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INVARIANT MEANS ON SUBSEMIGROUPS 
OF LOCALLY COMPACT GROUPS 

ANTHONY TO-MING LAU l 

1. Introduction. Throughout this paper G will denote a locally 
compact group and locally null subsets of G are defined with respect 
to a fixed left Haar measure A of G. 

Recently J. W. Jenkins [5] shows that if S is an open subsemigroup 
of G and G is left amenable, then S is left amenable if and only if S 
has finite intersection property for open right ideals. In this paper, 
we shall prove an analogue result for any nonlocally null Borei mea
surable subsemigroups S of G, generalising a result of Frey [2] (see 
also [8, Theorem 3.5] ) for discrete left amenable groups. 

2. Preliminaries and some notations. For any subset A of a topo
logical space Y, A will denote the closure of A in Y and 1A will be the 
characteristic one function on A. The class of Borei sets in Y is the 
smallest a-algebra of sets containing all open subsets of Y. 

Let S be a topological semigroup, i.e., S is a semigroup with a Haus-
dorff topology such that, for each a £: S, the two mappings from S into 
S defined by s —> as and s —» sa for all s G S are continuous. Let 
MB(S) be the space of bounded Borei measurable real valued functions 
on S equipped with the sup norm topology. For each a G S, define 
two operators, ra and la, from MB(S) into MB(S) by raf(s) = f(sa) 
and laf(s) = f(as) for all s G S, fŒMB(S). Let X be a closed 
subspace of MB(S) containing l s . An element <f> in X*, the conjugate 
space of X, is a mean if </>(ls) = ||<£|| = 1. Furthermore, the restric
tion of any element in the convex hull of {ps; s G S j C MB(S)* to X 
is called a finite mean on X, where ps(f) = f(s). As known 
[1] the set of finite means on X is weak* dense in the set of means on 
X. If X is invariant under la for each a G S, then a mean 0 on X is 
a left invariant mean (LIM) if <l>(laf) = <f>(f) for all a G S 
/ G X. S is left amenable if MB(S) has a LIM. 

A bounded continuous real valued function f on S is uniformly 
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continuous if the two mappings from S in MB(S) defined by s —> lsf 
and s —> rsf are continuous when MB(S) has the sup norm topology. 
Then as known, UC(S), the space of uniformly continuous functions on 
S, is a closed subspace of MB(S) containing l s . Furthermore, 
UC(S) is invariant under la and ra for each a G S. 

A jointly continuous action of S on a topological space Y is a con
tinuous mapping from S X Y (with the product topology) into Y, 
denoted by (x, y) —» s • y, such that sx • (s2 ' y) = (siS2) ' y for all 
s, sl9 s2 G S and J/ G Y. 

3. Technical lemmas. In preparation of our main results, we shall 
prove in this section a series of lemmas. 

LEMMA 1. Let S be a topological semigroup with the finite inter
section property for closed right ideals. Then, for any jointly con
tinuous action of S on a compact Hausdorjf space 7 the set K = 
Pi {s - X; s G S } is nonempty and s • K= K for all s G S. 

PROOF. We shall show that the family {aX; Û G S } has the finite 
intersection property, which will imply K is nonempty by compact
ness of X. For any finite subset cr of S, choose c G P | {aS; a G er}, 
then cX Ç f] {aX; a Eid}. In fact, if a G a and x G X, there is a 
net {sa} in S such that limaasa = c. By compactness of X (and passing 
to a subnet if necessary), we may assume l i m ^ ^ = y for some y G X. 
Therefore 

ay = lim a - (sa - x) = lim (asjx = ex 
a « 

and hence ex G aX. Since x is arbitrary, it follows that cX Q 
{aX; a G a } . 

To see that aK = K for all a G S, let y G K and a G S be arbitrary 
but fixed. If s G S, choose u G aS H sS and nets {sa}, {tß} in S such 
that limaasa = lim^s^ = u. Since y G. K, we can choose for each 
a an element xa in X such that sa • xa = y. We may assume (by com
pactness of X and passing to subnets if necessary) that limaxa = x0 

and l im^Xo = xY for some x0, xY G X. We have, by virtue of the 
continuity of the mapping SX X —» X, that 

a - y = lim a • (sa • x j = lim (asa) • xa = u • x0 
a a 

= lim (stß) - xc = lim s • (^ • x0) = sx{. 
ß ß 

Hence ay G sX. Since y and 5 are arbitrary, it follows that aK Ç K. 
To obtain the other inclusion, let a be a finite subset of S and 
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c G H {sS; a G a}. Then cXQ C\ {sX; s G a} as shown in the earlier 
part of the proof. 

Hence 

a~l{y} H (fi {sX; s G < J } ) C a~l{y} D cX fé 0 

where a_1{?/} = {* G X; ax = y}. Consequently a~l{y} H K / 0 is 
nonempty by compactness of X and aK Ç K 

The next lemmas were proved by Day in [1, Theorem 2] for discrete 
semigroups. 

LEMMA 2. Let S be a Borei measurable subsemigroup of a topo
logical semigroup H. If there is a LIM fx on MB(H) such that 
/jt(ls) > 0, then S is left amenable. 

This lemma can be proved by repeating "mutatis mutandis," the 
argument used in [1, Theorem 2]. We omit the details. 

LEMMA 3. Let S be a nonlocally null Borei measurable subsemi
group of G. If there is a mean fx on MB(G) such that /x(ls) = 1 
and the restriction of/x on UC(G) is a LIM, then there is a LIM ifß on 
MB(G) such that \fß(ls) = 1. 

PROOF. Let E be a compact subset of G such that E Ç S and 
k(E) > 0 (see [4, p. 127] ); let <S>E and <I>E-i be the normalised char
acteristic functions on E and E~l respectively. For each / in MB(G), 
define two bounded continuous real valued functions <J>£-i * / 
and/*4> £- i on G by 

(**-' */)(g)= J/(*-Jg)*s-' (t)dt, 

(/•*E)(g)= jfit&E(t-lg)dt, 

where 4>ß(g) = ^ ( g - 1 ) for all g G G and the integration is taken 
with respect to the left Haar measure X on G (see [4, 20.14 and 20.16] ). 
Since <ï>£-i */*<ï>E is in UC(G) (see [3, Lemma 2.1.2]), we may 
define a mean ty on MB(G) by \jj(f) = ty(Q>E-i */*<5£) for 
a l l / G MB(G). Furthermore, an argument similar to that given in the 
proof of [3, Theorem 2.2.1, (5)=>(1)] and [3, Proposition 2.1.3] 
will show that ifß is even a LIM on MB(G). Finally if a G S, then 

<ÏVi * l s ( a ) = ^<S>E-i(t)ls{t-la)dt 

= \<t>E-i{at)ls(t-i)dt 

= X ( S - i r i ö - 1 E - 1 ) / X ( £ - 1 ) = 1. 
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It follows that 

((*£-« * l s ) *4>E)(a) = l s **E(a) 

= X(S PI aE)lk(E) = 1 

for all a G S. Hence ^ ( l s ) = 1. 

4. Main results. We are now ready to prove our main results. 

THEOREM 1. Let S be a nonlocally null Borei measurable subsemi-
group of G 

If G is left amenable, then each of the following conditions are 
equivalent-. 

(a) S is left amenable. 
(b) S has the finite intersection property for right ideals. 
(c) S has the finite intersection property for closed right ideals. 

PROOF. If i/* is LIM on MB(S) and a G S, then laS G MB(S) and 
^(las) = ^{a^as)= <fr(ls) = 1« Hence, for any finite subset crC S, 
M {aS; a G a } is nonempty and (b) follows. 

That (b) implies (c) is trivial. 
Finally if (c) holds, let H be the closed subgroup of G generated by 

S (note that S is also Borei measurable in H and it is not locally null 
with respect to any left Haar measure on H). For each g G H, let 
Zg* denote the adjoint of the operator lg from UC(H) into UC(H). 
Let K be the collection of all mean <f> on UC(H) which has an exten
sion to a mean <£ on MB(H) with the property <£(ls) = 1. Certainly 
K is a nonempty weak* compact convex subset of UC(H)* and 
4*(K) C K for all s G S. Since the mapping (s, <f>) —» ls*<f>, s G S, 
<j) G K, defines a jointly continuous action of S on K (with the weak* 
topology), it follows from Lemma 1 that the set KQ = f i {Z/(K); 5 G S} 
is nonempty and IS*KQ = KQ for all s G S. Furthermore, if 5 G S 
and <£> G KQ, then f^-10 = Z* -i(4*i/0 = i/> for some iff Œ. KQ. It 
follows that Zg*(Ko) C Ko for all g £ H . Since H is left amenable 
[3, Theorem 2.3.2], it follows from a fixed point theorem of Rickert 
[7, Theorem 4.2] that the jointly continuous affine action of H on the 
weak* compact convex set Ko defined by (g, <£) -» Zg*$, g G H 
and ( ^ G H and 0 G Ko, must have a common fixed point t|f in KQ 
for H. Our result now follows from Lemma 2 and Lemma 3. 

The next result is due to Greenleaf [3, Theorem 2.2.1] for the case 
when S = G. 

THEOREM 2. For any nonlocally null Borei measurable subsemi-
group SofG,S is left amenable if and only ifUC(S) has a LIM. 
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PROOF. One direction is trivial; conversely, if i// is a LIM on UC(S) 
and H is the closed subgroup of G generated by S, let {\fßa} be a net of 
finite means on MB(S) such that \ima$a(f) = t/*(/) for all 
/ G C7C(S). Define a net of finite means {i£a} on MB(H)_by ifijh) = 
tfßa(Ilh) where Uh(s) = h(s) for all s G S, h G MB(H). Let i/* be a weak* 
cluster point of the net {t/fa} in MB(H)*. 

Clearly ^ ( l s ) = 1. Hence if we can show that the restriction of 
\fß to UC(H) is a LIM, then it follows from Lemma 3 that MB(S) has 
a LIM. Indeed, if a G S, then la*ifß — ifß and Zt-ii/f = ^, where 
Za* is the conjugate of the operator la from UC(H) into UC(H). Since 
the mapping from H X K into K, (g, 0) —» Zg*$, where K is the set 
of means on UC(H), g G H and <£ G K, is continuous when K has the 
weak* topology, it follows that ^ is a LIM on UC(H). 

COROLLARY (JENKINS). If S is an open subsemigroup of G and G is 
left amenable, then S is left amenable if and only if S has the finite 
intersection property for open right ideals. 

PROOF. Note that any ideal J of S contains an open ideal aS for 
some a G S. Use Theorem 1. 
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