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SOLUTION OF THE ALMOST COMPLEX SPHERES 
PROBLEM USING K-THEORY 

ELDON C. BOES 

1. Introduction. Let F(n) denote SO(2n)IU(n). We shall abbreviate 
Kc*(X) to simply K(X). Finally, K(X; Q) represents K(X) ® Ç, where 
Ç is the field of rational numbers. 

The two results of this paper are the following: 
1.1. A description of K(F(n); Q). 
1.2. A new proof that the only almost complex spheres are S2 and 

S6. 
The first proof that the only almost complex spheres are S2 and S6 

was given by Borei and Serre in [5] ; their proof used the Steenrod re
duced power operations. Our proof uses 1.1 and the Chern character. 

The contents of this paper are as follows: $2 contains background 
material. In §3 we calculate K(F(n); Q). We also indicate a method 
for calculating K(F(n)). §4 is devoted to 1.2. 

This material constitutes part of the author's doctoral thesis [2]. 
I wish to thank Professor Albert Lundell for his advice. 

2. Background. A complete reference for this section is [8]. 
A 2n-dimensional real manifold M is almost complex if its tangent 

sphere bundle 

S2n-1 -+T(M) - » M 

with structural group 0(2n) is equivalent in 0(2n) to a bundle with 
structural group t/(n). This happens if and only if the associated 
bundle with fibre F(n) has a cross section. 

For the sphere S2n, the tangent sphere bundle is 

S2n-i _* so(2n + l)/SO(2n - 1) -+ S2n. 

The associated principal bundle is 

SO(2n) -> SO(2n + 1) -* S2tt, 

and, since SO(2n + 1)/C7(n) « F(n + 1 ) , the associated bundle with 
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fibre F(n) is 

(2.1) F(n) -> F(n + 1) -> S2n. 

We shall show in §4 that (2.1) has a section only if n < 4. This will 
complete 1.2, since it is well known that S2 and S6 are almost complex 
while S4 is not. 

3. Description of K(F(n); Q). We begin with the easy task of 
describing the additive structure of K(F(n)). 

Given a locally trivial fibration 

there is an exact Wang sequence for K-theory; 

(3.1)- • —>K-»- 1 (F ) -4 K~n-r>(F) - t K~«(E) 4> K~n(F)-* ••'•'. 

This sequence can be constructed in the same way as the Wang se
quence for ordinary cohomology. Moreover, the action of $ and <f> on 
products is the same as the action on products of the corresponding 
maps in the Wang sequence for ordinary cohomology. Details can be 
found in [2] or [7]. 

Using the Wang sequence for the fibration F(n) —> F(n + 1) —> S2n 

and induction on n, we easily arrive at 

THEOREM 3.2. Additively, K(F(n)) = K°(F(n)), and K(F(n)) 
is the direct sum of2n~l copies of the integers. 

The Wang sequence provides scant information about products in 
the ring K(F(n)). For that we refer to representation theory. 

Let T(n) C U(n) C SO(2n) where T(n) is a maximal torus. Any 
representation r : U(n) —» U(m) together with the classifying map for 
the bundle U(n) -* SO(2n) —> F(n) induces a principal C7(m)-bundle 
over F(n). This induces a ring homomorphism a : RU(U(n)) —» 
K(F(n)) which we shall use to describe K(F(n); Q). 

Recall that RU(T(n)) = Z[yi9yrl]9 i = 1, • • -, n, where yd : T(n) 
—> 1/(1) is given by yj{t\, ' * •, tn) = exp(2iritj). Here we are consider
ing T(n) as n-tuples of reals m o d i . Under the map Rl/(l/(n))—> 
RU(T(n)) induced by restriction of representations, RU(U(n)) is iden
tified with the ring of finite symmetric Laurent series in t/l5 • • -,yn 

with integer coefficients. Details can be found in [61. 
We introduce some notation. In RU(U(n)) we set z{ = y{ — 1, for 

i = 1, • • -, n. The symbol <rj(z) will represent the^'th elementary sym
metric function in zi9 * * -, zn. The map rj : K(F(n)) —> K(F(n); Q) is 
the coefficient map. We can now prove 
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THEOREM 3.3. K(F(n); Q) is generated by 1 and the simple monomials 
ingi, ' ' %gn-i>wheregj = V° afrjiz)). 

PROOF. We need some well-known facts about the following commu
tative diagram; see [3] and [4]. 

RU(U(n)) -» RU(T(n)) 

la la 

K(F(n)) -> K(SO(2n)/T(n)) 

Iv Iv 
K(F(n);Q)-*K(SO(2n)IT(n);Q) 

Ich Ich 

H*(F(n); Q) -> H*(SO(2n)IT(n); Q) 

The necessary facts are the following: 
(1) The composition down the right-hand column is given by 

ch ° r) ° a(yi±l) = exp(±Xi), i = 1, • • -, n. 
Here, exp(±^) represents a power series in H*(SO(2n)/T(n); Q). 

As usual, H*(SO(2n)IT(n); Q) is identified as a quotient of H*(BT(n); 
Q), and xx, • • -, xn are the generators of H2(BT(n); Z). 

(2) JFf*(F(n); Z) is generated by 1 and the simple monomials in 
ax, • • ' , a n _i , where a, = (l/2)(7j(a:) = (l/2)(jth Chern class of F(n)). 

From these one easily concludes that 

ch{gi) = ch o v o a(<Tj(z)) 

= ojfa) -h (higher terms) in H*(F(n); Q). 

Now the theorem follows from 2.4 of [ 1]. 
REMARKS. (1) It is possible to describe products in K(F(n); Ç) using 

ch and knowledge of the product structure of H*(F(n); Q). (2) If we let 
U'(n) be the 2-fold covering of (7(n), then F(n) = Spin(2n)/t/'(n). One 
can then describe generators for K(F(n)) in the image of a' : RU(U'(n)) 
-> K(F(n)). Details can be found in [2]. 

4. S2n is not almost complex if n > 3. Suppose that s : S2n —» 
F(n + 1) is a section of the fibration F(n) -» F(n + 1) A S2n. Then 
5 induces s! : K(F(n + 1); Ç>)-> K(S2n; Ç). Let *'(&) = mg, i = 1, • • -, n, 
where g* = 17 ° a(<Ti(z)) is described in Theorem 3.3, and g is an 
integral generator. Since g{ is an integral class, each m* is an integer. 
We shall show that mx can only be an integer if n < 4. 

Let 6n generate H2n(S2n; Z), and let an be one of the generators of 
H2n(F(n + 1); Z), as described in §3. Then, since s*7r* = identity, we 
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haves*(an) = ± 0n, and 7r*( 0n) = ±an -f (higher terms). 
We now compute s* ° ch(gi). 

s* o cfc(gl) = ch o ,!(gl) = ch(m!g) = ±m1 6n. 

If we compute ch(gi) first, we get 

5* « chigj) = 5*(exp(ac1) + • • • + exp(xn+1) - (n + 1)) 

= * * Œ » + (U2')E2<*> + ' * • + (l/nl)2»(*) +• • • ) , 

where ^ ( x ) = xj 4- • • • + xnA Since H^(S2n; Ç) = 0 if q ^ 2n, we 
have 

«••cfc(gi) = **((l/n!)S.(*)) 

= «•{(l/n!)[a1(x)2„-i(*) - a 2 (x )S„- 2 W + • • • + ( -1 )» -W n (x ) ] } 

= (±l/n!){S*(nan(x))}> 

since products are trivial in H*(S2n; Q). Therefore, 

* * o c f c ( g i ) - ( ± l / ( n - l ) ! ) ( 2 0n). 

We conclude that the integer ml is ±2/(n — 1)!, which implies that 
n< 4. 
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