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INDEPENDENT CLASSES OF SEMIPRIMAL ALGEBRAS 

D. JAMES SAMUELSON 

1. Introduction. Recent investigations in the area of universal 
algebra have focused attention on the conditions under which an 
algebra subdirectly decomposes within a given class of algebras. See, 
for example, Astromoff [1], Foster and Pixley [2], [3], [5], Gould and 
Grätzer [6], Hu [8], and Jónsson [9]. In particular, it has been shown 
that each cluster K of primal or, more generally, semiprimal algebras 
determines a certain unique subdirect factorization for each algebra 
which satisfies the identities common to some finite subset of K Primal 
clusters (see [3], [10]-[12], [14], and [15]) are known to exist in 
great profusion. 

In this paper we show the existence of clusters of semiprimal 
algebras of rather diverse nature, thereby enhancing the scope of 
applicability of the more general semiprimal theory. Our main result 
is 

THEOREM 1. A family K of semiprimal algebras is a cluster if (a) 
each member of K is strongly surjective, (b) the members of K have 
pairwise nonisomorphic structures, and (c) for each A G K, the inter
section of all subalgebras of A is nonempty. 

We prove this result with an eye on the techniques of O'Keefe [ 10] -
[ 12]. It is shown in §3 that K is a cluster if its members are pairwise 
independent. This pairwise independence for members of K is then 
established in §4. 

2. Basic definitions. Let S be a fixed finitary species (or type) of 
universal algebra. All algebras to be considered are assumed to be 
of species S. 

(1°) A term (or expression) is any indeterminate symbol x, y, xx, 
yu • • • or any finite composition of indeterminate symbols via the 
primitive operations of S. All terms are written as italic caps, F, G, H, 
etc. We write F = G(A) when two terms F and G agree as functions, 
within an algebra A. 

(2° ) Any finitary mapping / : An —> A for arbitrary n is called an 
A-function, Such a function is said to be conservative if for each sub-
algebra A' of A, f(ai9 " ' , f l n ) E A ' whenever a1? • • *, an (E A'. An 
algebra A is primal (respectively, semiprimal) if it is finite, contains 
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at least two elements, and each A-function (respectively, each conserva
tive A-function) is equal, within A, to some term. 

(3°) In an algebra A, [a] will denote the subalgebra of A generated 
by a G A. Let f(xl9 • • *, xn) be a conservative A-function; / is said 
to be surjective if for each a G A there correspond a1? • • -, an G [a] 
for which f(ai9 * • -, an) = a; f is strongly surjective if it is surjective 
and if for each a G A not contained in a minimal subalgebra of A the 
corresponding ax, • • *,#n above can further be chosen to satisfy the 
"normalized" conditions [a*] = [a] for at most one i = 1, • • -, n. 
Subalgebras of A are minimal or maximal if they are minimal or 
maximal with respect to inclusion. An algebra A is said to be sur
jective (respectively, strongly surjective) if each primitive operation 
of A is surjective (respectively, strongly surjective). 

(4°) Two algebras A and B have nonisomorphic structures if A' 
and B' are nonisomorphic whenever A' and Bf are non-one-element 
subalgebras of A and B, respectively. 

(5°) A finite set of algebras A1? • • -, A„ is independent if there 
exists a single term F(xly • • *, xn) satisfying F(xl5 • • -,xn) = 
Xi(Ai), i = 1, ••• ,?! . A cluster is any family of algebras, each finite 
subset of which is independent. 

3. The factorization property. An algebra A is said to satisfy the 
factorization property if 

( *) for each primitive operation f(xiy • • -, xr) of A and each term 
F(x) there exist terms F:(x), • • *, Fr(x) such that 

/(F,(x), • • -, Fr(x)) = F(x)(A). 

It was shown in [ 10] that property ( * ) is equivalent to 
( * *) for each term G(xu • • *,xm) in which no indeterminate 

occurs twice and each term F(xiy • • 9,xn) there exist terms 
Fi(xu - - *, xn), i = 1, • • *, m, such that 

G(F1(x1,- • -, xn), - • -, Fm(xl9 ' ' -, xn)) = F(xl9 ' ' -, xn)(A). 

LEMMA 1. The factorization property holds in any surjective semi-
primal algebra. 

PROOF. Let A = {a1? • • *,an} be a semiprimal algebra, F(x) an 
arbitrary term, and f(xu - - -,xr) a primitive operation of A If A is 
surjective, then, for each i = 1, • • -, n, there exist elements an , • • -, 
air G [F(ai)] satisfying / (o^, * • •, O = F(öi). Since, additionally, 
ßy G [aj , the functions f : A —» A, j = 1, • • -, r, defined byjÇ(oi) = a^, 
are conservative. Being so, there correspond terms Fj(x) for which 
Fj(x) = fj(x)(A). An element by element verification then establishes 
that/(F,(x), • • % Fr(x)) = F(x)(A). 

The factorization property is extremely useful in clarifying the 
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relationship between pairwise and general independence. 

LEMMA 2 (O'KEEFE [10]). Suppose that K= {• • -, A*, • • •} is a 
set of pairwise independent algebras. If the factorization property 
holds in each Ai, then Kisa cluster. 

4. Pairwise independence. With an eye on the preceding lemma, 
we now turn our attention completely to the case of pairwise inde
pendence, the chief result being Theorem 2 below. We establish 
Theorem 2 via a sequence of several lemmata, the first two being of a 
rather general nature. 

LEMMA 3. Let A and B be semiprimal algebras with nonisomorphic 
structures. Then, for each sequence F1(x), • * *, Fn(x) of terms, there 
exists a corresponding sequence of terms GY(x), • • -, Gn(x) such that 

Gl(oc) = • • • = Gn(x)(B), 

Q(x) = Fi(x)(A\ t = 1, • - -, n. 

PROOF. This lemma was established in [10] for the special case in 
which both A and B are primal. The same proof presented there 
readily adapts to the more general situation in which A is primal and 
B is an arbitrary semiprimal. Of course, the lemma is trivially true if 
A contains but one element. Consequently, we can and do assume the 
lemma to be true for B and any minimal subalgebra of A. This repre
sents the first step of a proof by induction. Assume, then, that the 
lemma is true for each maximal subalgebra of A. We now show that 
the lemma is true for A also. To this end, let Al5 • • -, A^ denote the 
distinct maximal subalgebras of A and assume the existence of terms 
Gji(x),j = 1, * ' ', m, i = 1, • • -, n, satisfying 

Gji(x) = FiixXA;), 

Gn(x) = • • • = Gjn(x)(B). 

If A' = def = AlU - • • U Am is equal to A, we select any term 
T(x, Xi, • • *, xm) of m H- 1 arguments which satisfies for each a EL A 
the following noncontradictory conservative conditions: 

T(a, Gu(a), • • -, Gmi(a)) = F4(fl), i = 1, • • -, n. 

To see this, suppose that F^a) ^ Fk(a) for some pair ij^k. But 
then, since a G A, for some j , it follows from (1) that Gß(a) ^ Gjk(a). 
Letting 

Gi(x) = T(x, Gu(x)9 • • -, Gmi(x)) 
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and applying the conditions of (1) we observe that 

Ck(x) = F,(x)(A), 

G,(*) = • • • = Gn(x)(B). 

Next assume that A — A' is nonempty. Since A and B have non-
isomorphic structures and as semiprimal algebras are simple, it follows 
from the subdirect factorization theorems of [5] that they do not 
satisfy the same identities. Hence, there exist terms Hk(xu • • -, x8), 
k = 1, 2, such that Hx = H2(B) and HY / H2(A). Let au • • -, a, 
be elements of A for which 

cx = def = Hi(ai9 • • -, a,) 7̂  H2(fli, • * -, as) = def = c2. 

Choose terms Ki(x), • • -, K$(x) which satisfy in A the property Kt(x) = 
at(A — A'), t = 1, • • *, s. Letting 

Hfc'(*) = H f c ^ x ) , • • ', Ks(x)) 

we see that H/(x) = H2
f(x)(B) and ff£(x) = ck(A - A'). Now 

choose any term Q(xly * • m,xn+i) which satisfies, for i = 1, • • *, n, 
the conservative conditions 

<g(x,c1? • • • > Ci,c 2 ) • • -,c2) = Fi(x)(A). 

i terms 

Defining 

K,(x) = Q(x, H/(x), • - -, H/(x), H2'(x), • • -, H£(x)) 

i terms 

we see that 

K j ( x ) = F i ( x ) ( A - A ' ) , 

Kl(x) = • • • = K„(*)(B). 

Finally, select any term T(x, xi9 • • *, xm, y) of m + 2 arguments satisfy
ing for each a G A and each i = 1, • • -, n, the noncontradictory con
servative conditions 

T(a, Gu(a)9 • • -, GUa) , £(a)) = Ft(a). 

Letting 

G,(x) = T(x, Gu(x)9 • • -, Gmi(x), Ki(x)) 

and applying conditions (1) and (2) we have that 
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Q(x) = FMA), 

G,(x) •• •• Gn(x)(B). 

This completes the induction step and with it the lemma. 

LEMMA 4. If an algebra A is strongly surjective and K is any term 
in which no indeterminate occurs twice, then K is itself a strongly 
surjective A-function. 

If K is an indeterminate symbol, then trivially it is strongly surjective 
in A The proof of Lemma 4 then follows in a straightforward manner 
by induction on the number of primitive operation symbols of which 
K is composed. We leave the details to the reader. 

We now establish the following notation in an algebra A: 

(3) Ao = H ( A ' : A ' is a subalgebra of A). 

In an algebra A satisfying condition (c) of Theorem 1, AQ will always be 
nonempty. 

The characterization theorems of [4] provide large classes of strong
ly surjective semiprimal algebras of the type under consideration here. 
Other examples can be found in [ 13]. 

LEMMA 5. Let K = {A, B} be a two-element class of semiprimal 
algebras satisfying (a)-(c) of Theorem 1. Then, for each m G AQ (see 
(3)) and term F(x), we can find a term H(x)for which 

H(x) = m(A), 

= F(x)(B). 

PROOF. Since A is semiprimal, there exists a unary term G for which 
G(x) = m(A). Following O'Keefe [10], we denote by G'(xl9 " \xn) 
the term derived from G by distinguishing each occurrence of x, i.e. 
G'(x, ' ' ', x) = G(x). Since the factorization property holds in B 
(Lemma 1), there exist terms G<(x), i = 1, • • *, n, such that 

G'(Gx(x), • • -, Gn(x)) = F(x)(B). 

But by Lemma 3 we can find terms F^x), i = 1, * • *, n, satisfying 

F<(x) = Q(*)(B), 

Fi(x) = • • • = Fn(x)(A). 

The term 

H(x) = G'iF.ix), • • ; FB(x)) 
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then suffices for the lemma since it certainly reduces to F(x) in B and 
in A, 

G ' ^ x ) , • • -, FB(x)) = G ' ^ x ) , • • -, Fx(x)) = G ^ x ) ) = m. 

We now obtain terms which partially reflect the criteria of inde
pendence. 

LEMMA 6. Let A and B be as in Lemma 5 and assume that each 
maximal subalgebra of A is pairwise independent with B. Then, there 
exists an element c G AQ, and corresponding to each a EL A a binary 
term Fa(x, y) satisfying 

Fa(x,y) = y(B), 

(4) Fa(a, y) = a, y G A, 

Fa(x, y) = c, x,y E A,x^ a. 

PROOF. Associated with each of the distinct maximal subalgebras 
A1? • • -, An of A is a binary term Th i = 1, • • -, n, satisfying the inde
pendence criteria 

Ti(x,y)=x(Ai\ 

= y(B). 

We construct Fa(x, y) according as a G A does or does not belong to 
A' = de f= Ai U • • • U A„. 

First, we consider the case in which a G A — A', provided this set 
is nonempty. Let d G B0 be fixed and G be a binary term which 
satisfies in B the symmetric identities 

G ( ^ y) = y> 

G(x, d) = x. 

Denote by G'(x1? • * *, xr> yu • • *, ys) the term derived from G(x, j/) by 
distinguishing each occurrence of x as xl7 • • *, xr and y as yÌ7 • • -, j / s . 
Since A is strongly surjective, there exist elements aÌ9 * * •, ar, biy ' • *, 
bs G [Ö] = A such that G'(ai9 • * -, ar? fo1? • • *, bs) = a. Moreover, this 
choice can be made to satisfy the following "normalized" conditions: 
either [a3] ^ [a], all j = 1, • • -, r, or [bfc] ^ [a], all k = 1, • • *, s. 
Assume, without loss of generality, the former alternative. If the latter 
holds, we proceed similarly to the remarks below taking into account 
the symmetry of (5). Then, each a$ belongs to a maximal subalgebra 
Ai(j) of A. Pick terms Fj(x), j = 1 , • • -, r, and Gk(x), k = 1, • • -, s, so 
that the conservative conditions 
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Fj(a) = Of, Gfc(fl) = bk, 
and 

Fj(x) = m, x j£ a, Qk(*) = m, X / Ö , 

hold in A, where m is a fixed element of AQ. Applying Lemma 5, we 
can obtain terms Hj(y) and Gk ' (x) for which 

Hj(y) = m(A), Gk '(*) = G,(x)(A), 
and 

= y(B), = d(B). 

Letting Kj(x, y) = T^Ffa), Hj(y)) for j = 1, • • -, r we verify that 

Fa(x, y) = def = G'iK.ix, y), • • -, K,(*. y), G1 '(*), • • -, G, '(*)) 

is a term associated with a G A which satisfies (4), since 

Fa(a, y) = G'(al9 • • -, ar, fo^ • • -, bs) = 0, t / £ A, 

Fa(x, t/) = G'(m? • • -, m, m, • • -, m) = def = c G \ 
( 6 ) c A ^ 

x, y tz A, x p a, 
Ffl(x,y) = G'(y, • • -, y, d, • • -, d) = G(y, d) = y(B). 

Finally, suppose 0 G Ai for some i = 1, • • -, n, and let H(x) be a 
term so that the properties H(a) = a and H(ac) = c, x / a , hold in 
A where c G AQ is as in (6). Again, invoking Lemma 5 we select a 
term G(y) for which G(y) = y(B) and G(y) = c(A). Then, 

Fa(x,y)= def = UH{x\G{y)) 

possesses the desired properties of (4). This concludes the proof. 
We are now in a position to prove our final lemma. 

LEMMA 7. Let K = {A, B} be a pair of semiprimal algebras satisfy-
ing the hypotheses of Theorem 1. If each maximal subalgebra of A 
is pairwise independent with B, then A and B are independent. 

PROOF. Let au • • -, an be an enumeration of the elements of A and 
c E A o be as in (4). Since A is semiprimal there exists a term 
K(xi, • • *, xn) which satisfies in A the conditions 

K(c, • • -, c, ajf c, - • *, c) = Of, j = 1, • * -, n. 

j — I factors 

Denote by K'(xn, x12, * ' ',Xji,xj2, ' ' ' ,x n l ,x n 2 , * * •) the term obtained 
from K by distinguishing each occurrence of Xj as xjh xj2, ' ' ' for j = 1, 
• • -, n. Applying Lemma 1 to B, we get unary terms Gjk = Gjk(y) such 
that 
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K (Gii, Gl2, - - -, Gji, Gj2, ' ' ', Gnl, Gn2, ' * *) — y(B). 

For each a,- G A, let Fflj(x, t/) be a term satisfying the conditions (4) 
of Lemma 6 and set 

Fjk = Fjk(x, y) = Fqj(x, Gjk(y)). 

Then, letting F(x, y) = K ' ( F n , F 1 2 , • • - ,F2 1 , F22, • • -, Fn l , Fn2, • • • (we 
verify that in A, 

F(ay-, t/) = K'(c, c, • - -, a,-, ^ , • • -, c, c, • • •) 

= K(c, * * -, c, a,, c, • • -, c) = «j, 

for j = 1, • • -, n, and consequently that F(x, y) = x(A). It is readily 
checked that F(x, y) = y(B), thus establishing the independence of 
A and B. 

THEOREM 2. L#£ K = {A, B}be a pair of semiprimal algebras satisfy
ing the conditions of Theorem 1. 77ien A and B are independent. 

PROOF. This result was established in [10] for the case of A and B 
both primal. We conclude, therefore, that AQ and B0 (see (3)) are 
independent. Holding AQ fixed, a many-fold application of Lemma 7 
up through the lattice of subalgebras of B leads to the independence of 
AQ and B. Now fixing B and again applying Lemma 7 within the sub-
algebra structure of A, we finally obtain the independence of A and 
B themselves. 

Upon applying Theorem 2, and Lemma 2 of §3, we obtain the prin
cipal Theorem 1 of this paper. 
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