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POINTWISE COMPLETENESS OF
DIFFERENTIAL-DIFFERENCE EQUATIONS

R. M. BROOKS AND K. SCHMITT !

1. Introduction. Let A;,i = 0,1, - - -, m, be complex n X n matrices
and let x be a complex n-dimensional column vector. Further, let
0<7, <719< -:-<r1, be given real numbers. We consider the
system of differential-difference equations

x'(t) = Apx(t) + Ax(t — 1)

1)
+ o+ Apx(t — ), t=0.

Let C" denote n-dimensional complex Euclidean space and let
B denote the set of all continuous functions from [—r7,,0] into
Cn. If ¢ € B, we denote by x(¢; ¢) the unique solution of (1) satisfy-
ing the initial condition

@) (te)=o9(t), —Tn=t=0.

The system (1) is called pointwise complete if for any ¢t = 0, the set
{x(t; ¢) : ¢ € B} equals C", and pointwise degenerate otherwise.
In 1967, Weiss [5] posed the question whether the system

3) x'(t) = Ax(t) + Bx(t — 1)

is pointwise complete for any pair of n X n matrices A and B. Since
then, several people have worked on this question and several suf-
ficient conditions for the pointwise completeness of (3) have been
established. In the case n = 2, (3) is pointwise complete for any choice
of A and B (see Halanay and Yorke [3]); however, for dimension
n > 2, pointwise degenerate systems exist as Popov [4] has recently
demonstrated by showing that any solution x(¢) of (3), where

0 2 0 0 0 0
A= 0 0o -1}, B= 1 0 0],
0 0 0 0 2 0

is orthogonal to the vector (1, —2, —1) for = 2. In the same paper
[4], Popov shows that (3) is pointwise complete whenever B is of the
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form B = bcT, where b and c¢ are constant column vectors (c7 is the
transpose of ¢).

In this paper, we prove pointwise completeness of (1) in another
very general situation, namely whenever the matrices A;, i=0, 1,
* +*,m, commute. We approach the problem by constructing a certain
transcendental matrix equation whose solvability provides a sufficient
condition for pointwise completeness. We then use Gelfand transform
methods to show that this matrix equation has a solution whenever the
matrices A; commute.

Our methods have the advantage that we are also able to obtain
global existence results for solutions of autonomous differential-
difference equations of advanced and neutral type and further show
that a concept similar to pointwise completeness holds for such
equations.

2. An auxiliary equation. Together with (1), we consider the follow-
ing matrix equation

(4) X'(t) = AgX(f) + AX(t — 7)) + -+ + AX(t — 7)),

where X(t) is an n X n matrix. Observe that X(t)c, ¢ a constant vector,
is a solution of (1) whenever X(#) is a solution of (4).

Let M, denote the algebra of all complex n X n matrices equipped
with the operator norm. For Y € M,,, we denote by e the element of
M, given by

er= S Vil
i=0
If YEM,, then X(t)= e'Y is a solution of (4) (for all ¢) if
and only if

(5) Y= AO + Ale_"ly + -+ A,,,e“’m'Y.

If (5) has a solution Y, then, as observed above, x(t) = etYc is a solution
of (1) for any constant vector ¢, and since e?Y is nonsingular, we con-
clude that (1) is pointwise complete whenever (5) has a solution.

3. Solution of the auxiliary equation. In this section, we study equa-
tion (5) in case A;A; = AjA;, i,j = 0,1, - - -, m. For the sake of brevity,
we adopt much of the notation and terminology of Browder [2].

THEOREM. Let AA;= AjA;, i,j=0,1, -, m. Then there exists
a solution Y of (5) and (1) is pointwise complete.

Proor. We verify the theorem in case Ay = -+ = A, = 0. The
general case may be proved in much the same way. Further there is
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no loss in generality in assuming that 7, = 1. Equation (5) then takes
the form

6) Y= A+ Be,

where A and B commute.

Let M denote the closure in M, of the algebra {p(A, B): p is a poly-
nomial in two indeterminates over C!'}. Then oM is a commutative
Banach algebra with identity, and is, moreover, generated (poly-
nomially) by A and B. Denote by S(A) and S(B) the spectra of A and
B, respectively, considered as elements of M, and by spec M the
spectrum of the algebra - (the set of all multiplicative linear func-
tionals on oM). Then the mapping

T : spec M— S(A) X S(B) C C2,

defined by T(¢) = (¢(A), ¢(B)), is a homeomorphism of spec =M onto
a subset R of S(A) X S(B) (see Browder [2, pp. 36-37]).

Now S(A) = o(A), since o(A) (the operator spectrum) is a finite
set in C!. We identify spec M with R. With this identification, we
have the Gelfand transform w — i mapping -M into the continuous
functions on R, C(R), and A(a) = a;, B(a) = a, for a = (a;, @) € R.

If A € R, then {A} is open and closed in R, so there exists an element
E, € M such that E, = Xp (the characteristic function of {A}), for
if @=\, there exists A, € M such that A,A\) =1, A a)=0; let
E, =[]a. A € M Hence, if f € C(R), we must have

f=2X axy=3 ok = ( ) akEA>A.

AER AER AER
Hence it = C(R).
The above now yield that we must find a function f: R — C! so
that

f=A+ Be onR,
ie.,
JA)=A +2e7Y, NER

This, however, says only that for each A € R, we must find a z € C!
such that

(7) Z2= A + ) O A

thus reducing (6) to a quasipolynomial equation (7). Such quasi-
polynomial equations have been extensively studied and it is well
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known (see, e.g., Bellman and Cooke [1, Chapter 12]) that (7) has a
solution for any choice of (A}, Ay) € C2.

Remark. Our method may also be employed in the quest for global
solutions of neutral type differential-difference equations.

For example, consider the neutral-type equation

(8) x' = Ax + Bx(t = 1) + Cx(t + 1).
The transcendental matrix equation obtained in this case is
9) Y= A+ Be Y+ Cée.

Again under the assumption that A, B, and C commute, we reduce
(9) to the quasipolynomial scalar equation

(10) 2= Ay + Age7* + Age®

Such equations again have been extensively studied (see [1]).
Knowing that (10) may be solved, we obtain a solution Y of (9) and
hence for any constant vector ¢, x(t) = e'¥c is a global solution of

(8).
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