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The material presented here elaborates somewhat the content of six 
expository lectures given at the University of Arizona in April 1970. 
The presentat ion is necessarily sketchy, and is in tended only as an 
outline — to some extent historical — and source of references for a 
body of distinct bu t interrelated contributions, all motivated by a 
common physical problem. Many details have been suppressed or 
insufficiently indicated; the reader who is new to the subject should 
not expect to be able to fill them in with ease, al though my earlier 
expository article [5] should serve as a supplementary guide. I do 
hope to have made accessible a common thread that might be ha rd to 
perceive from the individual papers, and to have suggested, at least 
by inference, a range of open problems that invite new ideas and 
methods. 
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The topics did not divide evenly among the lectures, and I have 
therefore reorganized the material into sections of varying length, 
according to the topic. The reader may nevertheless perceive in the 
presentation traces of the original didactic style. 

I wish to thank Clifton Suitt* and David Zachmann, who attended 
the lectures and prepared an invaluable first draft for the manuscript. 
I modeled the present text on their outline, and they must share 
responsibility for its virtues and its faults. It is a pleasure for me to 
thank also many department members, to whose personal warmth 
and hospitality I owe so much of my feeling that my visit in Arizona 
was far too brief. 

1. General considerations. Our attention will center on the problem 
of determining a stationary flow, in n = 2 or 3 dimensions, of an in
compressible viscous fluid past an isolated rigid body fl that is in 
uniform motion in the fluid. It is assumed that the fluid extends to 
infinity in the domain £ outisde ft and that the motion is governed 
by the Navier-Stokes equations 

pdwldt - jxAtv + pw - Vw + V p = 0, 

V • w = 0. 

Here w is the velocity vector, p the (scalar) pressure, p the density 
and ix the viscosity coefficient. The quantities p and fi are assumed 
constant. The first (vector) equation (1) expresses the equilibrium of 
forces at each point in the fluid; the last equation (1) is the condition 
for conservation of mass. In what follows we shall assume /x = p = 1; 
the general case can always be reduced to this one by a coordinate 
transformation. 

Solutions of (1) will be sought for which an equilibrium configura
tion has been obtained, so that the velocity relative to points of il 
is time independent. In a Galilean reference frame attached to O, 
(1) then becomes 

Au; — w - Vu? — V Ü = 0, 
(2) 

V w = 0 

with a condition at infinity, 

(3) lim w(x) = w°° 

for some fixed (usually nonzero) vector u;00. On X = dfl, the (physi
cal) adherence condition is 

*I must relate with sadness the untimely death of this capable young person. 
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(4) limu>(x) = 0. 

It will be desirable to consider also the more general condition 

(5) lim w(x) = w*(x) 

for prescribed u>* on 2. 
It will be convenient in much of what follows to assume the origin 

of coordinates interior to fl. 
A direct study of (2) would be difficult because of the nonlinear 

term, and it is natural to start with the equations for an infìnitesimally 
slow motion, obtained by linearizing about the particular solution 
w = 0, 

Atf — V Ü = 0, 
(6) 

V • tv = 0. 

These equations were first studied by G. G. Stokes, who found, in 
1850, an explicit solution, with adherence on the boundary, for a flow 
past a sphere [1], 

(7) w(x) = w- - -3- V A r2V A — - y V A V f \ ^ , r = Ixl, 
4a r A r 

where a is the radius of the sphere. The solution is obtained by noting 
that (6) implies Ap = 0, so that p can be expanded in spherical func
tions, which simplify under the expected symmetry conditions. 

It should be noted that the solution (7) is physically unrealistic; 
it is symmetric with respect to the origin, and does not exhibit the 
anticipated "wake" property behind the body. For most commonly 
observed motions, predictions based on (7) would be seriously in 
error; nevertheless, (7) has been widely (and successfully) applied as 
an asymptotic formula for vanishingly small velocity field.l 

Stokes sought also to solve the two-dimensional problem (flow 
past a circular cylinder) by the same method, but found it was not 
possible to satisfy all conditions on the coefficients in a formal expan
sion. He concluded (correctly) that no solution exists. This "Stokes 
paradox" of hydrodynamics holds in a much more general context, 
and will be discussed in §3. 

In Fig. 1, the solution of Stokes is illustrated and compared with 
flow patterns arising from other hypotheses. Potential flow corre
sponds to vanishing vorticity (V A to = 0) and to* tangential on 
2. Figs, le, d arise from (21), equations linearized about to00. Figs, 
lc, d, e, fare obtained by numerical procedures [33], [34]. 
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a Potential flow b Stokes flow 

c Oseenflow; \w °°\ = 1 d Oseen flow; |u;°°| = 20 

e Navier-Stokes flow; |u; °°| = 1 f Navier-Stokes flow; \w °°| = 20 

FIGURE 1. Flow patterns past a unit sphere; Q = y = 1. See also [33] , [34] , 
from which e, d, e, f are taken. 

2. The boundary value problems; Stokes equations. We outline 
here a systematic study of the system (6) due to Odqvist2 [3], who 
exploited some striking analogies with potential theory. His starting 
point was the fundamental tensor pair E = (Ey),' e = (^), which had 
already been given by Lorentz [6] : 
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(8) 
ej(x)=-iè--^rlogl*l' n = 2 ' 

n = 3. 

1 
2TT 

1 

ax, l oS 

a l 
47T dXj 

For fixed j , each column vector E^x) is a solution of (6) with corre
sponding "pressure" ej(x), and exhibits a fundamental singularity at 
x = 0. One is led to the representation for a solution u;(x) in the 
interior fi of a smooth surface (curve) 2, 

(9) w(x) = £ [!%) • TE(* - y) - E(x - y) • Tw(y)] • ddy 

which is analogous to the Green's representation for a harmonic func
tion. Here the "stress tensor" Tw, defined by 

(Tw)ij = —p8y + (dtVildXj + dWjldXi) , 

replaces the normal derivative of potential theory, and the tensor E 
replaces the (scalar) fundamental solution. Odqvist then introduces 
(vector) potentials of simple and double layers 

U = j E • 9 der, P = j e • cp da, 

V = ( TE • 4 • dò, Ç = \ Te • % • dd, 

and in analogy with potential theory establishes jump relations at 2 
for V and for TU. One is led to consider two problems, analogous to 
the Dirichlet and Neumann problems of potential theory: 

1. "Dirichlet" problem: w \1 = w*, prescribed. 
2. "Neumann" problem: Tw • v \x = /* , prescribed. 

Here v is the unit exterior normal to 2. As the notation indicates, 
the "Neumann" problem consists in prescribing a force distribution 
on 2. For the interior and exterior problems, respectively, we write 
Di, De, or Nh Ne. For the exterior problems, solutions are sought that 
converge to zero3 at suitable rates at infinity. 

Let us seek a solution of D{, in n = 3 dimensions, as a double layer 
potential. The jump relation leads [3] to a Fredholm equation of the 
second kind 
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(10) tv? = <Pi+ £ Kifpj da 

for the surface density 9 = (<pu <p2, ^3). The kernel Ky(oc, y), x, y G S, 
has an integrable singularity at a; = y. 

A solution of (10) exists exactly for those data u?* that are orthogonal 
to all solutions of the homogeneous transposed system 

(11) 0 = * , + £ ^ d a . 

But (11) is the special case of zero data in the integral equation 

(12) /«* = ^ + £ K ^ da 

arising from a representation of a solution of Ne as a simple layer. 
This interpretation leads easily to the result that the only solution of 
(12) is if = cv. It follows that a solution of Dj can always be found if 
the data a>* satisfy 

(13) j"s w* • da = 0. 

The condition is also necessary, as is seen by integrating the last 
equation in (6) by parts. 

Now let us seek a solution of N{ as a simple layer. The homogeneous 
adjoint admits in this case exactly six independent solutions, i//j = 
{ôij}; tyj = {àijXi}, corresponding to the independent motions of a 
rigid body. It follows that N{ can be solved if the net force and 
moment on X due to the prescribed data both vanish. Again a direct 
integration shows these conditions to be necessary. 

Similarly, if De is to be solved by a double layer potential, six con
ditions must be satisfied by the data. In this case the conditions are 
not necessary, and Odqvist showed that by adjoining simple layer 
potentials, De can be solved for any prescribed data w*. 

The two-dimensional discussion parallels that for the case n = 3 
except for this last point. In solving De, three conditions, correspond
ing to the rigid body motions, must be satisfied by the data. If one 
seeks to satisfy these conditions by adjoining simple layer potentials, 
the corresponding flow velocities can become infinite at infinity. Thus, 
in this case, data at infinity can no longer be imposed. This leads 
again to the Stokes paradox, and provides a clue towards its clarifica
tion. 

3. The Stokes paradox. Let us consider in some detail the behavior 
of solutions w(x) of De in n = 2 or 3 dimensions. We follow here the 
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method of [17]. Suppose \w(x)\ = o(r) as r — \x\ —> °°. We write, 
for an annular domain £R bounded by X and by a sphere XR of (large) 
radius fì, 

w(x) = I (w - TE - E - Tw) - dd 

(14) 

+ { (w -TE - E • Tw) • dd. 

The last term on the right is thus expressed by the other two terms 
and hence, for fixed x G £R , is independent of R; denote it by Q(x). 

Let x G £, let S be a unit sphere, centered at x. One verifies easily 
that $sE(x ~ y) 'do = 0; thus the above existence theorem for Df 

yields the existence of a Green's tensor G(x, y), that is, a fundamental 
tensor all of whose components vanish when y G S. Thus, the repre
sentation (9) yields4 

w(x) = j" w • TG • do. 

Keeping S fixed, this relation can be differentiated under the sign, and 
yields the preliminary estimates |Vtü| = o(r), \Aw\ = o(r). Hence, 
from (6), |p| = o(r2). Placing these results in the expression for 
Q(x) and using the explicit knowledge of E, we find limR^ooD2Ç)(x) = 
0, for any second derivative D2Q(x). But Q(x) is independent of 
H; hence D2Q(x) = 0, from which Q(x) = A • x -f w °°, for some con
stant matrix A and constant vector wx. By hypothesis, \w(x)\ = o(r); 
hence, using (8) and (14), we find A = 0. There follows 

(15) w(x) = w°° + i (w • TE - E • Tw) • do. 

Now observe ?̂ = — § Tw • do is the net force exerted on 
X in the flow. Using the mean value theorem on E(x — y) for y G X 
and x large, we obtain the general asymptotic estimate 

(16) w(x) = w °° + E • <? + 0(r1-"), n = 2, 3, 

valid for all solutions in 8 satisfying \w(x)\ = o(r). This result can be 
differentiated formally in any direction. 

Note that w °° is uniquely determined even though the second term 
in (16) will, in general (for n = 2), become logarithmically infinite at 
infinity.5 

We introduce now the deformation tensor def w, defined by 
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(def w)ij = 2 (dWi/dXj + dwJdXi). 

A formal integration by parts yields, for the solution u?(x), 

(17) f (ti> - o>-) • Tw • do = 2 f (defw) 2 rfx. 

If n = 3, (16) implies the integral over XR vanishes in the limit. W e 
find, in particular, 

THEOREM 3A. Let n = 3 and let w(x) be a solution of (6) in £, with 
\w(x)\ = o(r) and w(x) = 0 on X. Then there exists a finite wx = 
\imx^ootv(x), and 

(18) Sw-= 2 ^ (defwfdx. 

Thus, in any physical flow there is always a nonzero resistance 
force on X in the direction w °°. Physically, (18) asserts that the work 
done per unit time in sustaining the motion equals the rate of dissipa
tion of kinetic energy into heat in the motion. 

Now let n = 2. Since ATTE^ = 8ij log (1/r) + Xixjr2, a condition 
\tv(x)\ = o(log r) implies, by (16), *? = 0. But this result implies, in 
turn, that the outer boundary integral in (17) vanishes in the limit, so 
that (18) again holds, with <D- = 0. Hence def if = 0 in £, so that 
w(x) represents a rigid motion. Since w(x) = 0 on X, we find 

THEOREM 3B. Ifn=2 there is no solution w(x) of iß) in £ for which 
w = 0 on X and \w(x) | = o(log r) at infinity. 

This is the precise expression of the Stokes paradox. The paradox 
will be clarified further in §6, where it will be shown to arise from a 
nonuniformity in the perturbat ion to the vanishing velocity field, 
owing to the infinite size of the domain. For three-dimensional flows 
the paradox is less striking but it persists nevertheless, and is evi
denced by the physically unrealistic behavior of the flow field and 
the poor correspondence of flinctionals of the flow (e.g., the force of 
resistance) with experimental measurements. 

It is the Stokes paradox that leads to the essential difficulties in 
at tempts to solve the exterior problem for the Navier-Stokes equations, 
even in three dimensions, as the solution apparently cannot be ob
tained directly from a per turbat ion procedure starting from solutions 
of (6). The remainder of these lectures will be devoted to ways of 
overcoming this difficulty. 

4. Another approach; the nonlinear problem. The method of 
Odqvist (§2) permit ted him to obtain general estimates on the singu-
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larity of the Green's tensor for (6) in an interior domain [3]. Odqvist 
used this tensor to formulate an integral equation satisfied by any 
solution of Di for (2). By a perturbation procedure, he was able to 
solve the equation to obtain a solution of Dh provided the data are 
sufficiently small.6 This general approach will be adopted for the study 
of the exterior problem in §5; in the meantime, let us consider what 
can be accomplished for Df by a more abstract method. We follow 
Ladyzhenskaia; to fix the ideas, we solve again D; for (6), using the 
method of projection in Hilbert space [4, p. 38]. This method is 
variational, and deals with generalized function classes. The essential 
step is to obtain an a priori bound on the Dirichlet integral 

D[w] = [ \Vw\2dx 

for any "solution" of (6) in H, such that w = w* on dO = X- We 
assume that £, **>* are suitably smooth and that (13) holds. We con
struct a vector field Ç(x) such that V • { = 0 in fi, Ç = w* on 2, and 
show that this can be done in such a way that D[£] < M(2, a?*) < o° . 
Introducing a norm || || = D1 /2 in the class / of vector fields v(x) 
with compact support in O, for which V * v = 0 and ||i?|| < °°, we 
seek a generalized solution w(x) of (6) for which w — ( lies in the 
closure JFf (with respect to || ||) of/. The system (6) implies, for w(x), 

(19) [">-<>*] = - [ t < p ] , anycpGH, 

where [ ] denotes the scalar product corresponding to || ||. The 
right side of (19) is a linear functional on 9 £ H; by the Riesz theorem, 
there exists n G H such that [<?9] = [n ,9 ] . The vector field w = 
Ç — n is the unique generalized solution of '(6), (5), and is easily shown 
to be identical to the smooth solution discussed in §2. A direct proof 
that the solution is smooth at interior points can be obtained using 
the fundamental tensor (8); to prove continuity at the boundary re
quires, as of this writing, use of the Green's tensor, whose existence 
and requisite smoothness have been shown only by the methods of 

Let us now return to the original nonlinear system (2) in VI. It is a 
remarkable fact that again a solution exists for any data w* with 
$w* • dà = 0. The underlying reason for this is the a priori estimate, 
discovered first by Leray [8] in 1933, that 

(20) D[w] < L ( 2 ; w * ) < 00 

(see also [2, p. 210] ) where L does not depend on the particular solu-
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tion considered. From this result one may use fixed point methods 
to prove the existence of a solution of D* for (2), for any data satisfying 
(13). One may proceed either directly in the class of smooth functions, 
using the Odqvist integral equation [8, 2, p. 226], or else one may 
solve the abstract equation in Hilbert space that is obtained by apply
ing the Riesz theorem, as above, to the nonlinear equations [4, p. 
113 f£]. This latter procedure leads in a fairly straightforward way 
to the existence of a solution in a generalized function class; the 
smoothness of the solution, as for the linearized equations, must be 
proved a posteriori.7 Experimentally, stationary solutions are not 
observed for large data, and it is essentially certain that in this situa
tion Leray's solutions are not unique and are unstable. But what is 
crucial for what follows is that the solutions exist and satisfy (2), (5). 

Consider the exterior problem for (2) with data (3), (5). Leray [8] 
started with an annular domain £R bounded by X and by a sphere 
(circle) 2R of large radius R. Leray's method shows that if the data on 
XR have the constant value w °°, then (20) holds with L = L( 2, u?*, to °°) 
independent of R. From this result, Leray showed the existence of a 
sequence of solutions, as R —• oo, that converge in 8, uniformly in 
any £R, to a (smooth) solution in £. The data w* on X are achieved 
strictly, while if n = 3 he showed that the data at infinity are achieved 
in the generalized sense 

f \w(x) - wx\2 

y\2 
-dx< C < oo 

uniformly for all y ELS . It was later shown [9], [7], [4], [5] that 
ifn= 3, then w(x) —» w x continuously and that all deriviatives ofw(x) 
tend to zero. However, no further information on asymptotic behavior 
of these solutions has been obtained. Conditions ensuring uniqueness 
have not been found, nor is it known whether the physically expected 
wake region appears. In two dimensions, even less is known, and the 
possibility that, e.g., for the physical data w* = 0 the solution vanishes 
identically, has not been excluded. The method has led no further. 

som 
5. The Oseen equations; physically reasonable (PR) solutions. A 

ov>mewhat different approach to the exterior problem was taken by 
Oseen [10] in 1927. Oseen considered the equations, obtained by 
linearizing (2) about the solution w(x) = w °°, 

Au? - w °° • Vu? - Vp = 0, 
(21) V • w = 0, 

and he studied them by methods analogous to those used by Odqvist 
for the Stokes equations. A fundamental tensor is in this case not so 
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easy to construct, but Oseen found one by using a combination of 
invariance considerations and judicious guesswork. He first showed 
that for the Stokes equations (6) one can write 

(22) 

with 

E{j = (8ij A - dz/dxidxj)®, 

e{ = - d&<frldxi 

<I> = -y-(r2 log r — r2), n — 2, 
477 

1 Q 

cm 

For the system (21), he found a similar representation, but with $ 
replaced by 

(23) O = - - i - r * ~ g~a da3 n = 3, 
87TCT J o a 

with cr = |u?°°|/2 and s= r +(x * lu? °°)/|t̂  °°|. Then, corresponding to 
(21), 

Êij= (ôijA- dydXidxùO, 
(24) 

êi= - d ( A - 2 ^ • S7)öldxi. 

For n = 2, <D(as) becomes a rather complicated relation involving 
Bessel functions; cf. [11]. 

The tensor Ê, e has local properties similar to those of E, e, but 
its asymptotic behavior for large |x| is strikingly different. It exhibits 
a wake region in the direction w °°, and it vanishes at infinity both for 
n = 2 and n — 3. One may expect, then, a more realistic behavior 
at infinity for flows computed using (21); in particular, there is no 
Stokes paradox. Nevertheless, the correspondence with real flows is 
not good; cf. the discussion in [ 12], [ 13]. 

We note the important homogeneity relation 

Ê(x;W«)= Ê(\u>«fow~l\u>»\), 

ê(x; 10°°)= \w °°\ê( \w ™\x',w °°l\w °°|) 

and the asymptotic properties, for any fixed vector a, 

Ê(x; a) = Ê(x; 0) + const + o(l), 
(26) 

TE(x; a) = TÊ( \a\x; 0) + o(l), as \a\x -* 0. 
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Existence theorems for (21), with particular reference to an exterior 
domain with n = 3, are established in [ 14]. From these results and 
(24) one is led to the existence of a Green's tensor G(x, y; w °°) 
for (21) in £. If we assume for the moment the analogous asymptotic 
behavior of integrals over 2 R as was established for the Stokes equa
tions in §3, and if we set u(x) = w(x) — w °°, we obtain the representa
tion for a (supposed) solution w(x) of (2), (3), (5) in £, 

(27) u(x) = u(x) - [ u u -S/Ùdy=Tu 

where û(x) is a solution of (21), (5) that vanishes at infinity. In deriv
ing (27), we used the identity lt Ó • u • VM dy = — JV u • u • V G dy, 
which holds because V • u = 0. 

Conversely, any solution of (27) that vanishes at infinity defines a 
solution w(x) of the boundary problem (2), (3), (5) for the Navier-
Stokes equations. 

We proceed to solve (27) for small data. The crucial step in the 
proof is 

LEMMA. If n = 3, there exists H < o°, depending only on the 
geometry, such that 

(28) |x| \g \y\-2\VyG(x,y;w*)\dy<H 

uniformly in x and inw^^asw00 —> 0. 

The lemma is established in [ 14]. From it, one concludes that if a 
norm ||ti|| = sup>- \x\ \u(x)\ is introduced, then if ||tî|| < 1/4H the 
operator Tu will be a contraction of the sphere SH, ||u|| < 1/2H, 
and will carry SH —» SH. Thus, Tu admits a fixed point in SH. Using 
this result and properties established by Odqvist [3] for the Green's 
tensor for (6), we obtain the result 

THEOREM 5A. For n = 3, if 2 is sufficiently smooth and tt>* — w °° 
is sufficiently small,* then there is a solution w(x) of (2) in £, such 
that w(x) = u;* on 2 , w(x) —> wx at infinity. The solution is locally 
smooth, and there holds \w(x) — w™\ < C\x\~l asx —» oo . 

A careful study of these solutions indicates that they have the 
physically expected asymptotic properties. More generally, we may 
introduce [ 15], [ 14] a class of "physically reasonable" (PR) solutions, 
defined by the requirement that, for some e > G, |x|1/2+e|u?(x) — u;°°| 
< C < oo in £. We then have, for n = 3, 
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THEOREM 5B. If w °° ^ 0, every solution of class PR exhibits a 
paraboloidal wake region, opening about an axis Z directed along the 
vector w™. If <p is the polar angle between Z and a ray from a fixed 
point on Z to a variable point x G £, then 

\w(x) - w~\ < C\x\-\ if \<p\ < *|x|-i/2, 

< c|x|-(i+^, if H < 7r|*|-(w>/2, o s a ^ i , 
(see Fig. 1). 

This result is qualitatively best possible. In addition the energy 
relation 

dx (30) D u>°° = 2 f (deft*;)2 

holds whenever w* = 0. Thus, the force of resistance cannot vanish 
in a nontrivial flow. 

The properties of contraction mappings show that the solution of 
Theorem 5A is unique in SH. However, a much stronger result holds 
[14]. 

THEOREM 5C. Suppose \x\ \w(x) — i r ° ° | â i in 8. Then w(x) is 
unique among all solutions in £ of class PR that achieve the same data 
on S and at infinity. 

PROOF. Let v(x) be another such solution. The function n(x) = 
w(x) — v(x) achieves zero data and satisfies an equation 

An — n • Vn — S/q = (n • S/w — w • Vn) 

for some scalar q(x). We multiply by n and integrate over £R. After 
some formal integrations by parts, and noting that the surface integrals 
over XR vanish in the limit (by Theorem 5B), we find 

- f |Vn|2 dx= \ n ' n ' S/wdx. 

Now 

n ' n ' Vw dx = n • n • V(u> — w00) dx 
JtR J t-R 

= — (w — if °°) • n • V n dx 

+ \ n * (w — w°°)(n • do) 
J iR 
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and again the boundary term vanishes in the limit. Thus, 

J^ |Vn| 2 d* = J^ (w- w") n • V n c f a ^ " M M ^ n • Vn| dx 

- i { J* i x i _ 2 n 2 ^ L - i v " i 2 ^ } 1 / 2 

A fonn of the Poincaré inequality that holds for exterior domains 
(Lemma 3.4 in [2] ) shows that if n = 0 on X and n —» 0 at infinity, 
then 

(31) | | x | - 2 n 2 do :g4 J"̂  |Vn|2dx 

equality holding only if n = 0 in £. Thus, 

| | V n | 2 d s < J^ |Vn|2c& 

unless tt = 0 in £. Q.E.D. 
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6. The two-dimensional problem; linearized equations. We study 
this case again with the aid of the Oseen equations (21). However, 
the preceding discussion does not carry over directly, as the solutions 
of (21), in view of the Stokes paradox, will necessarily become singular 
in some way with vanishing physical data. For n = 2, an analogue 
of the preceding basic lemma (28) 

(32) M ( , - e ) / 2 £ . \y\-ì\VÙ{x,y;w")\dy<H(w^e)< oo, 

any e > 0, still holds for any fixed w °° ^ 0, but it is unlikely that 
it holds uniformly as w °° —> 0. Thus, the preceding method yields the 
existence of a solution of (2), (3), (5) for data u?* in some functional 
neighborhood JM of w °°, but J\l shrinks as w °° -» 0. Without further 
information the existence of a solution for the physical data w* = 0 
cannot be inferred from (32), even for small |u>°°|. We proceed there
fore to study in some detail the asymptotic behavior of solutions of 
(21) in £ as w °° —> 0. We shall obtain as a consequence not only an 
existence theorem for the nonlinear problem (2), (3), (5) in £, but 
also a new clarification of the Stokes paradox from the point of view 
of singular perturbation theory. 

It is convenient to write9 w °° = \a where a is a fixed unit vector 
and 0 < k~ I. Then (21) becomes 

AM; — Xa • Vu; — Vp = 0, 

the linearity of which permits us to write the prescribed data in the 
form 

w(x) —» w* on 2, 
(34) 

w(x) —> 0 at infinity. 

The following results summarize the qualitative behavior of the solu
tions as X —> 0, when n = 2. 

1. Given A 7̂  0, w*, there is a unique solution u(x;\) of (21), (34) 
in £. 

2. As X—»0 the solutions u(x; A) remain uniformly bounded in 
Dirichlet norm; that is, there is a constant A such that 

j y \Vu(x;\)\
2dx< A< oo 

uniformly in A in 0 < X ^ 1. 
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3. There exists u°(x) = limx_^o u(x; A) uniformly in any set £R, 
R < oo ; u°(x) satisfies the Stokes equations (6) and u°(x) —» u* on 
X. 

4. The function u°(x) is characterized10 as the unique solution of 
(6), such thatu°(x) -+u*onï and £. |V« | 2 ds < oo. 

5. Let 9(A) foe the force on X dw# to the flow u(x; A); let 9 ° be 
the force arising from the flow u(\x). There holds 9 ° = limx^o ^(X). 

6. 9° = 0. 
7. TTiere existe u0

x = limx^xu
0(x), and |w0°°| 7̂  °° • Jn general, 

Uç? ^ 0. 
8. There feoMs w0 °° = (l/47r)limx_o ^(X) log (1/X). 

We note from 7 that the limiting condition at infinity is in general 
lost in the perturbation. Property 8 has a consequence that is im
portant for the nonlinear theory. 

There holds |9(A)| < C/(log 1/X) as A —» 0. 9(A) /ias the asymp
totic direction u0 °°. 

From 4 and 8 we find 
Suppose the physical data u* = w°° are imposed. Then 9(A) is 

asymptotically independent of the shape or size of the obstacle X. 
For by 4 there holds in this case u°(x) = w* = w °°, so thatw0 ° ° = u; °°? 

regardless of the choice of X-
Detailed proofs of 1 through 8 appear in [16]. We outline here 

some of the salient features: 
1. The proof of existence is analogous to that for the case n = 3, 

but in some technical respects more difficult.11 See [16]. 
2. Let Z(x) be a vector field with compact support in 8, with 

( = w*onX and V • Ç = 0. Then v(x) = u — Ç satisfies 

At? - Aa • Vt? - Vp = - A{ + Xar V{ 

and v = 0 on X and at infinity. Multiplying by v and integrating 
over 8R, and noting that all boundary integrals vanish in the limit 
R —> 00 5 we find 

- J |Vt>|2<ix = | ^ V< • Vvdx - A | 4 Ç a - \7vdx 

where Jf is the support off. Hence 

£. |Vt;|2do:^C(l + A) [ J IVt^dx]1^ 

where C depends only on w* and on X- This result implies in turn 
the stated bound for u(x). 

file:///7vdx
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3. Given x G £, fix R so that x lies in £m. Let G(x, y) be the 
Green's tensor for the Stokes equations in £R. Then in £R there holds 

tt(X; x) = i" ti* • TG • dto + ( s u • TG • cfo + X f G -a-Vudy 
(35) 

= f i ( 1 ) + U<2> + tt<3>. 

Here u(1) is a solution of (6) with u(1) = M* on J , M(1) = 0 on 
SR. It is independent of X, and can be shown [3] to be smooth in 
£R, depending only on 2, w*, and R Since x is bounded from 2R , 
there holds, for fixed K, independent of X, 

\u^(x)\2^cf u*dô^Cl ( | V u | 2 d x + C 2 

where C{ and C2 depend only on 2, w*, R The integral on the right 
is again bounded, by 2. Finally, 

|t*<3>(*)|2^ CX2 J |Vti|2dx 

which is bounded, for 0 < X = 1, by 2. Thus u(x; X) is bounded in 
any set £R, independent of X. Placing this result back into (35) per
mits, successively, the proof of the (Holder) equicontinuity of u(x; X) 
and then of its derivatives, up to second order, as X —> 0. Thus, a 
sequence X, —> 0 can be chosen for which the u(x; X,-) converge in £ 
to a solution u°(x) of the limiting equations (6). 

4. The representation (16) can be shown to hold for any solution 
with finite Dirichlet integral [ 17, Theorem 1]. Thus, for the differ
ence W(x) of two solutions, there holds (as in (16)) 

W(x) = W°°-f £ • 9 + terms with finite Dirichlet integral. 

But 

^ | V E „ | 2 d x = \t. | V E 2 2 | 2 d x = 00; 

hence <"? = (). Since W = 0 on 2 , we conclude, using (16), that (18) 
holds; hence defW = 0 in £; hence W represents a rigid motion. 
Since W = 0 on 2, there follows W = 0 in £. 

5 follows from the convergence of the derivatives of u(x; X) as 
X - » 0 . 

6 and 7 follow from the same reasoning used to prove 4. 
8. Since l i m ^ ooU(x; X) = 0, we can establish, as was done for 

(15), the representation 
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u(x; \)= - l Ê Tu • dà + [ u* -TE - dà 

(36) r A 

+ X j (E • w*)a • dd . 

The relations (26) imply 

Êy(x; X) = ÊijiXX; 1) 

= -j- 8ij log— + Ey-(x) + const + o(l) 
47T X 

as Xx —> 0. Hence, for fixed x (E £, 

u(x; X) = - L <?(X) ( log — + const Ì 

(37) 
[ Ê -Tu -di + I u* - TÊ - do + o(l) 

as X —» 0. Since all other terms tend to limits as X —> 0, there exists 
also 

(38) lim ^ ( X ) l o g — = 47TW000. 

Passing to the limit in (37) as X —> 0 for fixed x yields 

(39) u°(x) = u0~ - | E Tu° - dò + j u* TE • d*. 

But from (38) follows fc Tu{) - dà = S° = 0. Hence, applying the 
mean value theorem to E(x — y) in (39), we see that both integrals 
vanish at x = o° , so that limx_, ooM°(x) = u0

 x. 
A closer study of the convergence process yields the following result: 

Let 0 < e < \ . Set 

Äitt) = log2/|t | i f 0 < fc|^l, 

= r|C|-1 /2 if ICI > 1, i = l , 
= ijçj-*1-«)/2 if K| > 1, t = 2. 

Assume the flow so oriented that w °° = (fo, 0). Then 

(40) K(x; X)| < Chi(Xx) 1 * , i = 1,2, 
log 1/X 

uniformly in £, as X —> 0. In particular, the solutions u(x; X) are equi-
bounded in magnitude in the perturbation. 
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7. The two-dimensional problem; Navier-Stokes equations. We 
now apply the above results to the nonlinear stationary equations (2), 
with n = 2. If we set w(x; A) = (w(x; A) — Aa)/A, then (2) becomes 

AM — ka ' Vu — Vp = Aw • Vt#, 
(41) 

V • ti = 0, 

with boundary conditions 

u(x) = u* = (u>* - Aa)/A on X, 
(42) 

lim t*(x) = 0. 
X-+ » 

The above existence theorem for the Oseen equations yields the exis
tence of a Green's tensor Ô(x, y; A) for (41), and leads, as before, to an 
integral equation 

(43) u(x; k) = u(x; A) - A £ u(y) • u(y) • V6(x, y; A) dy = Tu 

where w is the solution of (33) satisfying (42). The crucial step now 
becomes 

LEMMA. If n = 2, there exists H < °°, depending only on the 
geometry, such that 

(44) A f hj(ky)hk(ky) IJ^iJlìRì dy < Hh^kx) 
Jf I dyk I 

uniformly in x and in A, ask —» 0. 

The lemma is proved in [18]. It implies that Tu contracts the func
tion sphere SH, \Ui(x;k)\ < (H2H)hi(kx), and that it carries SH —> SH 

if \u(x;k)\< {ll4H)hi(x;k). As indicated above, |w(x;A)|< Chi(x;k) 
• (1/log 1/A). Here C depends on the geometry and on u*, which in 
turn depends on A. But if w* remains bounded and smooth as A —> 0, 
then C will remain bounded. We are led to the result (n = 2) 

THEOREM 7A. If X is of class £ (3) and if data w*(x; A) are prescribed 
on X, so that u*, together with its tangential derivatives to third order, 
remains uniformly bounded as A —» 0, then for all sufficiently small 
A a solution w(x; A) of (2) exists in £, such that w(x; A) = itf* on X 
and limx_^ „u^x; A) = A a. 

COROLLARY. If n = 2, there is a solution w(x) of (2) in £, satisfying 
the physical conditions (3), (4), whenever \w °°| is sufficiently small. 
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The solutions constructed above are unique in SH. But in contrast 
to the three-dimensional case, it is not known whether they are 
unique in the large and any reasonable sense. They do, however, 
exhibit a parabolic wake region [11] in the direction w x. We have 
also the following limiting property, which seems to have no three-
dimensional counterpart: 

THEOREM 7B. Suppose w*(x; A) —> u0*(x) as A —» 0, uniformly on 
X together with derivatives to third order. Then the solutions u(x; A) 
of (41) converge in £, uniformly in any £R> to a solution u°(x) of 
(6). There exists u0 °° = limx^ œU{)(x), and if *?(A) is the force on X due 
to the flow w(x; A) = k[u(x; A) + a], there holds 47rUo°° = 

limx_*(l/A) &(k) log 1/A. 

As with the linearized equations, we have 

COROLLARY. For the physical problem with boundary conditions 
(3), (4), <?(A) is asymptotically a pure resistance and is asymptotically 
independent of 2. 

In analogy with the case n = 3, we may introduce a class PR of 
(two-dimensional) solutions of (2) in 8 satisfying \x\l,4+€\w(x) — wx\ 
< C < oo. D. R. Smith has shown [11] that all such solutions exhibit 
a parabolic wake region opening in the direction w°°, and satisfy 
estimates analogous to (29). 

8. The vorticity at infinity. The asymptotic properties of PR solu
tions for n = 2 or 3 have been investigated in some detail by D. Clark 
[19]. We cite, in particular, the result: Let n = 3 and let w(x) be a 
solution of class PR in £, with w °° ^ 0. Then along any ray extend
ing to infinity in a direction not coinciding with that of w °°, there 
holds |rot w(x)\ < Cie~c^for certain positive constants C1? C2. 
The result shows that any PR flow becomes asymptotically (and ex
ponentially) potential in directions leading out of the wake. In the 
direction w °°, Clark's estimate no longer holds. 

Clark also obtained an analogous result in the case n = 2. 

9. Relations between Leray's solutions and PR solutions. We note 
that Leray's solution of the exterior problem (§4) was based essentially 
on an a priori estimate for the Dirichlet integral J> |Vu?|2 dx = D[w] 
that holds for all solutions of the type he considered. In contrast, the 
construction of a PR solution (§§5_7) has made— at least as far as the 
nonlinear equations are concerned —no use at all of the Dirichlet 
integral. It would be desirable to determine conditions under which 
the two solutions could be identified, especially in view of Theorem 
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5C; in this respect, a recent result of Heywood (§14) may be an im
portant first step. 

In analogy with the class PR, and motivated by Leray's existence 
proof, we may consider the class D of all solutions w(x) in £ such that 
D[w] < oo. A strengthened form of Theorem 5B (Theorems 5.3, 5.4 
in [ 14] ), when used in conjunction with Leray's procedure, yields 
the result 

THEOREM 9A. Letw(x) G PRin£,w(x) = u;* on X- Thenw(x) G D, 
and furthermore D[w] < M < °°, depending only on X, on w* and 
on w QC. 

That is, if (say, for n = 3) w(x) = w* on 2 , \x\ll2+€\w(x) — w°°\ 
< C < oo in t', then tv(x) is a priori bounded in the class D, depend
ing only on S and on the data a?*, w °°, and not on C. 

Theorem 9A is given in [2, p. 213], for the case n = 3. If n = 2, 
it follows in the same way from the (later) results of Smith [11]. 

The result suggests that solutions in PR could be constructed by 
Leray's procedure. However, even this limited step toward identifica
tion of the classes remains open. 

Solutions in class D are in general not known to be in class PR. If 
n = 2, the example 

w = u — iv = i(l — a)r~ae~id + (1 + a)eielr 

defines for any real a a solution w(x) of (2) for all r = \x\> 0; if 
a > 0, then w Œ. D, but if a = Ì , then w ^ PR. 

For n = 3, the situation is less clear. We do have the result [9], 
[7], [4], [5] 

THEOREM 9B. Every solution of class D tends to a finite limit w °° 
at infinity. 

The hypothesis w(x) G D has yielded no further information on 
the asymptotic structure of the solutions. The following easily proved 
result [2, p. 229] is, however, suggestive. 

Let w(x) he any vector valued function having finite Dirichlet inte
gral in a three-dimensional neighborhood of infinity, and such that 
limx_̂ oo w(x) — wK. Then on almost every ray from the origin there 
holds \x\{ll\w(x) — wx\ < C < oo for some constant C. 

One might expect that if w(x) were known to be a solution in £, 
this additional knowledge would suffice to put w(x) in PR. As yet, 
it has not. 

In the case n = 2, the knowledge that w(x) EL D in £ has in most 
respects led to less information about asymptotic behavior than in 
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the three-dimensional case. Nevertheless, Gilbarg and Weinberger 
have shown in an unpublished work that if w(x) G D in the entire 
plane, then w(x) represents a uniform flow, w(x) = const. The corre
sponding result for n = 3 has been shown [ 15], [ 14] only under the 
presumably stronger hypothesis w(x) G PR. (The proof for n = 2 
relies on the maximum principle for the vorticity, for which no three-
dimensional analogue is available.) 

10. Other solutions in E . Theorem 9B suggests again a question, 
whether every solution of (2) continuous at infinity is in class D. 
Again, no answer is as yet available. However, it can be shown [15] 
that ifw(x)—> w™ at infinity, then the derivatives ofw(x)ofall orders 
vanish at infinity. 

This result raises in turn the question, whether every such solution 
admits an asymptotic expansion in terms of prescribed functions, 
analogous to the expansion of a harmonic function in spherical har
monics. If n = 2, the answer is negative, as one sees by considering 
the example of §9 for small positive a. We may note also that the 
choice a = 0 yields a solution bounded and discontinuous at infinity, 
a situation that could not occur in potential flow. 

11. The representation formula. An integration by parts, analogous 
to the derivation of Green's formula of potential theory, yields the 
representation (cf. (9)) 

w(x) = E(x - y) - w(y) • Vw(y) dy 

+ [ (w • TE - E • Tw) • döy 

= — w - w - V E dy 

+ j [w - TE - E • Tw -h (E • w)w] • dà 

for any solution w(x) of (2) in a (smoothly) bounded domain 2 \ In 
an exterior domain £, we obtain, using the Oseen tensor (24) corre
sponding to the assumed limiting velocity w °°, the formula 

u(x) = — u • u - V Ê dy 

+ f [u • TE - E • Tu -h (Ë • u)w] • dô 

for the difference u(x) = w(x) — w °°, in the region £R bounded by 
2 and by a sphere (circle) of large radius XR. In discussing the integral 



VISCOUS FLUID FLOW IN AN EXTERIOR DOMAIN 129 

over XR as R —> o° , the following cases have a special interest: 

(i) w(x) EL D, n = 3, 
(ii) w(x) G PR, 
(iii) /°° (m2(p)lp) dp< ™, where ra(p) = maxWs:p |tf(x)|. 

None of these hypotheses permit a direct estimate of the integral based 
on orders of magnitude. Nevertheless, we have [15] 

THEOREM IIA. Under any of the hypotheses (i), (ii), or (iii), there 
holds 

lim f [u • TÊ - Ê • Tu + (Ë • t*)u>] • rfd = 0, 

and 

ir(ac) = ^°°— M • u • V Ê dy 

+ f [ii • TÊ - Ê • Tu + (Ê • « H • dd 

This representation has been useful in a number of contexts, and it 
is the basis for the derivation of asymptotic properties of PR solutions; 
cf. [15], [14], [11]. Some of these properties are indicated in 
Theorem 5B and in §7. Further applications appear in [15, pp. 413-
417] and in [14, p. 393], for n = 3, and in [11, pp. 366-372] for 
n = 2. We note here a particular result (cf. Berker [31] ). 

THEOREM IIB. Let w(x) be a solution of (2) in £, and suppose 
w(x) = 0 on 2 . If there is a limiting velocity w °° such that 

\w(x) — w°°\ = o(\x\~l), n = 3, 

- o(jx|-"2), n = 2, 

then w(x) = 0 in £. 

OUTLINE OF PROOF. Let 

\x\ = r, a(r) = r~[, n = 3, 

= r - i / 2 n = 2 . 

We note the hypotheses imply, in particular, w(x) G PR. The esti
mates of [14] or of [11] imply \fè. u • u • \7Edy\= o(a(r)). Also, 
from (24) or its analogue for n = 2 we find \TÊ(x, y)\ = o(a(r)) 
for y G 2. Thus by hypothesis and the above representation, 
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|0s Ê * Tu • dô I = o(a(r)). Writing Ê(x; y) = Ê(x; 0) + A(x; y), 
we find by the mean value theorem that \A(x; y)\ = o(a(r)) uniformly 
for y G 2. Hence \w(x) - u?°°| = \Ê(x; 0) • f x Tu • dô | + 
o(cr(r)). But (l/a(r))|E(x; 0)| does not vanish at infinity, hence 
— $x Tu • dô = —§x Tw - dô = 0, that is, there can be no net 
force on 2- Applying (30) (which holds also for n = 2) w7e obtain 
def w = 0; that is, w(x) represents a rigid motion in £. Since w(x) = 0 
on 2 there follows w(x) == 0 in <f, which was to be shown. 

In general, the expression w°° + E(x; 0) • $ 2 Tu? • rfd yields the 
first terms of an asymptotic expansion of a PR solution at infinity [ 15], 
[ 14] ; thus, as in potential flow, the force on 2 is completely deter
mined by the first order terms of the expansion. 

Some of the theory of PR solutions for n = 2 has been rederived 
from another point of view by K. I. Babenko [32], who obtained a 
formula for the "lift" (force orthogonal to w°°) on 2 in terms of the 
asymptotic circulation of the flow. 

We note the hypothesis (i) requires n = 3. For n = 2 the condition 
is not yet known to imply the representation, even for solutions that 
are continuous at infinity (cf. the remarks at the end of §9). 

In the paper of Smith [11, p. 349], the result is stated for n = 2 
under a weakened form of (ii). The proof is however not complete. 

12. Stationary perturbations; flows at low Reynolds' number. In 
view of the Stokes paradox, it is important to determine the sense in 
which the solution U(x) of the linearized problem (6), (3), (4) can be 
interpreted as an approximation to a solution of (2), (3), (4) when the 
data are small. In two dimensions, this question is improperly posed, 
as (6), (3), (4) in general admits no solution. However, if n = 3, then 
despite the expected singularity in the perturbation (cf. the remarks 
in §1), all solutions w(x) of (2) in £ with w(x) = 0 on 2 and w(x) —> 
\wx at infinity (0 < k ^ 1) satisfy \(llk)w(x) - U(x)\ < Ck112 uni
formly in £, with a fixed constant C independent of the particular 
solution [2]. This result holds not only for solutions in PR (for which 
uniqueness holds for small k) but for arbitrary perturbations of solu
tions in D; it justifies the use of (7) as an approximate equation to 
facilitate the calculation of slow flows (flows at low Reynolds' number). 

More generally, one may study various classes of perturbations of 
a uniform flow to a solution w(x) of the general boundary problem 
(2), (3), (5). To do so, it is convenient to introduce the field u(x; k) = 
(Ilk) [w(x) — wx]7 which satisfies 

AM - IÜX • Vw - Vp = ku • Vw, 

V • u = 0. 
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We consider a family of solutions u(x; A) for which the boundary 
data w* = (1/A)(u>* — w °°) remain fixed, as A -* 0. If the data at 
infinity are also varied (as in the above example), we prescribe 
l i m ^ « u(x; A) = u °° 7̂  0. Otherwise (as in the procedure used for 
the existence proofs in §§5~7) we set M ° ° = 0. These situations are 
studied in detail in [ 14], for perturbations either in PR or in D. The 
results are summarized in Table 1. Here U(x) denotes the solution of 
the limiting equation (A = 0) with the same data. We note that Case 
1 is the only one for which an asymptotic expansion appears. This is 
the expansion that arises in the successive approximation procedure 
used in the usual demonstration of the fixed point principle on which 
the existence theorems of §§5~7 were based. 

The estimates of Table I were developed in [ 14] only for the case 
n = 3. However, it follows from the material of §§6~7 that Case 1 
applies also if n = 2, with the modification that the global estimate 
must be changed to \u(x; A) — U(x)\ < Cr~ll2+f, any e > 0. 

TABLE 1 

Flow Limiting 
Case Class Perturbation Uniform Estimate in £ 

1 PR zero u(x; A) = U(x) + Y,iuAx)^j 

\u(x-K)- U{x)\< Ckr1 

2 PR u ° ° ^ 0 \u(x;k) - U(x)\ 
< C min {A log A, r~l log r} 

3 D zero \u(x; A) - U(x)\ < C\ 
|Vu(x; A) - V t/(x)| < C(A2 + Ar-1/2) 

4 D uxf0 \u(x; A) - U(x)\ < C(A + A1'2/-1) 
|Vf*(*;A) - VC7(*)| < C(A2 + Ar~1/2) 

13. Stability questions. What happens when a solution w(x) of 
(2) of class PR is subjected to a small disturbance u0(x)? The question 
has been studied by J. G. Heywood [20], who constructed generalized 
solutions of the time dependent equations (1) with initial data w(x) -f 
u0(x) and with boundary data w*(x), ïoœ. Heywood found that 
these solutions are unique, and that they exist for all time and return 
(in a generalized sense) to w(x), provided (a) w(x) satisfies the con
ditions of the uniqueness theorem (§5) and (b) u0(x) is appropriately 
small. The procedure combines the method used by Ladyzhenskaia 
[21], [4] to solve the initial-boundary problem in a bounded domain, 
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with the technique used for the stationary uniqueness result (§5). 
To emphasize the physical significance of Heywood's result, the 

coefficients will not be normalized, and we state the results in terms 
of the "kinematic viscosity coefficient" v = plfji. For a (supposed) 
time dependent solution w(x; t), the function u(x; t) = w(x; t) — w(x) 
satisfies 

h u • Vw — v Aw + Vp = w • VM — u - S/w, 
dt 

(45) 
V • u = 0. 

We introduce the class D(£) of vector fields <p(x) G (20°° (£) with 
V • cp = 0, and the closures /(O) and /i(O) in the respective norms 
{ J * M 2 d * } 1 / 2 = hh a n d (IMI! + IIV9II" )1/2. Similarly, we 
consider in the cylinder QT = £ X [0,1] the class D(QT) of vector 
fields cp(x; *) G £ °°(ÇT) with <p(x; *) G D(£) for each * G [0, 7 ] , and 
the corresponding closures /(Çr), JI(QT)- If 9 G D(Q r) and w(x; £) 
is a smooth solution of (45) in QT, we multiply (45) by cp(x; £) and 
integrate by parts to obtain 

n {[ut + u - Vw + M • S/w — w • Vwlcp — vS/u • V<p } dx dt 
(46) J W 

A function u(x; t) G / ^ Q r ) having a time derivative ut(x; t) G / ^ Q r ) 
will be called a generalized solution of (45) in QT provided (46) holds 
for any <ç G /i(Çr)- Clearly any smooth solution is a generalized 
solution; a generalized solution, if it is smooth, is a solution (cf. [4, p. 
144] ). We seek to construct a generalized solution that assumes the 
initial data u0(x) in a reasonable sense. We follow a method due 
originally to Galerkin, and first applied to the Navier-Stokes equations 
by E. Hopf [35]. 

Let {al(x)} be a complete set of functions in / i (£ ) ; for con
venience, we choose the {a1} to be orthonormal in J(£) and a1 G 
^ox(£). We fix al(x) = u0(x)/||u0|| and set 

(47) wfc(x, t) = £ ckl(t)a\x) 

with coefficients cki(t) determined by the condition that (46) should 
hold with <p replaced by any of the functions a1, • * •, a1 and for arbi
trary T. Letting ( , ) denote scalar product in / , we obtain, from (46) 
and (47), 
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(ut
k,al) + v(\/uk, Va1) = - (uk • Vu\al) 

- (w - Vu*, a1) - (uk - \7w, a1), 

or 

(48) A Ckl(t) = ]£ cfcm(*)(^ Aam - w -S/am- am -\/w,al) 
dt m = 1 

m,n =1 

The general existence theorem for systems of ordinary equations shows 
that for any fixed k there is a unique solution set {Cki(t)} on some inter
val [0, T). We shall obtain conditions to ensure that 5)m=i ckm(t) < 
A < °° in any interval of existence; this result implies that the solution 
can be continued for all t > 0. Since ^ m = i ckm(t) = \\uk(t)\\2, we see 
that what is needed is an energy estimate on the approximating solu
tions uk(t). A corresponding bound on ||t/^(£)|| will then ensure con
vergence, as k —* °° , to a generalized solution of (45). 

Multiply each equation (48) by cki(t) and sum, noting that 
(uk • S7uk,uk) = (w • Vu\uk) = 0. We get 

(49) V~^IHI 2 + HIVw12 = - (uk ' Vw,uk). 
Zi at 

Similarly, differentiating (48) in t and multiplying by (dldt)cki(t) we 
find 

(50) y-^IKNI2 + "|Vu,*||2 = -(«,*• \/u\ut«) - («,* • vie,«,*). 

In what follows k will be fixed, and for notational simplicity we 
delete it from the formulas. We estimate the right side of (49) 

\(u • Vü?,w)| = \u • (w - w"), V u | ^ | |Vu|| \\u • (w - w°°)\\ 

by (31), since |x| |ü;(x) - w °°| < C by (29). Thus, from (49), 

(51) i - ^ | | M | | 2 + ( , _ 2 C ) | | V M | | 2 ^ 0 

yielding the energy estimate 
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(52) \ \\u(t)\\-2+ (v- 2C) £ | | V « | p d T ^ i||«(0)||2 

and providing an a priori bound for ||w(£)||, depending only on the 
initial data, whenever C = vj2. In particular, if C = vj2 the solution 
of (48) can be continued for all positive t. We may also write 

(p- 2C) | |Vw| | 2 ^ - — -4-\, u2dx= - f uutdx 

^ Noll limoli 
so that, from (52), 

(53) ( r -2C) | |Va |p^ | | t t (0 ) | | | | t t t ( f ) | | . 

From (50) we may estimate ||uf(£)||. Exactly as above, we find 

(ut • S7uD9ut)^2C\\ut(t)\\. 

Also, one verifies easily (ut • Vu, ut) ^ ||Vw|| \\ut
2\\ from which (cf. 

[22, p. 77]) 

(ut • Vu,ut) ^ 3-3 '4 | |Vu|| ||wt||
1/2||Vw(||

3'2 

^ | 3 - ^ | | V u | | { \ - 3 | | u ( | | 2 + 3\| |Vu ( | |
2} 

for any \ > 0, by the Young's inequality ab =; aplp + bqlq with 
p = 4, 9 = 4/3. Setting X = 4(v - 2C)/31/4 | |Vu|, we obtain from 
(50), whenever v - 2C =1 0, 

From (53), (v - 2C)|| Vu||2 ^ ||u(0)|| ||«(|| so that (54) yields 

(55) l d . . . ^ | |«(Q)|| | |V«||2 |k| |3 
( 5 5 ) 2 dt " f|1 = 2»(» - 2Cr 

from which,12 applying (52) and setting Q(t) = \\ut\\, 

Integrating (56) and again applying (52), 

(57) 1/Ç(0) - llQ(t) ^ | |u(0)||3/2> - 2Cf 

which provides an upper bound for Q(t) whenever 

Ç(0) = IMO)|| < 2 > - 20-/IKII3. 
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Using the differentiated form of (48) one obtains the estimate 

(58) ||fi,(0)|| ^ \\P{v*(u0 + ü>) - (t*0 + w) ' V(ii0 + w)}\\ 

where F is the projection operator from L2(H) into /( l ì) . From (52), 
(57) and (53) we thus obtain bounds on ||w||, [|Vt*|| and \\ut\\ that are 
unifoim in time, provided 2C < v and the initial disturbance u0 = 
u(x; 0) is sufficiently small. 

We note also a further estimate that follows from these bounds. If 
the above choice for A is replaced by A/2, the inequality (54) becomes 

2 dt " " 2 " '" ~~ 25 {v - 2C)3 " '" 

which, when the above bounds hold, can be integrated in time, 
yielding 

(60) j " | | V u ( | | 2 d * < H 

where H depends only on v — 2C, on üJ, and on the initial data 
u(x; 0). 

We recall that the above notation is somewhat misleading, in that 
the estimates have been obtained only for the fcth approximating 
function uk(x;t) of the Galerkin procedure. All estimates are, how
ever, independent of k, and this permits the passage to the limit, in 
L2 norm for uk, ut

k, and \/uk, to obtain a (unique) generalized solution 
u(x; t) of the initial value problem. For details we refer the reader to 
[20]. 

Finally it remains to show that the time dependent solution con
verges to w(x) as t —> °° . Following Hey wood [20], we observe that 

Jo" I I I|VW|12 \dt - H / o HVwli2* J"" {Jo i l V ^ l 2 ^ } 1 / 2 

^ H\\u{0)\\*l(v - 2C) 

by (52) and (60). Thus, ft \dldt\\VM||2| cftand V l l V t i p d f are both 
finite, from which we conclude ||Vw|| = ||V(u?(x; t) — Ü;(JC))|| tends 
to zero as t —» <*>. By (31), />K u2(x; t) dx also tends to zero, for any 
fixed R. 

We summarize the result. 

THEOREM 13A. Suppose the initial data u0(x) = w(x; 0) — w(x) = 
w0(x) — w(x) satisfy 
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(61) ||P(Mu>o - w0 • Vu>o)|| • K U 3 < 2 V - 2C)5. 

Then there is a unique generalized solution u(x; t) of (45) in £ (and 
correspondingly a generalized solution w(x; t) of (1) in £) that 
achieves the initial data in L2 norm; for this solution there holds 

lim [ \V{w - w)\2dx = 0, 

and 

lim I \w — w\2 dx = 0 
£—»OC J~R 

for any fixed R. 

The solution w(x; t) is known to possess considerably more local 
smoothness than is indicated above. It has not yet been shown, how
ever, that w(x; t) tends to the (smooth) w(x) in a uniform pointwise 
sense. See, however, the remarks below on the paper of Cannon and 
Knightly (§15). 

14. Time dependent boundary data; physical realizability of sta
tionary solutions. We note that the above discussion has been re
stricted to disturbances u0(x) that are square integrable over £. This 
property is retained by the generalized solution for all time. The base 
flow w(x) — wx is, however, in general not square integrable. It 
will be so exactly in those cases for which the force on X and the 
momentum flux across X sum to zero (cf. [14, p. 393], see also [23] ). 
These solutions have been studied by Heywood in a paper that is now 
in preparation, in which he shows that if in addition, the solution is 
uniformly small in £, then it can be attained as a generalized limit, 
as t —» °°, of a time dependent solution w(x; t), with w(x; 0) = 0. 
Further, given any solution w(x) satisfying \\w(x) — w °°|| < o° and 
\w(x) — wx\ \x\< v/2 in £, then no other solution v(x) with the 
same data on S and at infinity can be attained by a solution w(x; t) 
starting from rest, in the sense \\w(x; t) — v\\ t-R —» 0 for each R < <*>. 
Thus, if in the case considered, a Leray solution (§4) exists that differs 
from a given PR solution, it cannot be attained as a limiting configura
tion of a physically acceptable time dependent motion that is initially 
at rest. 

The idea of the proof is as follows: Suppose there is a stationary 
solution v(x) and a corresponding time dependent solution w(x; t) 
with w(x; 0) = 0, such that \\w(x; t) — v(x)\\ t.R —» 0 as t —> °°. For 
the particular stationary solution w(x) indicated above, Heywood 
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derives the energy inequality 

(62) i\\u(t)T-+ C \'To ||Vu(T)||*dT=i i\\u(T0)\\* 

for the "disturbance flow" u(x; t) = w(x; t) — w(x), for all sufficiently 
large T0. Since \\w — v\\ t. = \\u — (v — ô>)||éfi -» 0, there must 
hold \\(v - w)\\ t-R = 0, for otherwise l i m ^ J"^ || Vf/||2 rfr = <*>, 
contradicting (62). 

15. Continuous dependence theorems. We call attention finally 
to an important paper by Cannon and Knightly [24], in which, under 
remarkably mild hypotheses on asymptotic behavior (in x), the (point-
wise) continuous dependence on boundary and initial data of solutions 
of (1) is proved. The result is obtained through a nice combination of 
potential theoretic estimates, energy estimates, and embedding 
theorems. The method of proof yields as a corollary the result that if 
the perturbed solutions studied by Hey wood (§13) satisfy the general 
hypotheses, then his solutions converge pointwise to the initial (sta
tionary) solution. It seems essentially certain that Heywood's solu
tions have this property, but it has not yet been proved. 

The hypotheses of Cannon and Knightly are those introduced by 
D. Graffi for a general uniqueness theorem [25], and GrafïTs method 
is integral to their procedure. Grain's result applies in particular to 
the situations considered in this report, and has of course an inde
pendent interest. 

NOTES ADDED IN PROOF. 1. The conjecture of §15 that Heywood's 
solutions converge pointwise to the stationary solution has been 
proved by Knightly (informal communication). 

2. I have just seen a preprint of a new work of Babenko [ On the 
stationary solutions of the problem of flow of a viscous incompressible 
fluid, Lenin Inst, for Applied Mathematics, Academy of Sciences of the 
USSR, Preprint No. 40, Moscow 1972] in which is proved that if n = 3, 
every solution in class D is also in class PR. This result settles the 
question raised in §9 above. I am not yet in a position to report on 
this basic contribution in detail. 

FOOTNOTES 

*p. 109: A notable example is the Millikan oil drop experiment for determining 
the charge on the electron. A proof of the asymptotic correctness of (7) appears 
in [2] . See also §12. 

2p. 110: Outlines of Odqvist's results appear in [4] , [5 ] . For earlier work on 
this problem, see Crudeli [37] and Lichtenstein [36] . 

3p. I l l : The linearity of (6) permits the case of arbitrary data w °° to be re
duced immediately to this one. 
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4p. 113: The existence theorem can be avoided at this point by use of the 
"truncated tensor" first introduced by Fujita [7, p. 77] ; cf. the discussion in [5, 
p. 139]. 

5p. 113: This fact was exploited in [30] to obtain a correction term to the force 
predicted by (7). 

6p. 115: The same result had been published previously by Lichtenstein [36] 
using other methods. The approach of Odqvist formed the basis for the later 
developments described in §§5—12 of this report. It was used also by McCready 
[26] in an important study of the analogue of IV; for the Navier-Stokes equations 
(2). See also the work of Knightly [27] and of Cannon and Knightly [28] . 

7p. 116: The above discussion was intentionally cursory, as the techniques 
needed for this existence proof— although basic for the general theory of (2) — 
are peripheral to the main thrust of these lectures. See, however, the material 
directly following and in §13. Other modifications of Leray's original proof have 
been given by Fujita [7] and by Shinbrot [29]. 

8p. 118: It suffices that 2 admit local parameters of class C{3) and that u;* — 
w °°, together with its derivatives up to third order in these parameters, be suf
ficiently small in magnitude. 

9p. 121: Here and in what follows, X is equivalent to the Reynolds' number of 
the flows considered. We study flow at low Reynolds' number by choosing a 
model in which all parameters except w °° are fixed, and then letting w °°—> 0 with 
fixed direction. 

10p. 122: Such a characterization does not suffice for the solutions of (21), nor 
does it for those of (6) in n > 2 dimensions. 

u p . 122: In these respects our discussion has been simplified by D. Gilbarg 
(oral communication). 

12p. 134: It suffices, of course, to restrict attention to intervals in which an in
equality Q(t) > Qo > 0 holds. Thus, division by Q(t) is permissible. 

The research described in this report was supported in part by AFOSR con
tract F44620-69-C-0106 and in part by NSF grant GP-16115 with Stanford Uni
versity. Some of the work was completed during my tenure in Paris as a Guggen
heim Fellow. 
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