i(xq) - htjc-i-\(xq)\ 
(2.5) 1 + *</ 

l ^ i g f c - 1, 

(2.6) J £ , ( 0 ) = 1 , l ^ i ^ f c , 

then hk>i(x) = hk}i(x)for 1 ë i ^ fc. 

PROOF. We let 

oo oo 

m = 0 n=0 

oo oo 

M*) = E S a*(™> n)xmqn. 
m = 0 n=0 

Then clearly 

ak(m, n) = ak*(m, n) = 1 if m = n = 0, 

= 0 otherwise. 

From (2.1) and (2.2), we see directly that hk>i(0) = 1; this and (2.6) 
imply 

a,(0, n) = oi*(0,n)= 1 i f n = 0, 
(2.7) 

= 0 i f n > 0 . 

(2.3) and (2.5) imply 
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adm, n) + aÂm — 1, n — 1) 
(2.8) 

= €i(m, n) — dk-i(m — i,n — m) — ak-i+l(m — i,n — m) 

and 

a*(m, n) + ai*(ra — 1, n — 1) 

( 2 - 9 ) / ^ * / • , * , • 

= €i(m, n) — cik-i{m — i, n — m) — ak-i+i{m — t,n — m), 

where €<(0, 0) = €^(1,1) = €j(i, i) = 1, €i(m, n) = 0 otherwise, and 
any ai(m, n) or a* (m, n) with negative entries is zero. 

Now we may proceed by mathematical induction on m to verify 
that ai{m, n) = a*(m, n). (2.7) takes care of m = 0. If Oj(m, n) = 
Oi*(ra, n) for m < ra0, then (2.8) and (2.9) imply that ai(ra0, n) = 
öi*(mo, n). Thus Lemma 3 is established. 

LEMMA 4. Let Wk,i(n; M, N) denote the number of partitions of 
the type enumerated by Wkj(n; N) with M parts. Then 

Wki(0;M,N)= 1 ifM=N=0, 
(2.10) 

= 0 otherwise, 

Wfci(l;Af,N) = l ifM=N=i, 
(2.11) 

= 0 otherwise, 

for n > 1, 

Wfc,i(n; M, N) = W*,*-<(n - 1; M - i, N - M) 
(2.12) _ 

+ Wk,k-i+i(n - 1; M - t, N - M)u 

PROOF. (2.10) and (2.11) are directly from the definition of 
Wk,i(n; M, N). 

To prove (2.12), we start with the partitions enumerated by the 
left-hand side. Let us consider two classes of such partitions: (1) 
those in which 2 appears k — i times, and (2) those in which 2 appears 
k — i + 1 times. We now transform our partitions by deleting the 
i ones in each partition and subtracting 1 from all other summands. 
The number being partitioned now drops to N — M; there are now 
M — i parts, and the largest part is n — 1. Indeed this procedure 
shows that there are Wk,k-i(n ~ 1; M — i, N — M) partitions in the 
first class and Wk,k-i+i(n — 1; M — i, N — M) elements of the second 
class. Thus we have (2.12). 

We transform Lemma 4 into identities for the related generating 
functions. 
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LEMMA 5. If 

M=ON=0 

£/ien 

(2.13) 

(2.14) 

and for n > 1, 

/« i ̂  ^M( n ; *> 9) 

o?M(0; x; 9) = 1; 

u3*,i(l; X; 9) = (xqr)*; 

(2.15) 
= (xq)l(wk-i(n - 1; xq; q) + wfc,fc_m(n - 1; x</; 9)). 

PROOF. (2.13), (2.14), and (2.15) follow direcdy from (2.10), (2.11), 
and (2.12) respectively. 

LEMMA 6. If 

£/ien Hkti(x) is analytic around x = 0, 9 = 0, and 

(2.16) HM(x) = 1; 

(2.17) Hkti(x) = 1 + Y ^ - ( l - Hk,k_i(xq) - Hk,k_i+l(xq)\ 

(2.18) HkA(0) = 1 , 1 ̂  i g fc. 

PROOF. For \q\ < 1, |x| < 1, we clearly have 

tìfc,,(n; |x|; \q\) ^ \q\{ * |*|» n (1 + 1*1 l</P' + * * * + 1*1 M9"»). 
j = i 

This estimate is sufficient to guarantee uniform convergence of the 
series for Hkfi(x) around x = q = 0. 

Now since all partitions of the type enumerated by Wk,k(n; M, N) 
must have k^fi^k— 1, we see that no partitions except the empty 
partition are counted. Thus Wk,k(n> M,N) = 1 i f n = M = N = 0 
and equals 0 otherwise. Hence wk)i(n; x; q) = 1 if n = 0 and 0 if 
n > 0. Thus Hk>k(x) = 1. 

Now by Lemma 5, 
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HkÀX) " S Ï^Yn 

= 1 (*?)' y ( - l ) n ^ f e > + 1; x; 9) 
1 + xq n = 1 ( -xg ) n + i 

= x (*?)' (xq)* 
1 + xq 1 + xq 

. V (-l)n(tDfc>fc-i(n; xq; g) + u;fc?fc-i+1(n; xq; 9)) 

n=l ( - Xq 2)n 

= 1 - 7 ^ -^-(Hk>U*q) + Hk,k.i+l(xq) - 2) 
1 + xq 1 + xq 

= 1 + ^)l
% (1 - HM_,(xg) - HM_ i + 1(xq)). 

Finally we note that wk>j{n; 0, q) = 1 if n = 0 and = 0 if n > 0. 
Hence HM(0) = 1. 

Thus we see that the lemma is established. 
We are now prepared to prove Theorem 1. First Lemmas 3 and 6 

imply that Hk>i(x) = hkj(x). Consequently 

(I _ a2n(k-i)\ 
1 — V n (2k-l)n2l2+nl2-(k-i)n ± -* '-

„-1 1 + qn 

= i-J/M_ i(i)=Mi)=^(i) 

" ( - l ) " w M ( " ; l ; q ) 

= , + y (-l)"u>M(n;g) 

„ ^ (1 + 9)(1 + 92) . . . ( 1 + 9n) • 

This concludes the proof of Theorem 1. 

COROLLARY. 

y 0 (2 t - i , „« ,2 -« /2 / 1 _ 0 » ) = y ( - l ) " - y f c - i ( n ; < 7 ) 

èi q »-1 (1 + 9)d + 92) • • • (1 + 9") ' 

PROOF. Set i = k — 1 in Theorem 1 and simplify. 

3. Partition theorems. In this section we shall prove some partition 
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theorems which follow from Theorem 1 and its corollary. First we 
remark that when k = 2, the corollary of Theorem 1 may be stated as 

00 °° / _ l)n-lnn(n+l)l2 
V Qn(3n-1)12(1 _ Qn) = V ^ ti 2 

n%
 q { q ) h (1 + 9)(1 + 92) • • ' (1 + 9n) ' 

a result due to L. J. Rogers; to see this we note that the only partition 
counted by W2>i(n; N) is N = 1 + 2 + • • • + n since every part can 
appear at most once ye t^ + j5 + i = 2 or 3. As remarked in [1, p. 137] 
this identity may be used to prove a partition theorem of N. J. Fine 
[4, Theorem 2(iii)]. 

More generally in the notation of [3, p. 556] we have 

THEOREM 2. 

/ 4 + J 5 + 1 = f c o f f c + l , / < ^ f c - l ; ( - l ) » - i + s«j) 

= 1 if a= n((2k - l)n - l)/2, 

= - 1 if s = n((2k - l)n + l)/2, 

= 0 otherwise. 

PROOF. 

J 9 <«-l)»'/2-n/2(l _ ^n) = ^ (~ l ) " - ^ - ^ q) 
n = l n = l ( ~ 9 ) n 

= i W» = 2/**+ igrf,/i = k - y +Ü+I 
n = l N i = l j = l 

= fcorfc + 1, fi^k- l;(-l)»-i + *gj)qn. 

4. Conclusion. Other theorems of the nature discussed here are 
available for the false theta functions. In the notation of [2, equation 
(1.1), p. 433] if 

/*,*(*; <£ 9) = ck,i(d> q>x',q\ 

then as in Lemma 1, we may prove 

fgiix; d; q) = 1 - ^ _*^ ^fk^xq; d; q) + ^ ^ /M-i_i(xqf; d; q). 
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We note also that 

£*(1; -q; </2) = £ q(2k-l)n*-2in{l _ q4n^ 
n=0 

Probably further results could be obtained by studying 
CkAq, a2, ' ' ', ax; x; q) in general. 

REFERENCES 

1. G. E. Andrews, On basic hyper geometric series, mock theta functions, and 
partitions. II, Quart. J. Math. Oxford Ser. (2) 17 (1966), 132-143. MR 34 #382. 

2. , On q-difference equations for certain well-poised, basic hyper -
geometnc series, Quart. J. Math. Oxford Ser. (2) 19 (1968), 433-447. MR 
38 #6112. 

3. , On a calculus of partition functions, Pacific J. Math. 31 (1969), 
555-562. MR 40 #7128. 

4. N. J. Fine, Sonne new results on partitions, Proc. Nat. Acad. Sci. U.S.A. 34 
(1948), 616-618. MR 10, 356; 856. 

5. B. Gordon, A combinatorial generalization of the Rogers-Ramanujan 
identities, Amer. J. Math. 83 (1961), 393-399. MR 23 #A809. 

6. L. J. Rogers, On two theorems of combinatory analysis and some allied 
identities, Proc. London Math. Soc. (2) 16 (1917), 315-336. 

T H E PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 


