A FINITE *p*-GROUP P = AB WITH $Core(A) = Core(B) = \{1\}$ J. D. GILLAM

Let A and B be subgroups of the finite p-group P, and let P = AB. We give an example of such a p-group with $Core(A) = Core(B) = \{1\}$. A few conditions are given which do insure the existence of a proper normal subgroup of P contained in A or B. The notations and terminology are standard.

THEOREM 1. Let P = AB be a finite p-group.

(i) If A has subnormal defect less than or equal to 2, then $\operatorname{Core}(A) \neq \{1\}$ or $\operatorname{Core}(B) \neq \{1\}$.

(ii) If the order of P is less than or equal to p^5 , then $Core(A) \neq \{1\}$ or $Core(B) \neq \{1\}$.

PROOF. (i) Let *H* be a normal subgroup of *P* minimal with respect to $H \neq \{1\}$ and $H = (H \cap A)(H \cap B)$. Let $A_1 = H \cap A$ and $B_1 = H \cap B$. Suppose *H* is contained in neither *A* nor *B*. Then by the minimality of *H*, $A_1^P = H = B_1^P$; that is, $H = A_1[B, A_1] =$ $B_1[A, B_1]$. Hence $[H, A] = [A_1[B, A_1], A] = [B_1[A, B_1], A] =$ $[B_1, A]$. Therefore $[A_1, A] [B, A_1, A] = [B_1, A]$. Since *A* has subnormal defect less than or equal to 2, $[B, A, A] \leq A$. Hence $[B_1, A]$ $\leq A$. Therefore $[H, P] = ([H, P] \cap B_1)[B_1, A] = ([H, P] \cap B)$ $\cdot ([H, P] \cap A)$. Since [H, P] < H, $[H, P] = \{1\}$. Hence $H = A_1^P$ $= A_1 \leq A$.

(ii) This follows immediately from (i).

THEOREM 2. There exists a p-group P = AB of order p^6 with $Core(A) = Core(B) = \{1\}.$

PROOF. Let V be an elementary abelian p-group with minimal generating set $\{a_1, a_2, b_1, b_2\}$. Let a_3 and b_3 be the automorphisms of V whose matrices with respect to (a_1, a_2, b_1, b_2) are

1	0	0	0	and	1	-1	-1	0
1	1	0	0		0	1	0	-1
-1	0	1	0		0	0	1	1
0	1	1	1		0	0	0	-1
				Ľ				

Received by the editors March 26, 1971 and, in revised form, April 14, 1971. AMS 1970 subject classifications. Primary 20D15.

Copyright © 1973 Rocky Mountain Mathematics Consortium

respectively. Let $H = \langle a_3, b_3 \rangle$. Then direct computation shows that H is abelian of type (p, p). Let P be the relative holomorph of V by H. Then the order of P is p^6 . Identify the elements of V and H with the elements of P in the usual way. Let $A = \langle a_1, a_2, a_3 \rangle$ and $B = \langle b_1, b_2, b_3 \rangle$. Then $A \cap B = \{1\}$ and $|A| = |B| = p^3$. Hence P = AB. Since $C_P(V) = V$, $Z(P) \leq V$. Hence $Z(P) \cap A = Z(P) \cap A \cap V = Z(P) \cap \langle a_1, a_2 \rangle = \{1\}$. Therefore $Core(A) = \{1\}$. Similarly $Core(B) = \{1\}$.

THEOREM 3. Let P = AB be a finite p-group. The following are equivalent:

(i) If $N \triangleleft P$, then there exists a proper normal subgroup of P/N contained in AN/N or BN/N.

(ii) There exists a chief series $\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_r = P$ with $H_i = (H_i \cap A)(H_i \cap B)$ for $0 \leq i \leq r$.

(iii) There exists a chief series of B, $\{1\} = B_0 \triangleleft B_1 \triangleleft \cdots \triangleleft B_s$ = B, such that AB_i is a subgroup of P for $0 \leq i \leq s$.

(iv) There exists a chief series of A, $\{1\} = A_0 \triangleleft A_1 \triangleleft \cdots \triangleleft A_t = A$, such that $A_i B$ is a subgroup of P for $0 \leq i \leq t$.

PROOF. (i) implies (ii): Let $H_1 \triangleleft P$ be of order p and contained in A or B. The hypothesis of (i) is clearly valid for $P/H_1 = (AH_1/H_1)(BH_1/H_1)$. By induction, there exists a chief series $\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_r = P$ with

$$H_i = (H_i \cap AH_1)(H_i \cap BH_1)$$

= $(H_i \cap A)(H_i \cap B)H_1$
= $(H_i \cap A)(H_i \cap B)$ for $0 \leq i \leq$

(ii) implies (iii): Let $\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_t = P$ be a chief series of P with

t.

$$H_i = (H_i \cap A)(H_i \cap B) \text{ for } 1 \leq i \leq t.$$

Let $B_i = H_i \cap B$ for all *i*. Then the set $\{B_i : 0 \le i \le t\}$ is the collection of terms of a chief series of *B*, and $AB_i = AH_i$ is a subgroup of *P* for $0 \le i \le t$.

(iii) implies (i): Let $N \triangleleft P$. Then the hypothesis of (iii) is true for P/N = (AN/N)(BN/N). Hence we may suppose $N = \{1\}$. Induct on the index of A in P. Let $\{1\} \neq B_1 \leq Z(B)$ be such that AB_1 is a subgroup of P. If $B_1 \leq A$, then $B_1^P = B_1^A \leq A$ and $Core(A) \neq \{1\}$. Suppose B_1 is not contained in A. Then $P = (AB_1)B$, AB_1 and B satisfy (iii), and the index of AB_1 in P is smaller than the index of A in P. We may suppose $Core(B) = \{1\}$. Hence by induction there

exists $1 \neq ab \in Z(P) \cap AB_1$ where $a \in A$ and $b \in B_1$. Since $Core(B) = \{1\}, a \neq 1$. Then $a \in C_P(B), \langle a \rangle^P = \langle a \rangle^A \leq A$, and $Core(A) \neq \{1\}$.

The equivalence of (i), (ii), and (iv) results from the symmetry of the situation.

COROLLARY 3.1. Let P be a finite p-group and A a subgroup of P. Then A is quasinormal in P if and only if for every subgroup H of P there exists a chief series of A all of whose terms permute with H.

COROLLARY 3.2. Let P be a finite p-group, A a quasinormal subgroup of P, and A_0 a subgroup of A which is a term in every chief series of A. Then A_0 is quasinormal in P. In particular, every subgroup of a cyclic quasinormal subgroup of P is quasinormal in P.

Reference

1. W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 #4785.

Ohio University, Athens, Ohio 45701