LAMBERT SERIES, FALSE THETA FUNCTIONS, AND PARTITIONS

GEORGE E. ANDREWS ${ }^{1}$

1. Introduction. One of the recent important results in the theory of partitions is the following theorem due to B . Gordon [5] .

Theorem. Let $A_{k, a}(N)$ denote the number of partitions of N into parts $\not \equiv 0, \pm a(\bmod 2 k+1)$. Let $B_{k, a}(N)$ denote the number of partitions of N of the form $N=\sum_{i=1}^{\infty} f_{i} i$ (f_{i} denotes the number of times the summand i appears in the partition) where $f_{1} \leqq a-1$ and $f_{i}+f_{i+1} \leqq k-1$. Then $A_{k, a}(N)=B_{k, a}(N)$.

This theorem reduces to the Rogers-Ramanujan identities when $k=2$.

In this paper we shall study a partition function $W_{k, i}(n ; N)$ which is somewhat similar to $B_{k, i}(N) . W_{k, i}(n ; N)$ denotes the number of partitions of N of the form $N=\sum_{i=1}^{n} f_{i} i$, with $f_{1}=i, f_{j} \leqq k-1$, and $f_{j}+f_{j+1}=k$ or $k+1$ for $1 \leqq j \leqq n-1$. We let $w_{k, i}(n ; q)=1+$ $\sum_{N=1}^{\infty} W_{k, i}(n ; N) q^{N}$. Our first result relates $w_{k, i}(n ; q)$ to certain Lambert series.

Theorem 1. For $|q|<1$,

$$
\begin{aligned}
& 1-\sum_{n=1}^{\infty} q^{(2 k-1) n^{2} / 2+n / 2-(k-i) n} \frac{\left(1-q^{2 n(k-i)}\right)}{1+q^{n}} \\
& \quad=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} w_{k, i}(n ; q)}{(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)}
\end{aligned}
$$

When $i=k-1$, we see that the left-hand series in Theorem 1 reduces to a false theta series. From Theorem 1 it is possible to prove results on partitions which we shall examine in $\$ 3$.
2. Proof of Theorem 1. We define the function $f_{k, i}(x)$ as follows:

$$
\begin{equation*}
f_{k, i}(x)=\sum_{n=0}^{\infty} x^{k n} q^{(2 k-1) n^{2} / 2+n / 2-i n}\left(1-x^{i} q^{2 n i}\right) \frac{(-1)_{n}}{(-x q)_{n}} \tag{2.1}
\end{equation*}
$$

Received by the editors June 19, 1970.
AMS 1969 subject classifications. Primary 1048; Secondary 3304, 3319, 3320.
${ }^{1}$ Partially supported by NSF Grant GP-9660.
where $(\alpha)_{n}=(1-\alpha)(1-\alpha q) \cdots\left(1-\alpha q^{n-1}\right)$. It may be noted that

$$
f_{k, i}(x)=C_{k, i}(-1, q ; x ; q)
$$

in the notation of [2, equation (1.1), p. 433]. The results in [2] imply, therefore, that the $f_{k, i}(x)$ satisfy certain systems of homogeneous q difference equations. The following lemma establishes that $f_{k, i}(x)$ also satisfy certain nonhomogeneous q-difference equations.

Lemma 1.

$$
f_{k, i}(x)=1-\frac{x^{i}}{1+x q} f_{k, k-i}(x q)-\frac{x^{i+1} q}{1+x q} f_{k, k-i-1}(x q) .
$$

Proof.

$$
\begin{aligned}
f_{k, i}(x)= & 1+\sum_{n=1}^{\infty} x^{k n} q^{(2 k-1) n^{2} / 2+n / 2-i n} \frac{(-1)_{n}}{(-x q)_{n}} \\
& -x^{i} \sum_{n=0}^{\infty} x^{k n} q^{(2 k-1) n^{2} / 2+n / 2+i n} \frac{(-1)_{n}}{(-x q)_{n}} \\
= & 1+\frac{x^{k} q^{k-i}}{1+x q} \sum_{n=0}^{\infty} x^{k n} q^{(2 k-1) n^{2} / 2+n / 2-i n+(2 k-1) n \frac{(-1)_{n}\left(1+q^{n}\right)}{\left(-x q^{2}\right)_{n}}} \\
& -\frac{x^{i}}{1+x q} \sum_{n=0}^{\infty} x^{k n} q^{(2 k-1) n^{2} / 2+n / 2+i n} \frac{(-1)_{n}\left(1+x q^{n+1}\right)}{\left(-x q^{2}\right)_{n}} \\
= & 1-\frac{x^{i}}{1+x q} \sum_{n=0}^{\infty}(x q)^{k n} q^{(2 k-1) n^{2} / 2+n / 2} \frac{(-1)_{n}}{\left(-x q^{2}\right)_{n}} \\
= & 1-\frac{x^{i}}{1+x q} \sum_{n=0}^{\infty}(x q)^{k n} q^{(2 k-1) n^{2} / 2+n / 2-(k-i) n} \frac{(-1)_{n}}{\left(-x q^{2}\right)_{n}} \\
& -\frac{x^{i+1} q}{1+x q} \sum_{n=0}^{\infty}(x q)^{k n} q^{(2 k-1) n^{2} / 2+n / 2-(k-i-1) n} \frac{(-1)_{n}}{(-x q)_{n}} \\
= & 1-\frac{x^{i}}{1+x q} f_{k, k-i}(x q)-\frac{x^{i+1} q}{1+x q} f_{k, k-i-1}(x q) .
\end{aligned}
$$

We now define

$$
\begin{equation*}
h_{k, i}(x)=\left(1+x^{k-i}-f_{k, k-i}(x)\right) / 2 x^{k-i} \tag{2.2}
\end{equation*}
$$

Since $f_{k, 0}(x)=0$, we see that $h_{k, k}(x)=1$. Furthermore Lemma 1 may be rephrased in terms of $h_{k, i}(x)$.

Lemma 2.

$$
\begin{equation*}
h_{k, i}(x)=1+\frac{(x q)^{i}}{1+x q}\left(1-h_{k, k-i}(x q)-h_{k, k-i+1}(x q)\right) . \tag{2.3}
\end{equation*}
$$

Lemma 3. If $h_{k, i}^{*}(x)$ is any function of x and q analytic around $x=0, q=0$, and
(2.4) $h_{k, k}^{*}(x)=1$,

$$
\begin{equation*}
h_{k, i}^{*}(x)=1+\frac{(x q)^{i}}{1+x q}\left(1-h_{k, k-i}^{*}(x q)-h_{k, k-i-1}^{*}(x q)\right) \tag{2.5}
\end{equation*}
$$

$$
1 \leqq i \leqq k-1
$$

$(2.6) \quad h_{k, i}^{*}(0)=1, \quad 1 \leqq i \leqq k$,
then $h_{k, i}(x)=h_{k, i}^{*}(x)$ for $1 \leqq i \leqq k$.
Proof. We let

$$
\begin{aligned}
& h_{k, i}(x)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{i}(m, n) x^{m} q^{n} \\
& h_{k, i}^{*}(x)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{i}^{*}(m, n) x^{m} q^{n}
\end{aligned}
$$

Then clearly

$$
\begin{aligned}
a_{k}(m, n)=a_{k}^{*}(m, n)=1 & \text { if } m=n=0 \\
& =0
\end{aligned} \quad \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

From (2.1) and (2.2), we see directly that $h_{k, i}(0)=1$; this and (2.6) imply

$$
\begin{align*}
a_{i}(0, n)=a_{i}^{*}(0, n) & =1 & & \text { if } n=0 \tag{2.7}\\
& =0 & & \text { if } n>0
\end{align*}
$$

(2.3) and (2.5) imply

$$
\begin{align*}
& a_{i}(m, n)+a_{i}(m-1, n-1) \\
& \quad=\epsilon_{i}(m, n)-a_{k-i}(m-i, n-m)-a_{k-i+1}(m-i, n-m) \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& a_{i}^{*}(m, n)+a_{i}^{*}(m-1, n-1) \\
& =\epsilon_{i}(m, n)-a_{k-i}^{*}(m-i, n-m)-a_{k-i+1}^{*}(m-i, n-m), \tag{2.9}
\end{align*}
$$

where $\epsilon_{i}(0,0)=\epsilon_{i}(1,1)=\epsilon_{i}(i, i)=1, \quad \epsilon_{i}(m, n)=0$ otherwise, and any $a_{i}(m, n)$ or $a_{i}{ }^{*}(m, n)$ with negative entries is zero.

Now we may proceed by mathematical induction on m to verify that $a_{i}(m, n)=a_{i}^{*}(m, n)$. (2.7) takes care of $m=0$. If $a_{i}(m, n)=$ $a_{i}{ }^{*}(m, n)$ for $m<m_{0}$, then (2.8) and (2.9) imply that $a_{i}\left(m_{0}, n\right)=$ $a_{i}^{*}\left(m_{0}, n\right)$. Thus Lemma 3 is established.

Lemma 4. Let $\bar{W}_{k, i}(n ; M, N)$ denote the number of partitions of the type enumerated by $W_{k, i}(n ; N)$ with M parts. Then

$$
\begin{align*}
\bar{W}_{k, i}(0 ; M, N) & =1 & & \text { if } M=N=0, \tag{2.10}\\
& =0 & & \text { otherwise }, \\
\bar{W}_{k, i}(1 ; M, N) & =1 & & \text { if } M=N=i, \tag{2.11}\\
& =0 & & \text { otherwise },
\end{align*}
$$

for $n>1$,

$$
\begin{align*}
\bar{W}_{k, i}(n ; M, N)= & \bar{W}_{k, k-i}(n-1 ; M-i, N-M) \\
& +\bar{W}_{k, k-i+1}(n-1 ; M-i, N-M) . \tag{2.12}
\end{align*}
$$

Proof. (2.10) and (2.11) are directly from the definition of $\bar{W}_{k, i}(n ; M, N)$.

To prove (2.12), we start with the partitions enumerated by the left-hand side. Let us consider two classes of such partitions: (1) those in which 2 appears $k-i$ times, and (2) those in which 2 appears $k-i+1$ times. We now transform our partitions by deleting the i ones in each partition and subtracting 1 from all other summands. The number being partitioned now drops to $N-M$; there are now $M-i$ parts, and the largest part is $n-1$. Indeed this procedure shows that there are $\bar{W}_{k, k-i}(n-1 ; M-i, N-M)$ partitions in the first class and $\bar{W}_{k, k-i+1}(n-1 ; M-i, N-M)$ elements of the second class. Thus we have (2.12).

We transform Lemma 4 into identities for the related generating functions.

Lemma 5. If

$$
\bar{w}_{k, i}(n ; x ; q)=\sum_{M=0}^{\infty} \sum_{N=0}^{\infty} \bar{W}_{k, i}(n ; M, N) x^{M} q^{N},
$$

then

$$
\begin{align*}
& \bar{w}_{k, i}(0 ; x ; q)=1 \tag{2.13}\\
& \bar{w}_{k, i}(1 ; x ; q)=(x q)^{i} \tag{2.14}
\end{align*}
$$

and for $n>1$,

$$
\begin{align*}
& \bar{w}_{k, i}(n ; x ; q) \tag{2.15}\\
& \quad=(x q)^{i}\left(\bar{w}_{k-i}(n-1 ; x q ; q)+\bar{w}_{k, k-i+1}(n-1 ; x q ; q)\right) .
\end{align*}
$$

Proof. (2.13), (2.14), and (2.15) follow directly from (2.10), (2.11), and (2.12) respectively.

Lemma 6. If

$$
H_{k, i}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \bar{w}_{k, i}(n ; x ; q)}{(-x q)_{n}},
$$

then $H_{k, i}(x)$ is analytic around $x=0, q=0$, and

$$
\begin{align*}
& H_{k, k}(x)=1 ; \tag{2.16}\\
& H_{k, i}(x)=1+\frac{(x q)^{i}}{1+x q}\left(1-H_{k, k-i}(x q)-H_{k, k-i+1}(x q)\right), \tag{2.17}\\
& H_{k, i}(0)=1, \quad 1 \leqq i \leqq k . \tag{2.18}
\end{align*}
$$

Proof. For $|q|<1,|x|<1$, we clearly have

$$
\bar{w}_{k, i}(n ;|x| ;|q|) \leqq|q|^{\binom{n+1}{2}}|x|^{n} \prod_{j=1}^{n}\left(1+|x||q|^{j}+\cdots+|x||q|^{j(k-2)}\right) .
$$

This estimate is sufficient to guarantee uniform convergence of the series for $H_{k, i}(x)$ around $x=q=0$.
Now since all partitions of the type enumerated by $\bar{W}_{k, k}(n ; M, N)$ must have $k \leqq f_{1} \leqq k-1$, we see that no partitions except the empty partition are counted. Thus $\bar{W}_{k, k}(n ; M, N)=1$ if $n=M=N=0$ and equals 0 otherwise. Hence $\bar{w}_{k, i}(n ; x ; q)=1$ if $n=0$ and 0 if $n>0$. Thus $H_{k, k}(x)=1$.
Now by Lemma 5,

$$
\begin{aligned}
H_{k, i}(x)= & \sum_{n=0}^{\infty} \frac{(-1)^{n} \bar{w}_{k, i}(n ; x ; q)}{(-x q)_{n}} \\
= & 1-\frac{(x q)^{i}}{1+x q}-\sum_{n=1}^{\infty} \frac{(-1)^{n} \bar{w}_{k, i}(n+1 ; x ; q)}{(-x q)_{n+1}} \\
= & 1-\frac{(x q)^{i}}{1+x q}-\frac{(x q)^{i}}{1+x q} \\
& \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n}\left(\bar{w}_{k, k-i}(n ; x q ; q)+\bar{w}_{k, k-i+1}(n ; x q ; q)\right)}{\left(-x q^{2}\right)_{n}} \\
= & 1-\frac{(x q)^{i}}{1+x q}-\frac{(x q)^{i}}{1+x q}\left(H_{k, k-i}(x q)+H_{k, k-i+1}(x q)-2\right) \\
= & 1+\frac{(x q)^{i}}{1+x q}\left(1-H_{k, k-i}(x q)-H_{k, k-i+1}(x q)\right)
\end{aligned}
$$

Finally we note that $\bar{w}_{k, i}(n ; 0, q)=1$ if $n=0$ and $=0$ if $n>0$. Hence $H_{k, i}(0)=1$.

Thus we see that the lemma is established.
We are now prepared to prove Theorem 1. First Lemmas 3 and 6 imply that $H_{k, i}(x)=h_{k, i}(x)$. Consequently

$$
\begin{aligned}
& 1-\sum_{n=1}^{\infty} q^{(2 k-1) n^{2} / 2+n / 2-(k-i) n} \frac{\left(1-q^{2 n(k-i)}\right)}{1+q^{n}} \\
& \quad=1-\frac{1}{2} f_{k, k-i}(1)=h_{k, i}(1)=H_{k, i}(1) \\
& \quad=\sum_{n=0}^{\infty} \frac{(-1)^{n} \bar{w}_{k, i}(n ; 1 ; q)}{(-q)_{n}} \\
& \quad=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} w_{k, i}(n ; q)}{(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)}
\end{aligned}
$$

This concludes the proof of Theorem 1.
Corollary.

$$
\sum_{n=1}^{\infty} q^{(2 k-1) n^{2} / 2-n / 2}\left(1-q^{n}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} w_{k, k-1}(n ; q)}{(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)}
$$

Proof. Set $i=k-1$ in Theorem 1 and simplify.
3. Partition theorems. In this section we shall prove some partition
theorems which follow from Theorem 1 and its corollary. First we remark that when $k=2$, the corollary of Theorem 1 may be stated as

$$
\sum_{n=1}^{\infty} q^{n(3 n-1) / 2}\left(1-q^{n}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} q^{n(n+1) / 2}}{(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)},
$$

a result due to L. J. Rogers; to see this we note that the only partition counted by $W_{2,1}(n ; N)$ is $N=1+2+\cdots+n$ since every part can appear at most once yet $f_{j}+f_{j+1}=2$ or 3. As remarked in [1, p. 137] this identity may be used to prove a partition theorem of N. J. Fine [4, Theorem 2(iii)].
More generally in the notation of [3, p. 556] we have
Theorem 2.

$$
\begin{aligned}
& N\left(s=\sum_{i=1}^{n} f_{i} \cdot i+\sum_{j=1}^{n} g_{j} \cdot j, f_{1}=k-1,\right. \\
& \left.\quad f_{i}+f_{i+1}=k \text { or } k+1, f_{i} \leqq k-1 ;(-1)^{n-1+\Sigma g_{j}}\right) \\
& =1 \quad \text { ifs }=n((2 k-1) n-1) / 2, \\
& =-1 \quad \text { ifs } s=n((2 k-1) n+1) / 2, \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} q^{(2 k-1) n^{2} / 2-n / 2}\left(1-q^{n}\right)= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} w_{k, k-1}(n ; q)}{(-q)_{n}} \\
&=\sum_{n=1}^{\infty} N\left(s=\sum_{i=1}^{n} f_{i} i+\sum_{j=1}^{n} g_{i} j, f_{1}=k-1, f_{i}+f_{i+1}\right. \\
&\left.=k \text { or } k+1, f_{i} \leqq k-1 ;(-1)^{n-1+\Sigma g_{j}}\right) q^{n} .
\end{aligned}
$$

4. Conclusion. Other theorems of the nature discussed here are available for the false theta functions. In the notation of [2 , equation (1.1), p. 433] if

$$
f_{k, i}^{*}(x ; d ; q)=C_{k, i}(d, q ; x ; q),
$$

then as in Lemma 1, we may prove
$f_{k, i}^{*}(x ; d ; q)=1-\frac{x^{i}}{1-x q / d} f_{k, k-i}(x q ; d ; q)+\frac{x^{i+1} q d^{-1}}{1-x q / d} f_{k, k-i-1}(x q ; d ; q)$.

We note also that

$$
f_{k, i}^{*}\left(1 ;-q ; q^{2}\right)=\sum_{n=0}^{\infty} q^{(2 k-1) n^{2}-2 i n}\left(1-q^{4 n i}\right)
$$

Probably further results could be obtained by studying $C_{k, i}\left(q, a_{2}, \cdots, a_{\lambda} ; x ; q\right)$ in general.

References

1. G. E. Andrews, On basic hypergeometric series, mock theta functions, and partitions. II, Quart. J. Math. Oxford Ser. (2) 17 (1966), 132-143. MR 34 \#382.
2. ——, On q-difference equations for certain well-poised, basic hypergeometric series, Quart. J. Math. Oxford Ser. (2) 19 (1968), 433-447. MR 38 \#6112.
3. -_, On a calculus of partition functions, Pacific J. Math. 31 (1969), 555-562. MR 40 \#7128.
4. N. J. Fine, Some new results on partitions, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 616-618. MR 10, 356; 856.
5. B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393-399. MR 23 \#A809.
6. L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2) 16 (1917), 315-336.

The Pennsylvania State University, University Park, Pennsylvania 16802

