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A NOTE ON INFINITE SERIES OF ISOLS 
JUDITH GERSTING 

1. Introduction, Let E denote the collection of all nonnegative in­
tegers (numbers), A the collection of all isols, and AR the collection of 
all regressive isols. In [3], J. C. E. Dekker introduced the definition of 
an infinite series of isols, ^rtfn, where T denotes a regressive isol and 
an denotes a function from E into E. We recall the definition: When 
T is a finite regressive isol, 

5 > n = 0 O + • • • + Ö T - 1 ( O i f T = 0 ) . 
T 

When T is an infinite regressive isol, 

00 

2 an = Req £ j(tn, v(an)\ 
T 0 

where j(x, y) is a recursive function mapping E2 one-to-one onto E, 
tn is any regressive function ranging over a set in T, and for any 
number n, v(n) = {x \x< n}. Some properties of infinite series of 
isols were studied in [1] and [3]. By results in [3], ^ ] r a n is an 
isol and is independent of the choice of the regressive function whose 
range is in T. In the particular case that an is a recursive function, then 
^ T a n is a regressive isol [1, Theorem 1]. In [2], J. Barback studied 
some properties of regressive isols that can be represented as infinite 
series j£Ta n where the function an is not necessarily recursive. These 
regressive isols were of the form ^ran where T ?â* an_l. The defini­
tion of the relation T ^ * a n _ x is as follows: If T is finite, then T ^ * 
an_i; if T is infinite, T = *an_l means that there is a regressive func­
tion tn ranging over a set in T such that ^ n ^ * a n _ 1 ? that is, the 
mapping tn —> an_x has a partial recursive extension. The following 
properties are known about the ^ * relation: 

(1) If T ^ * an, then tn ^=* an for every regressive function tn ranging 
over a set in T; 

(2) if r g * f l n , then T S * a n _ i ; 

(3) if TS*an_1 ? then Y Tan is a regressive isol [2, Proposition 5] ; 
and 

(4) T = * an for every recursive function an. 
Our first two theorems below deal with the following question: Let 
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T be an infinite regressive isol and an a function from E into E such 
that T ^ * a n . By combining (2) and (3) above, we know that ^ r ^ n 
is a regressive isol. Let S be an isol such that S^^Tan. We know 
from [4] that S will be a regressive isol. Can S also be represented 
as an infinite sum over T? Theorem 1 shows that this is the case; 
Theorem 2, however, indicates that even if an is a recursive function, 
S need not have a representation as ^ r ^ n f° r a n v recursive function 
bn with bn ^ an. Theorem 3 shows that the converse of (3) above is 
false, i.e., T^à* an_i is not a necessary condition for ^ran to be a 
regressive isol. 

2. Three theorems. 

THEOREM 1. Let T be an infinite regressive isol and an a function 
from E into E such that T^*an. Let S be a (regressive) isol such 
that S â ]^rfln. Then there exists a function bn from E into E such 
that 

(a) T^*bn, 

(b) bn ^ an for all n Œ E, 

(c) s = 2 bn. 
T 

PROOF. Let tn be any regressive function ranging over a set in T. 
Because T ^ * an, it follows from results in [2] that ^ r a n is a regres­
sive isol and that 

(1) j(*o,0), • • ;j(to,ao - l),j(*i,0), • • -,j(*i, «i " 1), ' ' ' 

represents a regressive enumeration of a set T È ^ ] r a n . By the 
inequality S = jT r a n , there exists a set a G S such that a is a 
separated subset of r. Let sn denote the function ranging over a 
which preserves the ordering established in (1). It follows that sn 

is a regressive function. We now wish to define a function bn in such 
a manner that „̂ = * bn. Let the number tn be given for any n Œ E. 
Because of the relation tn = * a„, the set 

(/'(*»> °). ' • \ 7 K a - - 1)) C T 

can be effectively generated. (Note that this set is empty in the event 
that an = 0.) Since a is a separated subset of T, the number of 
elements of a which appear in this set, say k, can be effectively deter­
mined. We define bn = k. 

Now bn is defined for all n, and clearly fn = * bn. Thus we have 
T = * fon, and (a) is satisfied. Also it is clear that bn= k^ an, so that 
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(b) also holds. Again by the results in [2], ]£r&n is regressive and 

j(t0,0), • • • J(*o, b0 - l),j(ti9 0), • • ;j(tl9 by - 1), • • • 

represents a regressive enumeration of a set y G ^ r ^ n - Let rn be 
the regressive function determined by this enumeration of y. We now 
have S = Reqcr and ^ r&n == Reqy> with a = psn and y = prn. 
To complete the proof, it is necessary to show that y — o\ We will 
construct a one-to-one partial recursive function g(x) such that y C ôg 
andg(<y) = (7. 

Making use of the assumption T ^ * an, let f(x) denote the partial 
recursive function such that ptn C df and f(tn) = an. Also, since 
a is a separated subset of r, let a* and r* denote the disjoint recur­
sively enumerable sets containing a and r — or, respectively. Let 
k(x) and l(x) denote the recursive functions such that j(k(x), l(x)) = x. 
Define the functions v and w by 

v(x, i) = j(k(x), i), 

w(x) = 1 for x G a*, 

= 0 for x G r*. 

Clearly v and w are partial recursive functions. Finally, let 

g(x) = t> (*,(W S . /*(*)-1)[£ H x , i ) = I W + l | ) . 

Then g(x) is a partial recursive function. Also, if g(x) = g(z) for some 
x and z belonging to ôg, then 

g(«) = g(z) - * # ( * ) > y i ) = #(*)> j/2) 

=> fc(x) = fc(z) and yx = t/2 

=> ( Vt)(t?(x, t) = t>(z, t)) and ^ = j / 2 

t=0 i=0 

=> Z(x) + 1 = l(z) + 1 

=* «*) = l(z). 

Since Jfc(x) = k(z) and Z(x) = Z(z), it follows that x = z and g is one-to-
one. 

For x Gy, say x = rn = j(tp, q) with 0 ^ q < bp, then fk(x) — 1 
= ap — 1 and {u(x, i) 10 ^§ i ^ ap — 1} is 
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{j(tp> °)> ' ' '>j(tp> ap- ! )} c T-

There are bp elements of a in this set and q + 1 = l(x) + 1 ^ fcp. 
Hence g(x) is defined, namely g(x) is the (q + l)st member from left 
to right in this set, as ordered above, which belongs to a, and this 
is exactly sn. Hence g(rn) = sn, that is, y C dg and g(y) = a. This 
completes the proof. 

REMARK. The next theorem shows that if T ^ * an is replaced in the 
hypothesis of Theorem 1 by the stronger condition that an is a recur­
sive function, this recursive property need not carry through to the 
bn function. Some preliminary ideas are needed. L e t / b e a one-to-one 
function from E into E and let T be an infinite regressive isol. Let 
tn be any regressive function ranging over a set in T. We then let 
4>f(T) be defined as the recursive equivalence type of the range of 
the function fy(n). M. Hassett proved in [6] that there exist infinite 
regressive isols S and T such that S ^ T while S ^ <f>f(T) for any 
strictly increasing recursive function/. 

THEOREM 2. There is an infinite regressive isol T, a recursive func­
tion an, and a regressive isol S such that S § ^ T a n and for no re­
cursive function bn, with bn ^ an for all n, is it the case that S = 

2>„. 
PROOF. Let S and T be infinite regressive isols such that S a T and 

S 7̂  <l>f(T) for any strictly increasing recursive function / . Let 
an denote the recursive function identically equal to 1. Then T = 
^ T a n , and hence S^^Tan. Let us assume that there is a recur­
sive function bn having the properties 

(1) K^an for all n G E, 

and 

(2) S = 2 K 
T 

It follows from (1) and the definition of an that bn = 1 for all n Ei E. 
However since S is infinite, (2) implies that {n \bn= 1} is an infinite 
set. Let f(x) be the strictly increasing recursive function ranging 
over this set. Then 

S = S bn = Req (j(tm, 0),j(tfW, 0), • • •) = 4>f(T). 
T 

Therefore S = <f>/(T) for a strictly increasing recursive function / 
and this is a contradiction. This completes the proof. 

REMARK. The next result illustrates that for T an infinite regressive 
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isol, the converse of the theorem 

T^*an_l=* 2 a n G A R 
T 

does not hold. 

THEOREM 3. There exist an infinite regressive isol T and a function 
anfrom E into E such that^Tan G AR but T ^ * an_v 

PROOF. Let tn be any regressive function ranging over an isolated 
set which does not include zero. We define a function tn from E into 
E by the enumeration 

3f0, 3t0 + 1,3*b + 2,3?!, 3*j + 1,3^ + 2, • • • . 

It is clear that tn is a regressive function. Also, Req ptn = 3 Req ptn, 
so that tn ranges over an isolated set. Letting T = Req ptn, T is thus 
an infinite regressive isol. In addition, if p(x) denotes the partial 
recursive function p(x) = x + 1, we see that p(tn) = tn+l for n = 3k 
or n = 3k + 1, k G E. 

We now define a function an from E into E by 

an = tn if n = 3k for some k G E, 

= tn+2 i f n = 3k + 1 for some k G E, 

= tn if n = 3fc + 2 for some fc G E. 

We know that ^ ] r a n G A. We wish to show that ]£r#n ^ A R . 
Let the set a be defined as cr = 2oj(*m K a J ) ; then a G ̂ r a n . 
Consider the following enumeration of a, where the ordering pro­
ceeds from left to right on the first line, then from left to right on the 
second line, etc. : 

<T=j(to,0), • - • J(*o, to - l),j(t290)9 • • v(*2, h - l)J(*i,0), * * % 

j(tl913 - l)9j(t3,0), • • v(*3> h - 1 ) J ( ^ 0 ) , • • -, 7(*5, *5 - 1), 

Let fon be the function determined by this enumeration. Then a 
will be a regressive set if we can establish that bn is a regressive func­
tion. To see that bn is in fact regressive, let bn+l = j(thy) be given. 
If y 7̂  0, then bn= j(tiyy — 1). If y = 0, we consider the index i 
and determine whether i = 3k, i = 3fc + 1, or i = 3k + 2 for some 
H £ E . If f = 3fc, then fon = j(^_2 , ^ - 1). If i = 3k + 2, then fon = 
j(U-2-> U-2 — !)• If* = 3 H 1, then fon = j(p(ti), p(^) — 1). In any case, 
fon can be effectively determined from fon+i. Thus fon is a regressive 
function and a is a regressive set. Therefore ^ r ^ n ^ AR. 
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Suppose now that T^*an_l. Let q(x) denote the partial recursive 
function such that ptn C dq and q(tn) = an_v We note that if n = 
3fc + 2 for some k (E E, then g(fn) = #„_! = £n+1. Define a function 
$(*) on ptn by 

* ( 0 = p ( 0 if n = 3fc for some k G E, 

= p(£n) if n = 3fc -h 1 for some k E: E, 

= ç(£n) if n = 3fc + 2 for some k G E. 

Then the function s(x) has a partial recursive extension mapping tn 

into £n+1. Hence £n ̂  *tn+l, which is a contradiction. Thus T ^ * an-i-
This completes the proof. 
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