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A NOTE ON INFINITE SERIES OF ISOLS
JUDITH GERSTING

1. Introduction. Let E denote the collection of all nonnegative in-
tegers (numbers), A the collection of all isols, and Ay the collection of
all regressive isols. In [3], J. C. E. Dekker introduced the definition of
an infinite series of isols, »,7a,, where T denotes a regressive isol and
a, denotes a function from E into E. We recall the definition: When
T is a finite regressive isol,

Za,,=ao+"'+ar_1 (0if T=0).
T

When T is an infinite regressive isol,

E a, = Req %j(tm V(an))a

where j(x, y) is a recursive function mapping E? one-to-one onto E,
t, is any regressive function ranging over a set in T, and for any
number n, ¥(n) = {x |x < n}. Some properties of infinite series of
isols were studied in [1] and [3]. By results in [3], Y ra, is an
isol and is independent of the choice of the regressive function whose
range is in T. In the particular case that a, is a recursive function, then
Y ra, is a regressive isol [1, Theorem 1]. In [2], ]. Barback studied
some properties of regressive isols that can be represented as infinite
series ET% where the function a, is not necessarily recursive. These
regressive isols were of the form Y ra, where T =*a,_,. The defini-
tion of the relation T =*a,_, is as follows: If T is finite, then T =*
a,_y; if T is infinite, T =* a,,_, means that there is a regressive func-
tion t, ranging over a set in T such that t, =*a,_,, that is, the
mapping t, — a,_, has a partial recursive extension. The following
properties are known about the = * relation:

(1) If T =*a,, then t, =*a, for every regressive function ¢, ranging
overasetin T;

(2) ifT=*a, then T=*a,_,;

(3) if T=*a,_,, then D ra, is a regressive isol [2, Proposition 5] ;
and

(4) T =* a,, for every recursive function a,.

Our first two theorems below deal with the following question: Let
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T be an infinite regressive isol and a, a function from E into E such
that T =*a,. By combining (2) and (3) above, we know that 3 ra,
is a regressive isol. Let S be an isol such that S = Y ra,. We know
from [4] that S will be a regressive isol. Can § also be represented
as an infinite sum over T? Theorem 1 shows that this is the case;
Theorem 2, however, indicates that even if a, is a recursive function,
S need not have a representation as 3,7b, for any recursive function
b, with b, = a,. Theorem 3 shows that the converse of (3) above is
false, i.e, T="a,_, is not a necessary condition for Y ra, to be a
regressive isol.

2. Three theorems.

TueoreM 1. Let T be an infinite regressive isol and a, a function
from E into E such that T =*a,. Let S be a (regressive) isol such
that S= Y ra,. Then there exists a function b, from E into E such
that

(a) T=*b,
(b) b,=a, foralln €EE,
(¢) S= Y b,

T

Proor. Let t, be any regressive function ranging over a set in T.
Because T = * a,,, it follows from results in [2] that ¥ ra, is a regres-
sive isol and that

(1) j(tO’ 0)’ t .,j(t0> ap — l)’j(tl’ 0)’ c '>j<tla a, — ]-), T

represents a regressive enumeration of a set 7 € 2101.- By the
inequality S§§Tan, there exists a set ¢ €S such that o is a
separated subset of 7. Let s, denote the function ranging over o
which preserves the ordering established in (1). It follows that s,
is a regressive function. We now wish to define a function b, in such
a manner that t, =*b,. Let the number ¢, be given for any n € E.
Because of the relation t, =* a,, the set

(j(tm 0)7 v "j(tm a, — 1)) Cr

can be effectively generated. (Note that this set is empty in the event
that a, = 0.) Since o is a separated subset of 7, the number of
elements of o which appear in this set, say k, can be effectively deter-
mined. We define b, = k.

Now b, is defined for all n, and clearly t, =*b,. Thus we have
T =*b,, and (a) is satisfied. Also it is clear that b, = k = a,, so that
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(b) also holds. Again by the results in [2], Y rb, is regressive and
j(th O)> T 'aj(tO’ bO - 1)’j(tl’ 0>’ te "j(tl, bl - 1)’ e

represents a regressive enumeration of a set y € Y.rb,. Let r, be
the regressive function determined by this enumeration of y. We now
have S= Reqo and Y b, = Reqy, with ¢ =ps, and 7y = pr,.
To complete the proof, it is necessary to show that y =o. We will
construct a one-to-one partial recursive function g(x) such thaty C &g
and g(y) = 0.

Making use of the assumption T =*a,, let f(x) denote the partial
recursive function such that pt, C 8f and f(t,) = a,. Also, since
o is a separated subset of 7, let o* and 7* denote. the disjoint recur-
sively enumerable sets containing o and 7 — o, respectively. Let
k(x) and I(x) denote the recursive functions such that j(k(x), l(x)) = x.
Define the functions v and w by

o(x, i) = j(k(x), i),
w(ix)=1 forx Eo*
=0 forx €™

Clearly v and w are partial recursive functions. Finally, let

g(x) = v(x,(y,y§fk(x) - 1) [i wo(x, i) = l(x) + 1 ]>

i=0
Then g(x) is a partial recursive function. Also, if g(x) = g(z) for some
x and z belonging to 8g, then
g(x) = g(z) = jk(x), y,) = j(k(z), y2)
= k(x) = k(z) and y, =y,
= (Vi)(v(x, i) = v(z,1)) and y, =y,

Yz

= § wo(x, i) = Y wo(z, i)

i=0 i=0
=)+ 1=1z)+1

= l(x) = l(z).

Since k(x) = k(z) and l(x) = I(z), it follows that x = z and g is one-to-
one.

For x €y, say x =r, = j(t,,q) with 0= q < b,, then fk(x) — 1
=a,— land {v(x,i) | 0= i=a, — 1}is
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{j(t,, 0), - - -, j(tp, @, — 1)} C 7.

There are b, elements of o in this set and ¢ + 1 = l(x) + 1= b,
Hence g(x) is defined, namely g(x) is the (¢ + 1)st member from left
to right in this set, as ordered above, which belongs to o, and this
is exactly s,. Hence g(r,) = s,, that is, y C 8g and g(y) = o. This
completes the proof.

Remark. The next theorem shows that if T =* g, is replaced in the
hypothesis of Theorem 1 by the stronger condition that a, is a recur-
sive function, this recursive property need not carry through to the
b, function. Some preliminary ideas are needed. Let f be a one-to-one
function from E into E and let T be an infinite regressive isol. Let
t, be any regressive function ranging over a set in 7. We then let
¢4(T) be defined as the recursive equivalence type of the range of
the function ¢, M. Hassett proved in [6] that there exist infinite
regressive isols S and T such that S= T while S # ¢4(T) for any
strictly increasing recursive function f.

THEOREM 2. There is an infinite regressive isol T, a recursive func-
tion a,, and a regressive isol S such that S= Y ra, and for no re-
cursive function b,, with b, = a, for all n, is it the case that S =

ETbn'

Proor. Let S and T be infinite regressive isols such that S = T and
S # ¢(T) for any strictly increasing recursive function f. Let
a, denote the recursive function identically equal to 1. Then T =
Y ra,, and hence S= Y ra, Let us assume that there is a recur-
sive function b, having the properties

(1) b,=a, foralln € E,
and
@) S= S b,

T

It follows from (1) and the definition of a, that b, = 1 for all n € E.
However since § is infinite, (2) implies that {n | b, = 1} is an infinite
set. Let f(x) be the strictly increasing recursive function ranging
over this set. Then

§= ; b, = Req (j(tr0), 0), j(tr1), 0), * * *) = ¢y(T).

Therefore S = ¢¢(T) for a strictly increasing recursive function f
and this is a contradiction. This completes the proof.
ReMark. The next result illustrates that for T an infinite regressive
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isol, the converse of the theorem
T=*a, ,= Y a,EAg
T

does not hold.

TueoreM 3. There exist an infinite regressive isol T and a function
a, from E into E such that ¥ ra, € Ag but T $£* a,_,.

Proor. Let f, be any regressive function ranging over an isolated
set which does not include zero. We define a function ¢, from E into
E by the enumeration

3ty, 3ty + 1,38, + 2,3¢,3t, + 1,3, + 2, - - -

It is clear that ¢, is a regressive function. Also, Reqpt, = 3 Req Pt
so that ¢, ranges over an isolated set. Letting T = Reqpt,, T is thus
an infinite regressive isol. In addition, if p(x) denotes the partial
recursive function p(x) = x + 1, we see that p(t,) = t,,, for n = 3k
orn=3k+ 1,k EE.

We now define a function a, from E into E by

a, = t, if n = 3k for some k € E,
=t,,o ifn=3k+ lforsomek € E,
= t, ifn = 3k + 2 for some k € E.

We know that ¥ ra, EA. We wish to show that > ra, € Ag.
Let the set o be defined as o = >.5j(t,, ¥(a,)); then o € > ra,.
Consider the following enumeration of o, where the ordering pro-
ceeds from left to right on the first line, then from left to right on the
second line, etc.:

g =j(t0’ 0)’ s ',j(t(b tO - 1)’j(t2’ O)> t "j(t2’ t2 - 1)’j(tl’0)» T
j(tl’ tS - 1>7j(t37 O): v '>j(t3> t3 - 1)?j(t5’ 0)1 Y j(t57 tS - 1)7
j(t4’0)’ t "j(tcb ts — l)’j(tS: 0)’ e

Let b, be the function determined by this enumeration. Then o
will be a regressive set if we can establish that b, is a regressive func-
tion. To see that b, is in fact regressive, let b, ., = j(t;, y) be given.
If y#0, then b, = j(t,y — 1). If y= 0, we consider the index i
and determine whether i = 3k, i=3k + 1, or i = 3k + 2 for some
k€ E. If i = 3k, then b, = j(t; o, t; — 1). If i =3k + 2, then b, =
J(ti—g, ti_g — 1). Ifi = 3k + 1, then b,, = j(p(t;), p(t;) — 1). Inany case,
b, can be effectively determined from b,,,. Thus b, is a regressive
function and o is a regressive set. Therefore > ra, € Ag.
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Suppose now that T =*aq,_,. Let q(x) denote the partial recursive
function such that pt, C 8q and q(¢,) = a,_;. We note that if n =
3k + 2 for some k € E, then q(t,) = a,_, = t,,,. Define a function
s(x) on pt, by

s(t,) = p(t,) ifn = 3kforsomek € E,
= p(t,) ifn=3k+ lforsomek EE,
= q(t,) ifn= 3k + 2forsomek € E.

Then the function s(x) has a partial recursive extension mapping ¢,
into t,,,. Hence t, = *t,. , which is a contradiction. Thus T ¥ *a,_,.

This completes the proof.
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