RADICAL AND ANTIRADICAL GROUPS

FRANKLIN HAIMO ${ }^{1}$

1. Preliminaries. To gain a better understanding of radical rings, it is important to ask which abelian groups are the additive groups of proper radical rings, that is, of rings \mathbb{S} that are not zero rings (i.e., for some $s_{1}, s_{2} \in \mathbb{S}, s_{1} s_{2} \neq 0$) where $\mathscr{S}=J(\Phi)$, the Jacobson radical of ©. A related question asks which subgroups B of an abelian group A support radicals of rings on A (that is, $\mathfrak{Z}^{+}=A$ and $\left.J(\mathfrak{X})^{+}=B\right)$. It is often more convenient to state these questions from within: (1) Given an abelian group A, what radical rings does it support? (2) Given a subgroup B of an abelian group A, in how many ways can A be turned into a ring \mathfrak{U} in such a way that $J(\boldsymbol{\mathfrak { U }})^{+}=B$? We shall give answers to (1) for some types of groups and touch briefly upon (2).

A nontrivial abelian group A is called a radical group if it supports at least one proper radical ring; otherwise, it is called an antiradical group. All groups here will be abelian, and all rings are to be associative. Some of our results will be formulated in terms of a pair of maps on the group called a bimultiplier, a sort of pre-bimultiplication [6] . We shall show (Theorem 1) that if a radical group supports a radical ring as the kernel of a ring extension then it supports the kernel of a related radical ring extension. Necessary and sufficient conditions are found (Theorem 2) in terms of a locus in Euclidean n-space for a given bimultiplier on a torsion-free divisible group of rank n to produce a radical ring on that group. We prove (Theorem 3) that, for rings on torsion-free divisible groups, the radical-supporting subgroups are precisely the \mathfrak{Q}-submodules (where \mathfrak{Q} is the ring of rationals). The torsion-free groups of rank 1 that are radical groups are completely classified in terms of type (Theorem 4). For $A \oplus A$ to be antiradical it is necessary and sufficient (Theorem 5) that A be a nil group. If A and B are antiradical, sufficient conditions in terms of Hom are found for $A \oplus B$ to be antiradical (Theorem 6). We identify (Theorem 7) the divisible antiradical groups. The prime-power cyclic groups are shown to support various radical rings, and any exponent of nilpotency can be realized (Theorem 8). The antiradical direct sums of

[^0]cyclic groups are completely determined (Theorem 9) as are the bounded antiradical groups (Theorem 10). All the countable reduced p-groups not of prime order turn out to be radical groups (Theorem 11). We show (Theorem 12) that every countable reduced p-group of Ulm type 2 supports a proper radical ring that is the epimorphic image of a proper radical ring supported by an unbounded, countable reduced p-group of Ulm type 1 , and that these roles can be reversed.

Although there seems to be no literature directly on this subject, K. Eldridge [2] has discussed the quasi-regular groups of the rings ©, $J(\boldsymbol{S})$, and $\mathscr{S} / J(\boldsymbol{S})$. In a private communication, C. Yohe has given a different proof for Lemma 2, and Dr. Eldridge has kindly called our attention to [10].

Notations, such as l.q.r. for left quasi regular and r.q.i. for right quasi inverse, are standard. In general, we follow [5], although most references are to [4]. The symbol ι is the identity map. I_{n} is the n-by- n identity matrix; \Re^{n} stands for Euclidean n-space; \mathfrak{R}, for the real field; $Q=\mathbf{\Omega}^{+}$, for the additive group of rationals; $\mathbf{3}$, for the ring of integers with additive group $\mathbf{3}^{+}=Z ; \mathfrak{Q}_{n}$, for the n-by- n matrices over $\Omega ; Z(n)$, for the cyclic group of order $n ; Z[a]$, for the cyclic group with generator a. If $a \in A$, a p-group, and if $|a|=p^{n}$ then $n=E(a)$ is called the exponent of a. If s is in a ring \mathcal{S} then s^{*} denotes the quasi inverse (q.i.) of s (if it exists). If $s_{1}, s_{2} \in \mathbb{S}$ then $s_{1} \circ s_{2}=s_{1}+s_{2}-s_{1} s_{2}$. A proper ring is a ring in which some product $x y$ fails to be zero. Rings that are not proper are called zero rings.
2. Bimultipliers. A pair of maps $\Gamma=\left(\Gamma_{L}, \Gamma_{R}\right)$, where both Γ_{L} and Γ_{R} lie in $\operatorname{Hom}(A, \operatorname{Hom}(A, A))$, is called a bimultiplier on a group A if
(i) $\Gamma_{L}\left(a_{1}\right) a_{2}=\Gamma_{R}\left(a_{2}\right) a_{1}$, and
(ii) $\Gamma_{L}\left(a_{1}\right) \Gamma_{R}\left(a_{2}\right)=\Gamma_{R}\left(a_{2}\right) \Gamma_{L}\left(a_{1}\right)$
for all $a_{1}, a_{2} \in A$. Each bimultiplier Γ on A allows us to construct a ring on $A,(A, \Gamma)$, where $(A, \Gamma)^{+}=A$ and multiplication is given by $\Gamma_{L}\left(a_{1}\right) a_{2}=a_{1} a_{2}$. Indeed, the familiar associativity condition, $\Gamma_{L}\left(\Gamma_{L}\left(a_{1}\right) a_{2}\right)=\Gamma_{L}\left(a_{1}\right) \Gamma_{L}\left(a_{2}\right)$ (or this identity with Γ_{R} replacing $\left.\Gamma_{L}\right)$, comes from (i) and (ii). Conversely, suppose that \mathfrak{Z} is a ring supported by A, and that $\Delta_{L}\left(\Delta_{R}\right)$ is the function that carries each $a \in A$ onto the left (right) multiplication $a_{L}: b \mapsto a b\left(a_{R}: b \mapsto b a\right)$ for every $b \in A$. Then $\Delta=\left(\Delta_{L}, \Delta_{R}\right)$ is a bimultiplier on A such that $\mathfrak{Z}=$ (A, Δ). Observe that if Γ is a bimultiplier on A, then, for each $a \in A$, the pair of maps $\left(\Gamma_{L}(a), \Gamma_{R}(a)\right)$ is an inner bimultiplication [6] on the ring (A, Γ).

If Γ is a bimultiplier on A then both Γ_{L} and Γ_{R} may be viewed as
ring homomorphisms from (A, Γ) to the ring $\operatorname{Hom}(A, A)$ so that $\operatorname{Im} \Gamma_{L}$ and $\operatorname{Im} \Gamma_{R}$ are subrings of $\operatorname{Hom}(A, A)$.

Lemma 1. (i) $\Gamma_{L}{ }^{-1} J\left(\operatorname{Im} \Gamma_{L}\right)=J(A, \Gamma)=\Gamma_{R}{ }^{-1} J\left(\operatorname{Im} \Gamma_{R}\right)$.
(ii) (A, Γ) is a radical ring precisely if the elements of $\operatorname{Im} \Gamma_{L}\left(\operatorname{Im} \Gamma_{R}\right)$ are all q.r. in the ring $\operatorname{Hom}(A, A)$.

Proof. (i) Each of the following statements is equivalent to its neighbors. (1) $x \in \Gamma_{L}{ }^{-1} J\left(\operatorname{Im} \Gamma_{L}\right)$. (2) $\Gamma_{L}(y) \Gamma_{L}(x)$ is l.q.r. in $\operatorname{Im} \Gamma_{L}$ for every $y \in A$. (3) If $y \in A$ there exists $c \in A$ such that $c+y x-$ $c y x \in \operatorname{ker} \Gamma_{L}$. (4) There exists $g \in \operatorname{ker} \Gamma_{L}$ such that $c-g+y x-$ $(c-g) y x=0$. (5) $y x$ is l.q.r. in (A, Γ) for each $y \in A$. (6) $x \in J(A, \Gamma)$.
(ii) If (A, Γ) is a radical ring $\operatorname{Im} \Gamma_{L} \leqq J\left(\operatorname{Im} \Gamma_{L}\right)$ so that each $\Gamma_{L}(a)$ is q.r. in $\operatorname{Im} \Gamma_{L}$, hence in $\operatorname{Hom}(A, A)$, with $\Gamma_{L}(a)^{*}=\Gamma_{L}\left(a^{*}\right)$. Conversely, if each $\Gamma_{L}(a)$ is q.r. in $\operatorname{Hom}(A, A), \imath-\Gamma_{L}(a) \in$ Aut A. Let $a^{*}=$ $-\left(\imath-\Gamma_{L}(a)\right)^{-1} a$ for $a \in A$. Then $-\left(\imath-\Gamma_{L}(a)\right) a^{\#}=a$ so that $\Gamma_{L}(a) a^{\#}=a+a^{*}$, and $a^{\#}$ is a r.q.i. for a. Since each member of (A, Γ) is r.q.r., (A, Γ) must be a radical ring.

Lemma 2. Z is an antiradical group.

Proof. If (Z, Γ) is a proper radical ring Lemma 1 (ii) provides that each $\Gamma_{L}(n)$ is q.r. whence each $\imath-\Gamma_{L}(n) \in$ Aut Z. Since Γ is nontrivial, there exists $m \in Z$ such that $\Gamma_{L}(m)$ is nontrivial so that $\iota-\Gamma_{L}(m)=-\imath$, the only available nonunity automorphism on Z . Thus, $\imath-\Gamma_{L}(2 m)=-3 \iota \in$ Aut Z, an impossibility.

Lemma 3. If A is a proper subgroup of Z, then Z supports no ring with radical supported by A.

Proof. Since, as a group, $A \cong Z$, the only possible radical on A would, by Lemma 2, be the zero ring. But the only possible bimultipliers on Z are those Γ with $\Gamma_{L}(x) y=x y k$ for fixed $k \in Z$. Such multiplications never reduce to the zero multiplication on any proper subgroup unless $k=0$. In that case, the radical would be all of Z and not just A.

Let \mathfrak{F} be a division ring with the property that each nontrivial bimultiplier Γ on \mathscr{F}^{+}is so related to the multiplication on \mathscr{F} that $\Gamma(x) y=x y k$ for some nonzero $k \in \mathscr{F}$ (depending only on Γ). Then \mathfrak{F}^{+}is antiradical; for, if not, $\Gamma\left(k^{-1}\right) k^{-1}=k^{-1}$, contradicting the exclusion of nonzero idempotents from proper radical rings. In particular, Q and $Z(p)$ are antiradical. Further, no proper subgroup of Q can be the radical of any ring supported by Q. For, the only nontrivial bimultipliers on Q are the Γ for which $\Gamma_{L}(x) y=x y k, k \neq 0$, and k^{-1} is thus the unity of (Q, Γ) so that Q supports only division rings, devoid
of proper ideals. The referee notes that Lemmas 2 and 3 and the remarks just above are known.

3. Extensions.

Theorem 1. Let $\mathfrak{B}>\mathfrak{U} \xrightarrow{\lambda} \mathfrak{C}$ be an exact sequence of rings where $J(\mathfrak{B})=\mathfrak{B}$. Then $J(\mathfrak{B})>J(\mathfrak{X}) \xrightarrow{\lambda \mid J(\mathfrak{X})} J(\mathfrak{C})$ is also exact.

Proof. We may denote the elements of \mathfrak{X} by ordered pairs (b, c) $(b \in \mathfrak{B}$ and $c \in \mathfrak{C})$. It is assumed that the left and right actions of \mathfrak{C} on \mathfrak{B}^{+}are known: $c_{L}(b)=c b$, and $c_{R}(b)=b c$. We also write $b_{L}\left(b^{\prime}\right)=b b^{\prime}$ for all $b, b^{\prime} \in \mathfrak{B}$. In \mathfrak{X}, addition is given by

$$
\left(b_{1}, c_{1}\right)+\left(b_{2}, c_{2}\right)=\left(b_{1}+b_{2}+\sigma_{1}\left(c_{1}, c_{2}\right), c_{1}+c_{2}\right)
$$

for some normalized cocycle $\boldsymbol{\sigma}_{1}$; and multiplication has the form

$$
\left(b_{1}, c_{1}\right)\left(b_{2}, c_{2}\right)=\left(b_{1} b_{2}+c_{1} b_{2}+b_{1} c_{2}+\sigma_{2}\left(c_{1}, c_{2}\right), c_{1} c_{2}\right)
$$

for a normalized function $\boldsymbol{\sigma}_{2}$ from $\mathfrak{C} \times \mathfrak{C}$ to \mathfrak{B}. (See [3], [6], [7], and [9] for precise conditions and details.)

It is clear that $(b, c) \in J(\mathfrak{N})$ implies that $c \in J(\boldsymbol{C})$. Conversely, if $c \in J(\mathbb{C})$ and if $(b, d) \in \mathfrak{N}$ then $(0, \mathrm{c})(b, d)=\left(c b+\sigma_{2}(c, d), c d\right)$. If only we could show that this last is r.q.r. in \mathfrak{X} then $(0, c) \in J(\mathfrak{X})$ from which $J(\mathfrak{X})=\{(x, c) \mid x \in \mathfrak{B}$ and $c \in J(\mathfrak{C})\}$, and the proof would be complete. We shall show a bit more, namely that each (e, g), where $e \in \mathfrak{B}$ and $g \in J(\boldsymbol{C})$, has a r.q.i. in \mathfrak{A}.

First, one proves (using, say, [9, (6)-(15)]) that the operator $\iota-g_{L}$ on \mathfrak{B}^{+}has the inverse

$$
\left(\imath-\left[\boldsymbol{\sigma}_{1}\left(g^{*}, g\right)-\boldsymbol{\sigma}_{2}\left(g^{*}, g\right)\right]_{L}^{*}\right)\left(\imath-g_{L}^{*}\right)
$$

Then one shows that, as operators on $\mathfrak{B}^{+},\left(\imath-g_{L}{ }^{*}\right)\left(\imath-e_{L}-g_{L}\right)=$ $\imath-y_{L} \quad$ where $y=e+g^{*} e+\sigma_{2}\left(g^{*}, g\right)-\sigma_{1}\left(g^{*}, g\right) \in \mathfrak{B}$. Thus, $\left(\imath-g_{L}\right)^{-1}\left(\imath-e_{L}-g_{L}\right)=\imath-x_{L}$ where $x=\left[\sigma_{1}\left(g^{*}, g\right)-\sigma_{2}\left(g^{*}, g\right)\right]^{*}$ ${ }^{\circ} y \in \mathfrak{B}$; and $\left(\imath-e_{L}-g_{L}\right)^{-1}=\left(\imath-x_{L}{ }^{*}\right)\left(\imath-g_{L}\right)^{-1}$. A short computation shows that a r.q.i. for (e, g) is $\left(h, g^{*}\right)$ where $h=$ $\left(\iota-e_{L}-g_{L}\right)^{-1}\left[\sigma_{2}\left(g, g^{*}\right)-\sigma_{1}\left(g, g^{*}\right)-\left(\imath-g_{R}{ }^{*}\right) e\right] \in \mathfrak{B}$.

Corollary 1. A ring extension of a radical ring by a radical ring is a radical ring.

Proof. Use the notation of the theorem. To each $a \in \mathfrak{N}$ there exists $j \in J(\mathfrak{U})$ such that $\lambda(a)=\lambda(j)$ since both λ and $\lambda \mid J(\mathfrak{X})$ are onto $J(\mathfrak{C})=\mathfrak{C}$. Hence $a-j \in \operatorname{ker} \lambda=\mathfrak{B}=J(\mathfrak{B}) \leqq J(\mathfrak{X})$ so that $a \in J(\mathfrak{X})$.

This result is well known.

Corollary 2. Let $B \longrightarrow A \xrightarrow{\lambda} Z$ be an exact sequence of groups that supports an exact sequence of rings $\mathfrak{B}>\boldsymbol{X} \xrightarrow{\boldsymbol{B}} \mathfrak{C}$ where $\mathfrak{B}^{+}=B, \mathfrak{U}^{+}=A, \mathfrak{C}^{+}=Z$, and the morphisms λ and Λ induce the same set map. Then if $J(\mathfrak{B})=\mathfrak{B}$, either $J(\mathfrak{U})=\mathfrak{U}$ or $J(\mathfrak{X})=\mathfrak{B}$. If B supports a radical ring \mathfrak{B} which has an element with a nonzero square, then A will support a radical ring extension \mathfrak{A} of \mathfrak{B} by \mathfrak{C} in a nontrivial way.

Proof. By Lemma 3, $J(\boldsymbol{C})=0$ or \mathfrak{C}. Since $J(\mathfrak{N})$ consists of all $(b, c) \in \mathfrak{A}$ where $b \in B$ and $c \in J(\mathbb{C})$, the first statement of the corollary follows. As for the second, since A is an abelian extension of B by $Z, A=B \oplus Z[8,9.5 .5]$, and σ_{1} is trivial. Introduce the zero ring \mathfrak{C} on Z. Denote the members of $B \oplus Z$ by ordered pairs $(b, n), b \in B$ and $n \in Z$, and introduce multiplication via $\left(b_{1}, n_{1}\right)\left(b_{2}, n_{2}\right)=$ $\left(\left(b_{1}+n_{1} z_{0}\right)\left(b_{2}+n_{2} z_{0}\right), 0\right)$ where $z_{0} \in \mathfrak{B}$ with $z_{0}^{2} \neq 0$. It is easy to check that we have a ring extension \mathfrak{A} (where $\mathfrak{U}^{+}=B \oplus C$) of the radical ring \mathfrak{B} by the zero ring \mathbb{C}. Since each product with factors in \mathfrak{U} has the form $\left(b^{\prime}, 0\right)$, a radical element in \mathfrak{X}, each $(b, n) \in \mathfrak{U}$ has all its right multiples r.q.r. so that $(b, n) \in J(\mathfrak{U})$. (Observe that $\left.(b, n)^{*}=\left(n z_{0}+\left(b+n z_{0}\right)^{*},-n\right).\right) \quad$ Since $\quad(0,1)^{2}=\left(z_{0}^{2}, 0\right) \neq(0,0)$, the extension is not trivial.

4. Torsion-free groups.

Theorem 2. Let A be a torsion-free divisible group of finite dimension n as a \mathfrak{Q}-module. Let $\{(i j k)\}, 1 \leqq i, j, k \leqq n$, be a set of n^{3} members of \mathfrak{Q} (repetitions allowed) subject to the conditions

$$
\sum_{t=1}^{n}\left|\begin{array}{cc}
(l t k) & (t j l) \tag{a}\\
(i t k) & (i j t)
\end{array}\right|=0
$$

where $1 \leqq k, l, i, j \leqq n$ (giving n^{4} equations); and
(b) in \Re^{n} the locus given by

$$
\operatorname{det}\left(-\delta_{i j}+\sum_{t=1}^{n}(i j t) x_{t}\right)=0
$$

has no rational points.
Then the map Γ_{R} from $A=\mathfrak{Q}{ }^{n}$ to $\operatorname{Hom}(A, A)=\mathfrak{\Omega}_{n}$ given by

$$
\begin{equation*}
\Gamma_{R}\left(x_{1}, \cdots, x_{n}\right)=\left(\sum_{t=1}^{n}(i j t) x_{t}\right) \in \mathfrak{Q}_{n} \tag{c}
\end{equation*}
$$

determines a bimultiplier $\Gamma=\left(\Gamma_{L}, \Gamma_{R}\right)$ such that (A, Γ) is a radical ring with Γ_{R} given by (c).

Conversely, suppose that (A, Γ) is a radical ring with Γ_{R} given by (c). Then the n^{3} coefficients $(i j k) \in \mathfrak{Q}$ obey (a) and (b).

Proof. Suppose that Γ is a bimultiplier for which (A, Γ) is a radical ring. Let $u_{k}=(0, \cdots, 0,1,0, \cdots, 0) \in A$ where the 1 is in the k th position. Associativity yields the equivalent special conditions $\Gamma_{R}\left(\Gamma_{R}\left(u_{k}\right) u_{l}\right)=\Gamma_{R}\left(u_{k}\right) \Gamma_{R}\left(u_{l}\right)$ for all integers k and l subject to $1 \leqq k, l \leqq n$. If $q \in \Omega$ and if $u \in \mathbb{Q}^{n}=A$ then $\Gamma_{R}(q u)=q \Gamma_{R}(u)$ since Q is torsion-free divisible. If $\Gamma_{R}\left(u_{k}\right)=((i j k)) \in \mathfrak{Q}_{n}$ then the special associativity conditions provide that $\Gamma_{R}((l l k), \cdots,(l n k))=$ $((i j k))((i j l))$, from which

$$
\begin{equation*}
\sum_{t=1}^{n}(l t k)(i j t)=\sum_{t=1}^{n}(i t k)(t j l) \tag{d}
\end{equation*}
$$

n^{4} such equations since $1 \leqq i, j, k, l \leqq n$. A rewriting of (d) produces (a).

Since (A, Γ) is radical, $\Gamma_{R}(x)$ has to be q.r. in $\operatorname{Hom}(A, A)$, by Lemma 1(ii), for each $x=\left(x_{1}, \cdots, x_{n}\right) \in A$. But $\Gamma_{R}(x)=\sum_{t=1}^{n} x_{t}((i j t))$ so that $\quad I_{n}-\sum_{t=1}^{n} x_{t}((i j t)) \in$ Aut A, whence $\operatorname{det}\left[I_{n}-\sum_{t=1}^{n} x_{t}((i j t))\right]$ $\neq 0$ for all rational points, the $\left(x_{1}, \cdots, x_{n}\right) \in \mathfrak{S}^{n}$. At once (b) follows. The converse is immediate.

If $n>2$, the process given by the theorem is not feasible for computing the radical rings on torsion-free divisible groups of rank n. If $n=2$, a cumbersome check shows that the only multiplications turning $Q \oplus Q$ into a radical ring are those given by

$$
\begin{align*}
& \left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \\
& \quad=\left(b b^{\prime}\left(x_{1}+b^{\prime} x_{2}\right)\left(y_{1}+b^{\prime} y_{2}\right), b\left(x_{1}+b^{\prime} x_{2}\right)\left(y_{1}+b^{\prime} y_{2}\right)\right) \tag{e}
\end{align*}
$$

$$
\left(x_{1}, x_{2}, y_{1}, y_{2} \in \mathfrak{Q}\right)
$$

for fixed $b, b^{\prime} \in \mathbb{N}$ (and similar cases arising from the exchange of components). Except for the zero ring, each radical ring on $Q \oplus Q$ has exponent of nilpotency 3 .

Theorem 3. A subgroup B of a torsion-free divisible group A supports the radical of some ring on A if and only if B is a $\mathfrak{\Omega}$ submodule of the $\mathfrak{\Omega}$-module A.

Proof. Since A is a $\boldsymbol{\Omega}$-module, each (A, Γ) is a \mathbb{Q}-algebra so that $(r a) x=a(r x)$ for $a, x \in(A, \Gamma)$ and $r \in \mathfrak{S}$. In particular, if $a \in J(A, \Gamma)^{+}$, $a(r x)$ is r.q.r. in (A, Γ); hence, so is $(r a) x$ for every $x \in(A, \Gamma)$. That is, $r a \in J(A, \Gamma)^{+}$, and this last is a subspace of the $\boldsymbol{\Omega}$-module A.

Conversely, let B be a Ω-submodule of the $\boldsymbol{\Omega}$-module A. One can
find a Q-submodule C of A such that $A=B \oplus C$, a module-direct sum. On B place any radical ring structure (B, Γ). (If $\operatorname{dim} B \geqq 2$, and only then, Γ can be chosen to be nontrivial.) On C place any semisimple ring structure (C, Λ). (Since C is a direct sum of copies of Q use the corresponding ring-direct sum of $\mathfrak{\Omega}$'s to obtain a semisimple ring supported by C.) Endow A with the direct-sum ring structure $(A, \Delta)=(B, \Gamma) \oplus(C, \Lambda)$. Clearly, $(B, \Gamma) \leqq J(A, \Delta)$ so that $B \leqq J(A, \Delta)^{+}$ $=B \oplus K$, a direct sum of Ω-modules for some submodule K of C. Hence $K \leqq J(A, \Delta)^{+} \cap C=J(C, \Lambda)^{+}$; for, (C, Λ) is an ideal in (A, Δ). Since, however, (C, Λ) is semisimple, $B=J(A, \Delta)^{+}$.

Theorem 4. The torsion-free groups of rank 1 that are radical groups are precisely those of type represented by (k_{1}, k_{2}, \cdots) where each k_{i} is either 0 or ∞, and where almost all, but not all, these k_{i} are ∞. Each such group supports at least one nonradical proper ring, the radical of which is supported by a subgroup also of type $\left(k_{1}, k_{2}, \cdots\right)$. The torsion-free, rank 1 antiradical groups that support proper rings are precisely those of type represented by $\left(l_{1}, l_{2}, \cdots\right)$ where each l_{i} is 0 or ∞, and where none or an infinite number of the l_{i} 's consists of zeros. The remaining torsion-free, rank 1 groups support only zero rings.

Proof. By the Redei-Szele theorem [4, p. 270, Theorem 70.1], unless the type numbers in some representative of the type are chosen from the set $\{0, \infty\}$ only the zero ring is supported. If a representative of the type has only ∞ 's we have Q, an antiradical group. Suppose, now, that a representative of the type of A has an infinite number of 0 's. By the Rédei-Szele theorem, each proper ring \mathfrak{A} on A is, to within a ring isomorphism, a subring of \mathfrak{Q} consisting precisely of the elements of the form $m k v^{-1}$ where $m(\mathfrak{U})=m>0$ is an integer, not divisible by the primes from some set $\Pi(\mathfrak{X})=\Pi$ (possibly void) of positive primes. Also, k and $v(\neq 0)$ are relatively prime integers if $k \neq 0$; and if $v \neq \pm 1$ all the positive prime factors of v lie in Π. If Π is void then $A \cong Z$, an antiradical group.

Now suppose that Π is nonvoid. Since the hypothesis provides an infinite number of 0 's in a representative of the type of A, there must be at least one prime $p \notin \Pi$ such that $(m, p)=1$, and $a m+b p=1$ for appropriate integers a and b. Since $m a \in \mathfrak{Z}$ any q.i. in \mathfrak{X} of this element would have the form $m k^{\prime} v^{\prime-1}$ which reduces to $-m a(b p)^{-1}$ provided $b \neq 0$. But such an element does not lie in \mathfrak{F} since $p \notin \Pi$. If $b=0, m a=1 \in \mathfrak{U}$. In neither case $\operatorname{can} J(\mathfrak{X})=\mathfrak{Z}$. Thus A is antiradical if an infinite number of 0 's can appear in the type.

Suppose that at most a finite number $r \geqq 1$ of zeros can occur in the
type of A. If $m= \pm 1$, or if $m \neq \pm 1$ and there exists a prime $p \notin \Pi$ such that $p \nmid m$, then, as before, \mathcal{Z} is not a radical ring. Suppose, however, that m is so chosen that it is divisible by each of the r primes at which the type can be 0 , and that Π is nonvoid. The formal q.i. of the typical element $m k v^{-1} \in \mathcal{X}$ is $m k(m k-v)^{-1}$. Since no prime factor in m can divide v, the prime factors (if any) of $m k-v$ must lie in Π. Since the formal q.i. of $m k v^{-1}$ thus lies in \mathfrak{Z}, this last is a radical ring.

Consider any radical group A of type represented by $\left(k_{1}, k_{2}, \cdots\right)$ where almost all, but not all, the k_{i} are ∞, and the rest are zero. As before, let Π be the set of primes at which the k_{i} are ∞. Decompose the set of r primes at which the k_{i} 's are 0 into two disjoint subsets $\left\{p_{1}, \cdots, p_{s}\right\}$ and $\left\{q_{1}, \cdots, q_{t}\right\}$ where the first set may be void but the second set not. Let m be a positive integer, the prime factors (if any) of which are chosen from the p_{i}. (If there are no p_{i} 's take $m=1$.) Let \mathfrak{u} be the set of all rational numbers $m k v^{-1}$ where k and $v(\neq 0)$ are integers, relatively prime if $k \neq 0$, and where the prime factors (if any) of v lie in Π. We saw that \mathfrak{u} is a nonradical ring, a subring of Let $\mathfrak{B}=\left\{u \mid u \in \mathfrak{u}\right.$ and $\left.u=m q_{1} \cdots q_{t} k v^{-1}\right\}$ (k and v as above), an ideal in \mathfrak{u}. Since the formal q.i. of $m q_{1} \cdots q_{t} k v^{-1}$ is $m q_{1} \cdots q_{t} k\left(m q_{1} \cdots q_{t} k-v\right)^{-1}$ which lies in \mathfrak{B}, we have $\mathfrak{B} \leqq J(\mathfrak{u})$.

If $m k v^{-1} \in \mathfrak{u} \backslash \mathfrak{B}$, at least one q_{i} fails to divide k so that $m k a+b q_{i}$ $=1$ for appropriate integers a and b. If such an $m k v^{-1} \in J(\mathfrak{u})$ then $m k v^{-1}(a v)=m k a=1-b q_{i}$ would be q.r. in \mathfrak{u}. If $b=0$ then 1 is q.r. in \mathfrak{u}, an impossibility. If $b \neq 0,1-b q_{i}$ has the formal q.i. $-\left(1-b q_{i}\right) b^{-1} q_{i}{ }^{-1}$, an irreducible rational. Since $q_{i} \notin \Pi$, this q.i. $\notin \mathfrak{u}$. Consequently, $J(\mathfrak{u}) \leqq \mathfrak{B}$, and $J(\mathfrak{u})=\mathfrak{B}$. Finally, type $\left(\mathfrak{B}^{+}\right)$, type (A), and type ($\left.\mathfrak{u}^{+}\right)$are all represented by $\left(k_{1}, k_{2}, \cdots\right)$. ■
If A is a torsion-free rank 2 group, consider it in its representation [1] as a subdirect sum of two groups of rank 1 , a subgroup of $Q \oplus Q$. If Γ is a bimultiplier on $Q \oplus Q$ such that $\Gamma_{L}\left(a_{1}\right) a_{2} \in A$ for every $a_{1}, a_{2} \in A$, then Γ induces a bimultiplier $\Gamma \mid A$ on A, and $(A, \Gamma \mid A)$ is a subring of $(Q \oplus Q, \Gamma)$. It is not hard to see [1, p. 106, (4)] that any ring \mathcal{Z} on A must arise in this way. The only radical rings on A are the $(A, \Gamma \mid A)$ where each $a \in A$ is q.r. in $(Q \oplus Q, \Gamma)$ with $a^{*} \in A$. Thus, to find all the radical rings supported by the torsion-free rank 2 groups, first determine all bimultipliers Γ on $Q \oplus Q$ (these being fairly easy to classify); then find criteria for membership in the set of q.r. elements of ($Q \oplus Q, \Gamma$) (somewhat harder to do); finally, look for those subrings \mathbb{C} of $(Q \oplus Q, \Gamma)$, each element of which is q.r. in $(Q \oplus Q, \Gamma)$ with its q.i. in \mathbb{S} (not always apparent). We shall discuss this method elsewhere; it suffices here to give some examples.

Let $\mathfrak{X}=\left\{\left(r, m(2 n+1)^{-1}\right) \mid r \in \mathfrak{Z}\right.$ and $\left.m, n \in \mathfrak{Z}\right\}$. The set \mathfrak{X} is an abelian group under componentwise addition, a torsion-free group of rank 2. For $\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right) \in \mathfrak{U}$, let $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(0,2 s_{1} s_{2}\right) \in \mathfrak{U}$, and \mathscr{X} is a proper radical ring with

$$
\left(r, m(2 n+1)^{-1}\right)^{*}=\left(-r,-m[2(n-m)+1]^{-1}\right)
$$

Let \mathfrak{B} be the set of all $(u+2 v, u)$ with $u=m(2 n+1)^{-1}, v=$ $m^{\prime}\left(2 n^{\prime}+1\right)^{-1}$, and $m, n, m^{\prime}, n^{\prime} \in \mathfrak{3}$. Then \mathfrak{B}, an ideal in the ring \mathfrak{X} above, is a proper radical ring where $(u+2 v, u)^{*}=(-u-2 v,-u$ $\left.-2(u+2 v)^{2}\right)$. The multiplication on \mathfrak{B} is a special case of (e) above, while \mathfrak{U} arises from the consideration of another species of multiplication on $Q \oplus Q$.

5. Direct sums.

Lemma 4. If $\operatorname{Hom}(A \otimes A, B)$ is nontrivial then $A \oplus B$ is a radical group.

Proof. If $f \in$ Hom, $f \neq 0$, define multiplication on $A \oplus B$ by setting $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(0, f\left(a_{1} \otimes a_{2}\right)\right)$, turning $A \oplus B$ into a ring forthwith. The q.i. of (a, b) is $(-a,-b-f(a \otimes a))$, and the exponent of nilpotency of the resulting proper radical ring is 3 .

Corollary. If \mathfrak{S} and \mathfrak{I} are rings, and if there exists $\varphi \in \operatorname{Hom}(\mathfrak{S}, \mathfrak{I})$ such that $\operatorname{Im} \varphi$ is a proper ring as a subring of \mathfrak{Z} then $\mathbb{S}^{+} \oplus \mathfrak{I}^{+}$is a radical group. If © is a proper ring $\mathfrak{S}^{+} \oplus \mathfrak{S}^{+}$is a radical group.

Proof. Define $f \in \operatorname{Hom}\left(\mathfrak{S}^{+} \otimes \mathbb{S}^{+}, \mathfrak{\Sigma}^{+}\right)$by setting $f\left(s_{1} \otimes s_{2}\right)$ $=\varphi\left(s_{1} s_{2}\right)$.

From this corollary it is immediate that each of the following groups supports at least one proper radical ring (where A is any group):

$$
\begin{gathered}
Z(n) \oplus Z \oplus A, \quad Q \oplus Z \oplus A, \quad Z(n) \oplus Z(n) \oplus A, \\
Z \oplus Z \oplus A, \quad Q \oplus Q \oplus A
\end{gathered}
$$

(in particular [5, p. 105], the additive groups of the real numbers and of the complex numbers, and the group of reals modulo 1).

Recall that a nil group [4, p. 272] is a group A such that $\operatorname{Hom}(A, \operatorname{Hom}(A, A))$ is trivial.

Theorem 5. A nontrivial group A is a nil group if and only if $A \oplus A$ is antiradical.

Proof. If $A \oplus A$ is antiradical, Lemma 4 shows that $\operatorname{Hom}(A \otimes A, A)$ is trivial.
Conversely, if $A \oplus A$ is a radical group it has a nontrivial bimulti-
plier Γ. For each $a \in A, \Gamma_{R}(a, 0)$ is some endomorphism

$$
\left(\begin{array}{ll}
\alpha(a) & \beta(a) \\
\gamma(a) & \delta(a)
\end{array}\right)
$$

of $A \oplus A$ where the four entries of the matrix are in $\operatorname{Hom}(A, A)$. We lose no generality in assuming that, for some $a \in A, \Gamma_{R}(a, 0)$ is nontrivial so that at least one of $\alpha, \beta, \gamma, \delta \in \operatorname{Hom}(A, \operatorname{Hom}(A, A))$ is nontrivial. By definition, A is nonnil.

Corollary. If A is a mixed group, then $A \oplus A$ is a radical group.
Proof. [4, p. 272, Theorem 71.1].
If A and B are antiradical then their direct sum need not be (e.g., $Z \oplus Z$). A partial converse to Lemma 4 does, however, exist.

Theorem 6. Let A and B be antiradical groups. (i) If $\operatorname{Hom}(A \otimes B, A), \operatorname{Hom}(B \otimes A, B), \operatorname{Hom}(B \otimes B, A)$, and $\operatorname{Hom}(A \otimes A, B)$ are all 0 then $A \oplus B$ is antiradical. (ii) If $\operatorname{Hom}(A, B)=0=\operatorname{Hom}(B, A)$ then $A \oplus B$ is antiradical.

Proof. (i) Suppose that $(A \oplus B, \Gamma)$ is a radical ring. For $b \in B$, the endomorphism $\Gamma_{R}(b)$ of $A \oplus B$ has the representation

$$
\left(\begin{array}{cc}
\alpha_{1}(b) & \alpha_{2}(b) \\
\alpha_{3}(b) & \alpha_{4}(b)
\end{array}\right)
$$

where $\quad \alpha_{1} \in \operatorname{Hom}(B, \operatorname{Hom}(A, A)), \quad \alpha_{2} \in \operatorname{Hom}(B, \operatorname{Hom}(A, B)), \quad \alpha_{3} \in$ $\operatorname{Hom}(B, \operatorname{Hom}(B, A))$, and $\alpha_{4} \in \operatorname{Hom}(B, \operatorname{Hom}(B, B))$. By hypothesis, the first three double "Homs" vanish so that $\alpha_{1}=0, \alpha_{2}=0$, and $\alpha_{3}=0$. Similarly, if $a \in A, \Gamma_{R}(a)$ can be represented as

$$
\left(\begin{array}{ll}
\beta_{1}(a) & \beta_{2}(a) \\
\beta_{3}(a) & \beta_{4}(a)
\end{array}\right)
$$

where $\quad \beta_{1} \in \operatorname{Hom}(A, \operatorname{Hom}(A, A)), \quad \beta_{2} \in \operatorname{Hom}(A, \operatorname{Hom}(A, B)), \quad \beta_{3} \in$ $\operatorname{Hom}(A, \operatorname{Hom}(B, A))$, and $\beta_{4} \in \operatorname{Hom}(A, \operatorname{Hom}(B, B))$, so that all but β_{1} vanish. Thus, $\left(a_{1} \oplus b_{1}\right)\left(a_{2} \oplus b_{2}\right)=a_{1} a_{2}+b_{1} b_{2}$ for all $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

For $a \in A, a^{*}=a^{\prime} \oplus b$ for some $a^{\prime} \in A$ and $b \in B$. Then $\left(a+a^{\prime}\right) \oplus b=a\left(a^{\prime} \oplus b\right)=\left(a^{\prime} \oplus b\right) a=a a^{\prime}=a^{\prime} a$. Let Π_{A} be the projection of $A \oplus B$ onto A, so that, here, $a+a^{\prime}=\Pi_{A}\left(a a^{\prime}\right)=\Pi_{A}\left(a^{\prime} a\right)$. Since, however, $a_{1} a_{2}=\Gamma_{L}\left(a_{1}\right) a_{2}=\beta_{1}\left(a_{1}\right) a_{2} \in A$ for all $a_{1}, a_{2} \in A$, in particular $a+a^{\prime}=a a^{\prime}=a^{\prime} a \in A$, and $(A, \Gamma \mid A)$ is a radical ring. But A is antiradical so that this ring is the zero ring on A. Hence, each $a_{1} a_{2}=0$. Likewise, each $b_{1} b_{2}=0$, and $(A \oplus B, \Gamma)$ is the zero ring on $A \oplus B$. We now have (i), from which (ii) follows.

Theorem 7. The only divisible antiradical groups are Q and the torsion divisible groups.

Proof. By Szele's theorem [4, p. 272, Theorem 71.1], the torsion divisible groups are precisely the torsion groups that support only zero rings, so that all these groups are antiradical. If D is divisible, $D=C \oplus T$ where C is trivial or is some $\Sigma \oplus Q$, and where T is trivial or is some $\Sigma_{i} \oplus\left(\Sigma \oplus \mathrm{Z}\left(p_{i}{ }^{\infty}\right)\right)$. If more than one summand Q appears, an earlier remark shows that D is a radical group. Hence consider the case $D=Q \oplus T$. It is well known [4, pp. 25-26] that the nontrivial homomorphic images H of Q are all possible direct sums of quasicyclic groups with no repetitions of primes allowed. If, therefore, T is nontrivial then T has such an H as a direct summand, and $\operatorname{Hom}(Q, T)$ is nontrivial. Since, as \mathfrak{Z}-modules, $Q \cong Q \otimes Q$, we have $\operatorname{Hom}(Q \otimes Q, T)$ nontrivial, so that, by Lemma $4, D=Q \oplus T$ is a radical group.

Theorem 8. For each positive integer n and for each prime p, $Z\left(p^{n}\right)$ supports exactly p^{n-1} radical rings (including the zero ring). The proper radical rings on $Z\left(p^{n}\right)$ fall into $n-1$ isomorphism classes, and the members of each such class are commutative nilpotent with fixed exponent of nilpotency $1-[-n / j]$, for $j=1,2, \cdots, n-1$.

Proof. Each bimultiplier Γ on $Z\left(p^{n}\right)$ corresponds to a unique integer $k, 0 \leqq k<p^{n}: \Gamma_{L}\left(m_{1}{ }^{\prime}\right) m_{2}{ }^{\prime}=\left(m_{1} m_{2} k\right)^{\prime}$ where $m^{\prime} \in Z\left(p^{n}\right)$ is the residue class, modulo p_{n}, in which the integer m lies. Each such k determines a ring $\boldsymbol{Z}\left(p^{n} ; k\right)$ supported by $Z\left(p^{n}\right)$. For this ring to be radical the equation $\Gamma_{L}\left(a^{\prime}\right) x^{\prime}=(a+x)^{\prime}$ must have a solution $x \in Z$, once $a \in Z$ is given. That is, the congruence $(a k-1) x \equiv a\left(p^{n}\right)$ must be solvable. If $p \mid k$ then $p \nmid(a k-1)$, and the congruence has a solution. If $p \nmid k$ then there exist integers c_{1} and c_{2} such that $c_{1} k+c_{2} p=1$ so that $p \nmid c_{1}$. Now if we choose $a=c_{1}$, the congruence reduces to $-c_{2} p x \equiv c_{1}\left(p^{n}\right)$ so that $p \mid c_{1}$ if a solution exists, contradicting $p \nmid c_{1}$. Thus, for a radical ring, k must be one of the p^{n-1} multiples of p on the interval $0 \leqq k<p^{n}$. Of these, only $k=0$ provides us with the zero ring. If such a $k \neq 0$ then $k=p^{j} t$ where $1 \leqq j<n$ and $(p, t)=1$. It is easy to show that $\boldsymbol{3}\left(p^{n} ; p^{j_{1}} t_{1}\right)$ and $\boldsymbol{3}\left(p^{n} ; p^{j_{2}} t_{2}\right)$ are ring isomorphic if and only if $j_{1}=j_{2}$.

Suppose that $k=p^{i} t$ where $1 \leqq j<n$ and where $(p, t)=1$. Denote the multiplication on $\mathbf{Z}\left(p^{n} ; p^{j} t\right)$ by $\Gamma_{L}\left(m_{1}{ }^{\prime}\right) m_{2}{ }^{\prime}=m_{1}{ }^{\prime} \# m_{2}{ }^{\prime}$. Then $m_{1}{ }^{\prime} \# \cdots \# m_{r}{ }^{\prime}=\left(m_{1} \cdots m_{r} p^{j(r-1)} t^{r-1}\right)^{\prime}$. The least positive integer $r=r_{j}$ for which $(r-1) j \geqq n$ must be the exponent of nilpotency. Thus, $r_{j}=1-[-n / j]$ with minimum value 3 realized for all j such that $-[-n / 2] \leqq j<n$. It has maximum value $n+1$
at $j=1$, so that to construct a proper radical ring of exponent of nilpotency $m \geqq 3$ take $n=m-1$ and $k=p$.

Theorem 9. If $\left\{p_{i}\right\}$ is a (finite or infinite) set of distinct primes then $\Sigma_{i} \oplus \mathrm{Z}\left(p_{i}\right)$ is antiradical. Such sums and Z are the only antiradical direct sums of cyclic groups.

Proof. We could handle the finite case by Theorem 6. In general, however, if ($\boldsymbol{\Sigma}_{i} \oplus \mathrm{Z}\left(p_{i}\right), \Gamma$) is a proper ring, there exists at least one $q \in \Sigma_{i}$ such that $\Gamma_{L}(q) \neq 0$. Since the orders of the $Z\left(p_{i}\right)$ are all coprime, $\Gamma_{L}(q) \mid Z\left(p_{i}\right)=\left(t_{i}\right)_{L}$, a left multiplication on $Z\left(p_{i}\right)$ by some integer $t_{i}, 0 \leqq t_{i}<p_{i}$. At least one $t_{i} \neq 0$ since $\Gamma_{L}(q) \neq 0$. If the ring is radical, for each $x \in \Sigma_{i}, \iota-\Gamma_{L}(x) \in$ Aut Σ_{i}, by Lemma l(ii). Thus, for each $k \in \mathcal{Z},\left(\imath-\Gamma_{L}(k q)\right) \mid Z\left(p_{i}\right)=\left(1-k t_{i}\right)_{L}$, an induced automorphism on $Z\left(p_{i}\right)$. That is, $\left(1-k t_{i}, p_{i}\right)=1$ for every k, a contradiction since the congruence $t_{i} x \equiv 1\left(p_{i}\right)$ always has a solution when $t_{i} \neq 0$. The second statement of the theorem follows from Lemma 4, Corollary, and Theorem 8.

Thus, if $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ are two disjoint, nonempty sets of positive primes where the first set may not have repetitions, but where the second set may, then $\left(\boldsymbol{\Sigma}_{i} \oplus \mathbf{Z}\left(p_{i}\right)\right) \oplus\left(\boldsymbol{\Sigma}_{j} \oplus \mathbf{Z}\left(q_{j}{ }^{\infty}\right)\right)$ is antiradical, by Theorems 6, 7, and 9. Likewise, $\left(\Sigma_{i} \oplus Z\left(p_{i}\right)\right) \oplus Q$ is antiradical, although in this case all positive primes p_{i} without repetitions may be used.

Theorem 10. The bounded antiradical groups are precisely the $Z(m)$ where m is a product of distinct primes.

Proof. That these $Z(m)$ are antiradical follows from Theorem 9. Bounded groups are the direct sums $A=\boldsymbol{\Sigma}_{p} \oplus\left[\boldsymbol{\Sigma}_{i} \oplus\left(\boldsymbol{\Sigma} \oplus \mathbf{Z}\left(p^{i}\right)\right)\right]$ where each $\Sigma \oplus Z\left(p^{i}\right)$ is a direct sum of copies of $Z\left(p^{i}\right)$, where i is bounded for each prime p, and where only a finite number of primes p can appear. If A is to be antiradical then Theorem 8 shows that no $i>1$, and A reduces to $\Sigma_{p} \oplus(\Sigma \oplus Z(p))$. By an earlier remark, $\Sigma \oplus \mathbf{Z}(p)$ reduces to $Z(p)$ if it is nontrivial. Consequently, $A=\Sigma_{j} \oplus$ $Z\left(p_{j}\right)$ for a finite number t of distinct primes.

6. p-groups.

Lemma 5. For $\alpha, \beta \in$ End A, suppose that (i) $\bigcup_{i=1}^{\infty}$ ker $\alpha^{i}=A=$ $\bigcup_{j=1}^{\infty} \operatorname{ker} \beta^{j}$, and that (ii) there exists a nontrivial

$$
\gamma \in \operatorname{Hom}\left(A, \operatorname{Hom}\left(A, \bigcap_{i=1}^{\infty}\left[\left(\operatorname{Im} \boldsymbol{\alpha}^{i}\right) \cap\left(\operatorname{Im} \boldsymbol{\beta}^{i}\right)\right]\right)\right)
$$

such that, for every $a \in A, \gamma(\beta a)=\gamma(a) \alpha$. Then A is a radical group that supports a proper radical ring of exponent of nilpotency 3.

Proof. For $a_{1}, a_{2} \in A$, let $a_{1} a_{2}=\gamma\left(a_{1}\right) a_{2}$ from which two distributive laws hold. From (i), $a_{1} \in \operatorname{ker} \beta^{n}$ for some n. Since $\gamma\left(a_{2}\right) a_{3} \in$ $\bigcap_{i=1}^{\infty} \operatorname{Im} \alpha^{i}, \gamma\left(a_{2}\right) a_{3}=\alpha^{n}(b)$ for some $b \in A$. Then $a_{1}\left(a_{2} a_{3}\right)=$ $a_{1} \boldsymbol{\alpha}^{n}(b)=\gamma\left(a_{1}\right) \boldsymbol{\alpha}^{n} b=\left(\gamma \beta^{n} a_{1}\right) b=0$, from (ii). Similarly, $\left(a_{1} a_{2}\right) a_{3}=0$. The q.i. for $a \in A$ is $a^{*}=-a-a^{2}$.

Recall that A^{1} is the subgroup of elements of infinite height in the p-group A.

Corollary. If, for a p-group $A, \operatorname{Hom}\left(A, \operatorname{Hom}\left(A, A^{1}\right)\right) \neq 0$ then A is a radical group.

Proof. Let $\alpha=p_{L}=\beta$ where $p_{L}: a \mapsto p a$.
Theorem 11. (i) Each p-group that has a nonzero basic subgroup and a nonzero subgroup of elements of infinite height is a radical group. (ii) The only countable reduced p-group that is antiradical is $\mathrm{Z}(p)$.

Proof. (i) Let G be a p-group with nontrivial basic subgroup B. Then $G \otimes G \cong B \otimes B$, a direct sum of cyclic p-groups, since B is nontrivial. Now $\operatorname{Hom}\left(B \otimes B, G^{1}\right)$ is nontrivial; for, we can map all but one cyclic summand of $B \otimes B$ onto 0 and the remaining one onto some cyclic subgroup of order p of G^{1}. But $\operatorname{Hom}\left(G, \operatorname{Hom}\left(G, G^{1}\right)\right) \cong$ $\operatorname{Hom}\left(B \otimes B, G^{1}\right)$ so that we can now apply Lemma 5 , Corollary.
(ii) Let G be a nontrivial, countable, reduced p-group, and suppose, first, that $G^{1} \neq 0$. If the basic subgroups of G were to be trivial, then G would be divisible, a contradiction, so that G is a radical group by (i). If $G^{1}=0$ then, by Prüfer's theorem [4, p. 44], G is a direct sum of cyclic p-groups. From earlier results, all such examples but $Z(p)$ support proper radical rings.

Theorem 12. (i) Let G be a countable reduced p-group of Ulm type 2. Then there exists an unbounded, countable, reduced p-group H of Ulm type 1 such that G and H support respective, proper, radical commutative rings \mathfrak{G} and \mathfrak{y} for which there is a ring epimorphism $\mathfrak{J} \rightarrow(\mathbf{S}$.
(ii) Let G be an unbounded, countable, reduced p-group of Ulm type 1. Then there exists a countable, reduced p-group H of Ulm type 2 such that G and H support respective, proper, radical commutative rings \mathfrak{S} and $\mathfrak{5}$ for which there is a ring epimorphism $\mathfrak{y} \rightarrow(\mathbb{S}$.

Proof. (i) Since G is of type 2 its Ulm sequence consists of G_{0}, G_{1} where $G_{0}=\Sigma_{i} \oplus Z\left[b_{i}\right]$ for suitable $b_{i} \in G_{0}$, each of order $p^{n_{i}}$ where $E\left(b_{i}\right)=n_{i} \geqq 1$, and the set N of the n_{i} 's is unbounded. See [4, pp. 117-123]. Since G_{1} is a direct sum of cyclic groups, assume first that $G_{1}=Z[a]$ where $E(a)=n \geqq 1$. As in the proof of Zippin's theorem
[4, loc. cit.], let $H=\Sigma_{i} \oplus Z\left[x_{i}\right]$ where $E\left(x_{i}\right)=n+n_{i}$. The only significant member of the Ulm sequence for H is H, itself. Let K be that subgroup of H which is generated by all the $p^{n i} x_{i}-p^{n j} x_{j}$ $(i, j=1,2, \cdots)$. Each group $Z\left[x_{i}\right]$ supports the proper, radical commutative ring $\boldsymbol{3}\left(p^{n+n_{i}} ; p^{n}\right)$, as in the proof of Theorem 8. Let $\mathfrak{J}=\Sigma_{i} \oplus \boldsymbol{Z}\left(p^{n+n_{i}} ; p^{n}\right)$ so that $\mathfrak{S}^{+}=H$, and \mathfrak{J} is a proper, radical commutative ring. The subgroup K supports an ideal \mathfrak{A} of \mathfrak{y} since the constructed multiplication (denoted by \#) on \mathfrak{g} introduces a numerical factor p^{n} that nullifies each $p^{n} x_{i}-p^{n j} x_{j}$. Further, at least one product in \mathfrak{J} fails to lie in the ideal \mathfrak{H}. For, choose $n_{t}>n$, which is always possible since N is unbounded. Then $x_{t} \# x_{t}=p^{n} x_{t}$, and if the latter were in $\mathfrak{\Re}$ there would exist a finite set of integers $\left\{a_{i j}\right\}$ such that $\sum a_{i j}\left(p^{n} x_{i}-p^{n} x_{j}\right)=p^{n} x_{t}$. Matching coefficients, we obtain $\left(\sum_{j} a_{t_{j}}-\sum_{i} a_{i t}\right) p^{n_{t}} \equiv p^{n} \bmod \left(p^{n_{t}+n}\right)$, which is impossible since $n_{t}>n$.

By the proof of Zippin's theorem, H / K has Ulm sequence G_{0}, G_{1} so that, by Ulm's theorem, $H / K \cong G$. Since \mathfrak{J} is a proper, radical commutative ring with at least one product not in $\mathfrak{K}, \mathfrak{g} / \mathfrak{K}$ is a proper radical ring supported, to within an isomorphism, by G.

If $G_{1}=\Sigma_{r} \oplus Z\left(p^{*} r\right)$ for positive integers s_{r}, it is possible to construct a countable reduced p-group G^{\prime} of type 2 with Ulm sequence G_{0}, G_{1} where $G^{\prime}=\Sigma_{r} \oplus G^{(r)}$, each $G^{(r)}$ of type 2 where $G^{(r)}=H^{(r)} / K^{(r)}$, each $H^{(r)}$ of type 1 , and each $G^{(r)}$ with Ulm sequence $G_{0}, Z\left(p^{s r}\right)$. Further, $G^{\prime}=H / K$ where $H=\Sigma_{r} \oplus H^{(r)}$ is of type 1 , and $K=\Sigma_{r} \oplus K^{(r)}$. Each $H^{(r)}$ supports a proper, commutative radical ring $\mathfrak{g}=\Sigma_{i} \oplus \mathfrak{g}^{(r)}$ with ideal $\mathfrak{K}=\Sigma_{r} \oplus \widehat{\boldsymbol{R}}^{(r)}$ supported by K. Also, $\mathscr{G}=\mathfrak{J} / \mathfrak{K}$ is a proper, commutative radical ring; and $\boldsymbol{G}^{+} \cong G^{\prime}$. But G and G^{\prime} have the same Ulm sequence so that $\boldsymbol{G}^{+} \cong G$, and (i) holds.
(ii) For any countable, reduced p-group G of Ulm type 3 , let $H(G)$ be the group of type 2 , and let $K(G)$ be the subgroup of $H(G)^{\perp}$, provided by the proof of Zippin's theorem, such that $H(G)$ has the Ulm sequence $G_{0}, H(G)^{\text {}}$, and such that $G \cong H(G) / K(G)$. As a group of type $2, H(G)$ can be given a proper, commutative, radical ring structure $\mathfrak{y}(G)$ by the proof of (i), but it remains an open question whether a suitable radical ring structure can be imposed on $H(G)$ in such a way that $K(G)$ will support an ideal. If, however, a p-group U supports a ring \mathfrak{u} then U^{1} supports an ideal \mathfrak{u}^{1} of \mathfrak{u}, so that $H(G)^{1}$ supports an ideal $\mathfrak{y}(G)^{1}$ of $\mathfrak{y}(G)$. As in the proof of (i), $H(G)$ is a direct sum of the form $\Sigma_{t} \oplus H_{[t]} / K_{[t]}$ (one summand for each summand $Z\left(p^{n_{t}}\right)$ of G_{2}), and each summand supports a proper, commutative radical ring. In fact, $H_{[t]}=\Sigma_{i} \oplus Z\left[x_{t i}\right]$ where $E\left(x_{t i}\right)=n_{t}+n_{t i}$ ($n_{t}, n_{t i} \geqq 1$, and $N_{t}=\left\{n_{t i}\right\}$ unbounded). Each $Z\left[x_{t i}\right]$ supports the
radical ring $\boldsymbol{Z}\left(p^{n_{t i}+n_{t}} ; p^{n_{t}}\right)$, and the ring-direct sum $\mathfrak{S}_{[t]}$ of these last is reduced by the ideal $\mathfrak{\Re}_{[t]}$ on $K_{[t]}$, the group on all $p^{n_{t i}} x_{t i}-$ $p^{\prime \prime} x_{t j}$. Since N_{t} is unbounded, choose any $n_{t r} \in N_{t}$ such that $n_{t r}>n_{t}$. In $\mathfrak{H}_{[t]} / \mathfrak{N}_{[t]},\left(x_{t r}+\mathfrak{N}_{[t]}\right)^{2}=p^{\prime \prime} x_{t r}+\mathfrak{N}_{[t]}$. If this square were to lie in $\left(H_{[t]} / K_{[t]}\right)^{\prime}$ then, in particular, one could solve for the coset $y+K_{[t]}$ in the group equation

$$
p^{n_{\prime}+1}\left(y+K_{[t]}\right)=p^{\prime \prime} x_{t r}+K_{[t]}
$$

We can assume that $y+K_{[t]}=\sum_{i} c_{t i} x_{t i}+K_{[t]}$ for integers $c_{t i}$ so that $\left.\left(\sum_{i} c_{t i}\right)^{n+1} x_{t i}\right)-p^{n} x_{t r} \in K_{[t]}$. Since, however, the elements of $K_{[t]}$ are nullified by $p^{n \prime}, \sum_{i} c_{t i} p^{2 n++} x_{t i}-p^{2 n} x_{t r}=0$. The coefficient of $x_{t r}$ reduces to $p^{2 n \prime}\left(p c_{t r}-1\right)$. But direct sum considerations show that this coefficient must nullify $x_{t r}$. Since $p \chi\left(p c_{t r}-1\right)$, $2 n_{t} \geqq n_{t}+n_{t r}$, contradicting the assumption that $n_{t r}>n_{t}$. Thus, $\mathfrak{S}_{[t]} / \mathfrak{K}_{[t]}$ has at least one product not in its subgroup of elements of infinite height. Hence $\mathfrak{J}(G) / \mathfrak{S}(G)^{1}$ is a proper, radical commutative ring.

Since $H(G) / H(G)^{1} \cong G_{0}$ we have proved that, for groups G of type $3, G_{0}$ supports a proper, commutative radical ring \boldsymbol{G}_{0}, a ring epimorph of the proper, commutative radical ring $\mathfrak{J}(G)$ supported by the type 2 group $H(G)$. But any unbounded, countable, reduced, type $1 p$-group G_{0} is the initial member of the Ulm sequence for a countable, reduced, type $3 p$-group.

Precisely, because it is not clear how one would turn $K(G)$ into an ideal, a suitable generalization of (i) for groups of type $\geqq 3$ remains to be found. It is true that an unbounded, type $1 p$-group G_{0} can be represented as $H(G) / H(G)^{\prime}$ where $H(G)$ has finite type $\geqq 3$ chosen at will, that $H(G)$ supports some proper, radical ring, and that $H(G)^{1}$ supports an ideal of the latter; but it is not apparent how we would show that the resulting radical ring on G_{0} is proper, so that (ii), also, awaits an extension.

Added in proof. Professor K. E. Eldridge has kindly indicated that the results in Theorem 8 of this paper overlap those of [11].

References

1. R. A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion-free group of rank two, Acta Sci. Math. Szeged 20 (1959), 105-116. MR 21 \#5651.
2. K. E. Eldridge, On ring structures determined by groups, Proc. Amer. Math. Soc. 23 (1969), 472-477. MR 39 \#6923.
3. C. J. Everett, Jr., An extension theory for rings, Amer. J. Math. 64 (1942), 363-370. MR 4, 69.
4. L. Fuchs, Abelian groups, Publ. House Hungarian Acad. Sci., Budapest, 1958. MR 21 \#5672.
5. -_, Infinite abelian groups. Vol. 1, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 \#333.
6. S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316-345. MR 20 \#5228.
7. L. Rédei, Die Verallgemeinerung der Schreierschen Erweiterungstheorie, Acta Sci. Math. Szeged 14 (1952), 252-273. MR 14, 614.
8. W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 \#4785.
9. J. Szendrei, On Schreier extension of rings without zero-divisors, Publ. Math. Debrecen 2 (1952), 276-280. MR 15, 281.
10. J. F. Watters, On the adjoint group of a radical ring, J. London Math. Soc. 43 (1968), 725-729. MR 37 \#5251.
11. I. Fischer and K. E. Eldridge, Artinian rings with a cyclic quasi-regular group, Duke Math. J. 36 (1969), 43-47. MR 38 \#5829.

Washington University, St. Louis, Missouri 63130

[^0]: Received by the editors November 13, 1970 and, in revised form, September 10, 1971.

 AMS (MOS) subject classifications (1970). Primary 16A21, 20K10, 20K15.
 ${ }^{1}$ This work was supported, in part, by National Science Foundation grants GP-7175 and GP-20291.

