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M . S. BERGER 

Introduction. The aim of the following four lectures is threefold 
in that we wish to point out: 

First, just how nonlinear eigenvalue problems arise in certain 
specific mathematical areas and to what extent the existing theory of 
nonlinear eigenvalue problems is successful in treating these specific 
applications. 

Secondly, new results in the theory of nonlinear eigenvalue problems 
can be obtained by means of a careful study of specific mathematical 
disciplines. 

Finally, we shall indicate basic research areas in the theory of non­
linear eigenvalue problems which are suggested by the above special 
problems. 

At this point some general remarks and definitions are in order. 
Indeed, what is meant by the term "nonlinear eigenvalue problem"? 
In these lectures this term will mean the problem of studying all the 
solutions of certain operator equations F(x, X) = 0, particularly in 
their dependence on the parameter X. Here F(x,X) is an operator 
(generally nonlinear) defined on an open subset U of the Banach 
space X X Z with range in the Banach space Y. The parameter space 
Z will generally be II1 or possibly RN. Thus if F(x, X) = kl - L, 
and L is a bounded linear operator of a Banach space X into itself, 
we are concerned with the spectral theory of L. It is the merit of the 
nonlinear eigenvalue problems considered here that the totality of 
solutions of a given operator equation is given prime consideration. 
This is crucial when the operator F depends nonlinearly on x. It will 
be convenient to divide nonlinear eigenvalue problems into 4 parts: 
(i) bifurcation theory (the study of the solutions of the equation 
F(x, X) = 0 near a point (x0, k0) at which F(x0, Xo) = 0 and the 
Fréchet derivative of F(x,X) with respect to x at (x0,X0), F'(x0,X0), 
has a nontrivial kernel); (ii) global theory (the study of solutions 
(x, X) of F(x,k) = 0 without regard to the norm of (x,k) or the 
existence of nearby approximations (x0, Xo) for (x, X)); (iii) singular 
perturbation theory (the study of the behavior of solutions of F(x,k) 
= 0 as X —» °° ); (iv) continuation theory (the study of the relations 
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between (i)—(iii) mentioned above). We shall not consider (iii) here, 
as we are primarily concerned with the application of global methods. 

In each of the following lectures one main area of mathematical 
investigation is considered. We begin each topic by stating some of 
the problems, known results, and conjectures of the area. We also 
show in which sense these results are related to the theory of nonlinear 
eigenvalue problems. Next we attempt to prove some of them by the 
methods of nonlinear eigenvalue problems. Finally we summarize our 
discussion in accordance with the threefold aim of the above para­
graph. 

Perhaps a word concerning the term "global analysis" is apropos at 
this stage. Because of their importance and relative simplicity, we 
have limited ourselves to those parts of global analysis centering around 
the well-known topics of critical point theory and the Leray-Schauder 
degree. Thus such topics as the theory of nonlinear Fredholm map­
pings, and the generalized degree for such mappings have been 
omitted. For the same reasons, we have omitted those applications 
requiring a general discussion of Hilbert and Banach manifolds. 

Before proceeding, let us briefly review some of the important results 
of nonlinear functional analysis that will be used. 

(i) Gradient operators. An operator f defined on an open set U 
of a Banach space X with range in X* (the dual space) is called a 
gradient mapping if there is a C1 real-valued function F(x) whose 
Fréchet derivative F'(x) is equal to f(x) for every x E [ J (see [18] ). 
In this case the solutions of f(x) = 0 coincide with the critical points 
of F(x). Now the critical points of a large class of functionals can be 
associated with topological invariants in various ways (e.g. type num­
bers of M. Morse, minimax characterization by Ljusternik-Schnirel-
mann), and because these invariants are topological in nature, they 
have important stability properties under suitably restricted perturba­
tions. If the functional F(x) is defined on a smooth manifold J\K, 
these topological invariants are intimately connected with the topology 
of J\i In fact, if the topological structure of JA is nontrivial, any 
suitably restricted functional F(x) defined on J\i, must have a certain 
number of critical points. These remarks are crucial in understanding 
the following results. 

(1) (Ljusternik). Suppose F(x) is a smooth, even, sequentially weakly 
continuous functional defined on a Hilbert space H. Then the equation 
x = kF,(x) has a countably infinite number of distinct solutions 
(xN(R),kN(R)) on each sphere \\x\\ = R > 0. The elements xN can be 
characterized by the Ljusternik-Schnirelmann minimax principle, and 
kN -> oo as N -» oo. 
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(2) (Berger). If in (1) above F(x) = \(Lx,x) + o(\\x\\2) as ||x|| - • 0, 
then (xN(R), X# (R)) —• (0, kN) as R —» 0, where kN is the Nth eigenvalue 
of the linear eigenvalue problem x = XL* (ordered by magnitude and 
counted by multiplicity). [Note that this result implies that if kN = 
A/v+i = • • • = \N+p_u then there are at least p distinct families 
( W f l ) , XN+i(R)) -» (0, XN) as H -> 0 (i = 0 ,1 , • • -, p - 1).] 

(3) (Krasnoselskiï ). If L is a compact selfadjoint linear operator 
defined on a Hilbert space H, then the eigenvalues {kN} of the operator 
equation x = XLx are stable in the sense that if J\!(x) is a smooth 
weakly continuous functional, every sufficiently small neighborhood 
of (0, kN) contains a solution of x = k{Lx + ^V'(x)} distinct from 
(0, Xtf). [In this case we say (0, X#) is a point of bifurcation for the 
equation*: = k{Lx + aN'(x)}.] 

The proofs of these basic results will be found in [16], [17], [18]. 
Since the known proofs of (3) are long and involved, we include a 
sketch of a short proof of a result, more general than (3) in several 
respects, in Appendix A at the end of the paper. 

(ii) Compact operators. An operator C defined on an open set U 
of a Banach space X with range in a Banach space Y is compact if the 
closure of C(B) in Y is a compact set for each bounded set B in U. 
Now if C is a compact operator (in this sense) and X = Y, then the 
Leray-Schauder degree d(f, p, D) [31] of the mapping f = I + C 
at a point p is defined relative to any open bounded set D C U pro­
vided that f(x) ^ p on dD. Now the Leray-Schauder degree 
d(f, p, D) is an algebraic count of the number of solutions of f(x) = p 
in D and is a topological invariant in the sense that it is a homotopy 
invariant, i.e. if f(k) = / + C(X) depends (uniformly) continuously on 
X G [0,1] and f(k)(x) ^ p on dD, then d(f(k), p, D) = const 
independent of X G [0,1] . Now we shall make use of the following 
results. 

(4) (Leray-Schauder). If d(k) = d(f(k), p, D) is defined for 
X = 0 and X = 1 and d(0) ^ d(l), then f(k0)(x) = p has a solution on 
aDforsomeX 0 E(0 ,1) . 

(5) (Schwartz) [19] Suppose X is a complex Banach space. An 
operator / is a complex analytic map of U -* X if, for all x G U, 
y G X, f(x + ty) is an analytic function of the complex variable t 
for \t\ sufficiently small. Then if d(f(k), p, D) is defined in a small 
neighborhood D of a point x0, at which f(k)(x0) = p and 
Ker/'(X)(xo) fé { 0 } , then d(f(k), p, D) ^ 2. 

Many important applications of nonlinear eigenvalue problems will 
not be considered here. Chief among these is the body of work center­
ing around the Navier-Stokes equations, since other lecturers will 
discuss such results here. 
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Lastly, a word is in order concerning the formulation of nonlinear 
eigenvalue problems. In a large number of problems, implicit param­
eters and constraints are present. A basic tenet in our work is to bring 
these items to light explicitly by introducing them formally into the 
relevant equations defining the problem. By so doing, many diverse 
mathematical situations fall into the category of nonlinear eigenvalue 
problems. 

Lecture 1. Periodicity for autonomous dynamical systems. The 
importance of periodic phenomena in both mathematics and nature 
is well known. Yet many basic questions concerning periodicity are 
unanswered. We mention two fundamental classes of problems for 
some classical dynamical systems that seem typical of this field of 
study: 

(A) Global problems (i.e. problems in which there is no obvious 
first approximation for the desired periodic solution). For example: 

If /(0,0) = 0, determine the structure of all periodic solutions 
of the system of N ordinary differential equations 

(1.1) xtt + f(x,xt) = 0y 

including those which are not close to the stationary point x = 0. 
A variant of this problem is obtained by replacing the term xtt with 

the second covariant derivative of x with respect to some metric 
structure on a manifold JH, so that one obtains 

M f(!)+/<*•*>-°-
If f(x, xt) = 0, this problem is equivalent to finding all closed 
geodesies on JH. 

(B) Local problems (in which there is an obvious first approximation 
for the desired periodic solutions). For example: 

Compare the periodic solutions of 

(1.3) x „ + Ax + f(x,xt) = 0 

with the periodic solutions of the linear system xtt + Ax = 0. Here A 
is an (N X N) matrix and f(x,y) = o(\x\ + |t/|), so that x = 0 is a 
stationary point of (1.3). 

Two classes of deep and unsolved problems of type (A) and (B) are: 
(C) Problems of celestial mechanics (in which one uses Newton's 

laws of gravitation to determine periodic motions of the planets and 
satellites). For example: 

Again as in (A) and (B), determine periodic solutions of systems of 
the form 
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(1.4) x „ + V ( 7 ( x ) = 0, 

(1.5) x „ + B ( x ) x , + Vt/(x) = 0. 

Here, because of Newton's laws of gravitation, U(x) possesses "singu­
larities" and one often resorts to a process called "regularization" to 
remove these singularities [20]. 

(D) Problems for "continuous" systems. Determine the periodic 
solutions of the mixed boundary value problem 

u„ = At#- / (x , t*) , 
(1.6) 

«I .o-O-

Here ft is a bounded domain in RN and A denotes the Laplacian. 
Note that if f(x, u) = 0, then the desired periodic solutions coincide 
with the so-called "normal modes" of vibration for (1.6). 

REMARKS, (i) Poincaré has conjectured that the periodic solutions 
are dense in the set of all solutions for problems of the type (1.4) or 
(1.5). This conjecture emphasizes the importance of periodicity in 
dynamical systems. "Dense" in this context means that given any 
solution x(t), then there is a periodic solution differing only slightly 
from x(t) for a given length of time [24, p. 82]. 

(ii) Another conjecture in this direction is that in the neighborhood 
of a given periodic solution, there exists a countably infinite number 
of other distinct periodic solutions (cf. Poincaré's last geometric 
theorem). 

All the problems (A)—(D) can be regarded as nonlinear eigenvalue 
problems. One observes that in each case the period of the desired 
periodic solutions is unknown a priori. Hence one might set t = ks 
where 2wk is the unknown period, in any of the equations (1.1) to 
(1.6), and seek 2TT-periodic solutions in s. Thus nonlinear eigenvalue 
problems are formed. 

We shall discuss one aspect of problem (A), namely the case 
f(x,xt) = VU(x) in equation (1.1). A classical existence theorem in 
this direction is due to Whittaker and Tonelli [1, pp. 387-389], but is 
restricted to the case N = 2. We shall show how the theory of non­
linear eigenvalue problems can be used to prove the following N-
dimensional result. 

THEOREM 1.1 [2]. There exists a one-parameter family of distinct 
periodic solutions for the system 

(1.7) x+ VC7(x) = 0 
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where X Ë B N and U(x) is a C^R1*), real-valued function such that 
(i) 0 = 17(0) ^ U(x)forxG RN, 

(ii) U(x) is convex and U(x) —> °° as \x\ —> °° . 
77ie family of periodic solutions is parametrized by the average of U 
(the potential energy) over a period. 

The proof we give of Theorem 1.1 has the advantage that it can be 
easily extended to the analogous case defined by equation (1.2). 

IDEA OF PROOF OF THEOREM 1.1. The obvious approach, by means of 
the theory of nonlinear eigenvalue problems, is to apply critical 
point theory by minimizing J*0

27r x2(s) ds subject to the constraint 
So"U(x(s)) ds = const = R > 0 (say). This approach fails however, 
since this minimum is zero. Now the equation (1.7) possesses "natural 
constraints" mentioned in the last paragraph of the introduction, and 
these must be introduced explicitly into the variational problem. In­
deed, after reparametrization and integration over the period 2TT, 
one finds that these constraints are Jo " V U(x(s)) ds = 0. To show 
that this modified variational problem IIR leads to a proof of Theorem 
1.1, we show that if U(x) €E C2(RN) and strictly convex, then the 
critical points of IIR are in (1-1) correspondence with the periodic 
solutions of (1.7) parametrized as indicated. For the other details we 
refer to [2]. The Euler-Lagrange equations of the modified problem 
n R are x + j30VC/(x) = V(ß • VC7(x)) where ß = (ßly • • -,ßN) is an 
N-vector of constants. Integrating over the period 2TT, we find that if 
H(U(x)) denotes the Hessian matrix of U(x), the quadratic form 
Jo" H(U(x))ß -ß(k=0. Now by the hypothesis (i), H(U(x)) for fixed 
x is a nonnegative selfadjoint matrix. Thus V(/3 * Vt/(x)) = 0, as 
desired. In the same way one finds ß0 > 0. The desired parametriza-
tion of the family of periodic solutions follows by setting t = ks in the 
equation f0

27rU(x(s)) ds = R. 
A close scrutiny of the proof in [2] enables us to formulate and 

prove the following: 

THEOREM 1.1 '. Suppose Lisa selfadjoint, nonnegative operator with 
closed range and finite-dimensional kernel, defined on a Hilbert 
space H. Then, ifJ\!(u) is a C2 weakly sequentially continuous, strictly 
convex functional defined on H such that J\!(u + tv) —» » as \t\ —» <» 
(for any fixed u, and nonzero v E. H) and 0 = J\!(0) ^ ^V(w), the 
operator equation Lu = kJM ' (u) has a one-parameter family of non-
trivial solutions (u(R), k(R)) such tliat J\l(u(R)) = R. 

IDEA OF PROOF OF THEOREM 1.1 '. As in the idea of proof of Theorem 
1.1 above, we need merely minimize (Lu, u) subject to the constraints 
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J\f(u) = R and (^'(11), w) = 0 for all w G Ker L. Again the "Euler-
Lagrange equation" is Lu = ßAf'(u) + J\f"(u)w, where w G Ker L 
and^A'" is a selfadjoint nonnegative operator. Consequently, taking 
the inner product of this equation with w G Ker L we find, as before, 
(cN" (u)w, w) = 0. Hence w = 0, so that the desired critical points 
satisfy the equation Lu = ßJ\f'(u) andß > 0. 

Nonetheless Theorem 1.1 is weak in the sense that one would like to 
assert the existence of at least N distinct families of periodic solutions, 
as in the simple linear case when 

£/(*)= Ef tV, ft>o. 
i = l 

A first step in this direction is to assume that the function U(x) is an 
even function of x such that x • V U(x) > 0 for x ^ 0 . In that case one 
can prove, by the "standard" arguments of nonlinear eigenvalue 
theory that (1.7) has a countably infinite number of families of periodic 
solutions. Unfortunately, after reparametrization, these families may 
coincide. Thus a more detailed investigation is called for. 

To this end we consider the special case of problem (B) obtained 
by studying the periodic solutions of (1.7) near the stationary point 
x = 0 with Vl/(x) = Ax + o(\x\) where A is a nonsingular selfadjoint 
(IV X N) matrix with positive eigenvalues Xx

2 g X2
2 = * # ' = ^k2 

( l ^ f c ë N ) . A classic result [4, p. 217] in this direction is due to 
Liapunov and in the present case asserts that the system (1.7) possesses 
k distinct periodic families provided U(x) is real analytic and the 
eigenvalues (k{2, * • *, A*2) satisfy the stringent irrationality conditions: 
kikj~l J^ integer (i,j = 1, • • •, k; i ^ j). (They are required because 
the "majorant method" is used in the proof.) Our results in bifurcation 
theory and nonlinear eigenvalue problems yield the following exten­
sion of Liapunov's result (cf. [3], [4]). 

THEOREM 1.2. If Vt/(x) is real analytic and VU(x) = Ax + o(\x\), 
then the system (1.7) will possess k one-parameter families of non-
trivial periodic solutions Xi(R) (i = 1, • • -, k) with associated periods 
tending to %nl\i as R —» 0. These families will be distinct if U(x) is 
even or if the numbers (X1? • • -,kk) satisfy the irrationality conditions, 
kjki~l j£ positive integer (j ^ i), of Liapunov. 

IDEA OF THE PROOF. We intend to find an analytic meaning for the 
condition kjkk ^ integer and to determine invariants which (i) 
describe the appearance of one-parameter families of periodic solu­
tions of (1.7) and (ii) which are valid irrespective of the condition 
kilkk = integer. 
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Step 1. Make the reparametrization t = ks. Then the equation can 
be written 

(1.7') x + A 2 V C / = 0 

where differentiation is now taken with respect to s. Furthermore 
we need only consider solutions of (1.7 ') defined on [0, TT] and satisfy­
ing x(0) = X(IT) = 0, as these correspond to 2nk periodic even solu­
tions of (1.7) in t. 

Step 2. Note that the eigenvalues of the linearized system 

(1.7") x + A 2 A * = 0 

over the class of even 2TT periodic vector functions x are all the numbers 
N2lki2 where N varies over the positive integers 1, 2, • • • and i = 1, 
• • -, k. Then kjki = N means that the eigenvalue l/A*2 is a degen­
erate eigenvalue (of multiplicity > 1) for the system (1.7"). Thus we 
are concerned with the problem of finding invariants describing the 
stability of eigenvalues of nonlinear perturbations of degenerate linear 
eigenvalue problems. 

Step 3. Denote by H the direct product of n copies of the Hilbert 
space of absolutely continuous real-valued functions defined on 
[0, 7T] and which possess one square integrable derivative x^s) over 
[0,w]; 

t = l 

H is a Hilbert space with respect to the inner product 

(*>!/) == É ( J^ ii(s)yMds + £ Xi(s)yi(s) dsj . 

NOTATION. For simplicity, vectors in H will also be denoted x. It 
will be clear from the context when x denotes a vector in H or a vector 
in Rn. 

Let H0 be the closed subspace of H consisting of n vectors x(t) 
whose mean value over [0, n] is zero. Then we shall show that the 
periodic solutions of (1.7') in question can be found as the solutions 
near x = 0 of an operator equation of the form x = k2{Lx + Nx} in 
H0. Since L is selfadjoint and N is a gradient operator, the abstract 
results on bifurcation theory mentioned in the introduction become 
applicable. The real analyticity of U(x) is used to insure that in a 
small neighborhood of x = 0, the periodic solutions obtained lie on 
continuous curves. 
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PROOF (PART I). We first reduce the equation (1.7) to an equation 
of the form x0 + A2[ Ax0 + f(x0)] = 0. Here x0(s) is a function of 
mean value zero over [0, TT], f is a higher order term in x with 
f(x0) = VF(x0) and F(x0) is a C1 real-valued function. To this 
end, we write a tentative solution x(s) of (1.7) as x(s) — x0(s) + xm 

where xm denotes the mean value of x over [0, TT] . If H = {x(s) | x(s) 
absolutely continuous on [0,TT] and x(s) G L^I^.TT] }, a Hilbert space 
structure can be defined on H by setting (x, y) = (x, y)^ + (x, y)^. 
if = H0 © RN is an orthogonal decomposition of if, x0 G #o> xm ^ ßN-
Thus (1.7) is equivalent to the system 

(a) x0 + A2 [ Ax0 + /(x0 + «V»)- ~ J^ f(xo + *m) J = 0, 

03) Axm + -i- f' / (x0 + xm) = 0. 
TT J 0 

Now given x0 with ||x0|| sufficiently small, (ß) can be solved uniquely 
for xm with ||xm|| sufficiently small, say xm = g(x0) where g(x0) = 
o(||x0||) is a continuously differentiable function of x0 (in the Fréchet 
sense). Consequently (a) and (ß) are equivalent to the system x0 + 
k2[Ax0 + J(x0)] where /(x0) is the orthogonal projection of 
f(x0 + g(*o)) on H0. Now we set F(x0) = F(x0 4- g(x0)) where 
/(*) = V F(x). Then, for y0 G tf0, (V F(x0), t/0) = (V F(x0 + g(x0)), 
{J + g '(*>)}(yo)) = (V F(x0 + g(x0)), t/o) since g '(x0)(t/0) = 0 as g '(x0): 
H-*H0±. Hence/(x0) = V/(x 0) . 

Now as in [4, p. 519], the solutions of (et), (ß) in H near x — 0 
can be determined by finding the solutions in H0 of the operator 
equation x0 = X2(Lx0 + Nx0) where L is a compact selfadjoint 
operator of H0 —* H0 defined by the formula 

(Lx0,t/o) = f Ax0 -y09 

and N is defined by 

(Nx0, t/o) = J* /(*o) ' yo. 

Furthermore, N is a compact gradient operator since the Fréchet 
derivative in H0 of SoF(x0)ds is Nx0 itself. We now apply the 
theorem of Krasnoselskiï [ (3) of the introduction]. In particular 
ß = llkk2 is a characteristic value for the linear equation x = XLx. 
Thus the operator equation above has a family of solutions (xR,ßR) 
with ||xR|| = R —>0 as ßR -* l/\fc

2. This family corresponds to the 
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desired one-parameter family of periodic solutions. The families 
Xi(R), ' • *, xk(R) so generated correspond to distinct one-parameter 
families provided, after reparametrization, xk(tlkk, R) =F Xj(tlkj, R) 
(j ^ k). This last condition is certainly met if kjkk~

l ^ integer 
(j 7̂  fc), for then the period of Xj(R) —> 277-/X,- as R-» 0, while the 
period of xk(R) -» 2irl\k ^ integral multiple of inlkj. 

SKETCH OF PROOF IN CASE U(X) IS EVEN AND AX
2 = X2

2 = • • • = kk
2. 

We wish to show that there are k distinct one-parameter families in 
this case. To this end as in Part I we reformulate the desired periodic 
families as solutions of the operator gradient equation x = k(Lx + Nx) 
in the space of odd functions in Wi}2(— ir,n)- Then applying the 
abstract result (2) of the introduction we find k distinct one-
parameter families of periodic solutions Xi(s), tending to (0, llkk

2) as 
R= | | x | | 2 -*0 . The difficulty now reduces to showing that after 
reparametrization s —» t, these families remain distinct. Thus suppose 
that the ith and jth families are such that Xi(s) = y(s) while Xj(s) = 
y(h(s)) where h(s) is a smooth function ^ s (mod 2TT). Then since 
both Xi and Xj satisfy equation (1.7), we find 

y + A*2(*)VI%) + y(fc(*))Ä(s) = 0. 

Thus h(s) = 0 and h(s) = as + b where a and b are constants. Next 
we show that a = 1. Indeed if y(s) satisfies y(s) H- X2V U(y) = 0 and 
Xj(s) = y(as -h b), then Xj -h a2X2V /̂(x,-) = 0. Since both aX and a 
come arbitrarily close to 1/X̂  as R —» 0, a = 1. Now it is fairly 
straightforward to show since y(s) is odd in s, and must have a minimal 
period 2TT that b = 2rm so that Xi(s) = x/s). 

When one tries to apply these results to the (regularized) problems 
of celestial mechanics (C), one arrives at a fundamental difficulty, 
namely that the problems of celestial mechanics are often nonlinear 
eigenvalue problems in two respects. For example, equation (1.5) 
after the "recommended transformation" becomes 

(1.8) x„ + kB(x)xs + X2V U(x) = 0 

so that not only are the functions B(x) and V U(x) not linear, but the 
eigenvalue parameter X also appears nonlinearly. To illustrate a way 
to obviate this difficulty, consider the so-called regularized Hill's 
equations of lunar motion [25, p. 388] 

(1.9) 

x - 2(x2 + y2)y - hx = V„ 

where V = f [(x2 + y2)(x2 - y2)2]. 

I y + 2(x2 + y2)x - hy = Vv, 
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Note that if one sets (x, y) = ß(w, z) in (1.9) and choosing Aß2 = 1, 
(1.9) becomes 

f w - (w2 + z2)z -Vw- k2hw = 0, 
(1.10) \ 

[ z + (w2 + z2)w - Vz - k2hz = 0. 

Now our methods apply to (1.10) for h < 0. Note also that, as in most 
difficult examples of periodicity phenomena in celestial mechanics, the 
linearized equation at (w, z) = (0,0) has an even-dimensional sub-
space of periodic solutions, 

Another important example in celestial mechanics is the problem of 
the preservation of periodic orbits of the Kepler (two-body) problem 
under an autonomous perturbation V V(x). The resulting Hamiltonian 
system becomes 

(1.11) ü + ul\u\3 + VV(u) = 0 w h e r e u = (ul9 • • -, uN). 

This problem was considered by Jürgen Moser in [20] ; however, his 
results were all based on stringent nondegeneracy hypotheses. Our 
results and methods can be used to weaken these nondegeneracy 
assumptions. A simple result in this direction is 

If the equation (f) (below) satisfies the hypotheses of Theorem 1.1, 
then (1.11) has a one-parameter family of periodic solutions x^h), 
where the parameter h varies over (0, — oo ) and denotes the total 
energy ofxi(h). 

IDEA OF PROOF FOR N = 2. Let the system (1.11) have fixed energy 
h. Then by regularization theory, one finds that periodic solutions of 
(1.11) with total energy h are in (1-1) correspondence with the periodic 
solutions of 

(f) 4Ü = hu + V W(II) , where W(u) = \u\2V(u2), 

(\\) provided that 2\u ' \2 - uû{V(u2) + h} = 1. 

Here we have used the obvious notation u = ux + iu2, \u\2 = ux
2 + 

u2
2. Now we apply Theorem (1.1) to (f) to define a one-parameter 

family of solutions (uR(t), rR) for (f), and we find that value of R such 
that (\\) holds by taking the mean value of (\\) over the period TJ(R) 
and noting that the mean value of uü{V(u2) + h} over the period 
T<(R) is R. 

REMARK. Clearly result (2) of the introduction can be used to prove 
much stronger results for (1.11) than that given above. This work will 
be carried out in a subsequent paper. 
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It is clear that the problems of celestial mechanics will be a fruitful 
future source of research problems in nonlinear eigenvalue theory. 

Finally, we note the possibility of obtaining the periodic solutions of 
(1.6) [problem (D)] as limits of (discrete) systems of the form (1.4). 
Such results are reasonable if one regards a continuous system as a 
limit of discrete ones. However fundamental difficulties still arise in 
studying problem (D), since the discrete approximations to the system 
(1.6) are highly "degenerate" (in the sense of Liapunov's theorem 
mentioned above). 

Let fi be a bounded open set in RN. Then there are an infinite 
number of periodic solutions of the system: 

utt — Au = 0, u\d[ì = 0. 

These periodic solutions are linear combinations of the "normal 
modes", which in turn are obtained by considering the eigenfunctions 
of the Laplacian A over 12 subject to null boundary conditions; i.e. 

Aw* + ki2Ui = 0, Hilda = 0. 

We now consider the periodic solutions of the nonlinear system 
(1.6) where f(x, u) is locally Lipschitz continuous in x and u, with 
\f(x,u)\ = o(|w|). Let us suppose a solution of (1.4), u(x, t), can be 
written 

QO 

( *) u(x,t) = 2 qi(t)ui(x) 
i = l 

where U{(x) are the eigenfunctions mentioned above. Then we show 
that finite-dimensional approximations to the solutions of (1.6) are 
obtained by studying the solutions of an equation of the type (1.4). 
Indeed by completeness of the eigenfunctions 

oo 

i = l 

where ^ = Jn/(x,Ei=i 9iMj)M»- Th u s substituting (* ) into (1.6) 
and equating the coefficients of wf(x) to zero, we obtain the system 

(ji + K% + J n / ( x, Ê qjUj ) t n = 0 (t = 1,2, • • •)• 

Hence finite-dimensional approximations to the solutions of ( * ) are 
obtained as periodic solutions of the system 
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(1.12) 9« + K% + f / ( *, 2 WJ )ui = ° (* = 1, • • ', n). ja \ i==1 / 

Now this system has the Hamiltonian form of equation (1.4). Indeed, 
if Fu(x, u) = f(x, II), then U(q) = | £ " -1 -A* V + % ) s o * a t 

* y (<?i> " ' *> 9») = L / ( x> Ê 9Ä ) w*(*) 

where P(qi, ' ' *, q„) = Jn F f o X i - i W*)- N o t e however that even 
for the simplest system ii = (0,27r) the irrationality conditions of 
Liapunov are strongly violated, since kN

2 — N2 for each integer N. 
For small initial data and a reasonably large class of functions f(x, u), 
Sattinger [26] showed that the solutions of (1.12) do approximate the 
solutions of the Cauchy problem for (1.6) for all time. We conjecture 
that the periodic solutions of (1.12) near q = 0 also approximate the 
periodic solutions of (1.6) near u = 0. 

Lecture 2. Periodic water waves. Here we consider the classic 
problem of proving the existence of steady periodic waves at the free 
surface dT of an ideal incompressible fluid. Because of their precision 
and relative simplicity, the results described here represent one of the 
most successful attempts to apply global analysis to a given difficult 
nonlinear eigenvalue problem. We suppose the flow is steady, irrota-
tional, and two-dimensional, the fluid occupying a domain r in R2. 
The points in R2 are denoted by Cartesian coordinates (x, y). Euler's 
equation of motion and the equation of continuity for this problem 
then become 

(2.1) A £ = 0 i n r , 

(2.2) {|V£|2 + gij = constant on dr, 

where £ denotes the velocity potential for the flow. Hence we are 
forced to solve a nonlinear free boundary value problem. Following 
an argument due to Levi-Civita, one introduces the complex variable 
z= x + iy and two analytic functions of z, u(z) — £ 4- ii/f and co = 
log {d£ldx — idCldy} = C(<I>) + iî>. Here ^ is the stream func­
tion for £, <I> is the angle formed by the velocity vector V at the point 
(x, j/), and C(4>) is the harmonic conjugate of 4>. In order to work in a 
known domain, one chooses u = £ + itp as an independent variable 
and regards o> as a function of u. Assuming, for simplicity, that the 
fluid is at infinite depth, and after performing the recommended 
period transformation of Lecture 1, the desired periodic solutions are 
in (1-1) correspondence with the nontrivial solution of the nonlinear 
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integral equation 

(2.3) * ( 6) = X J" K( S ', e)e3C(4>) sin $ d 0 ', 

where X = (gv)l2nc2, v is the wave length, and e denotes the constant 
horizontal velocity of the moving wave. K( 0', 6) is the Green's func­
tion associated with the Neumann problem for A in a circle, and the 
additive constant in the definition of C(<ï>) is so chosen that 
Jo277C(<&( 0))d0= 0. Note that (2.3) is in the form of a nonlinear eigen­
value problem. 

There are basically two types of problems associated with (2.3): (i) 
a local bifurcation problem for <I> very small, and (ii) a general global 
problem for (4> | unrestricted. The local problem was "solved" in 1925 
by Levi-Civita [5], but the global problem (which we discuss here) 
remained only partially solved until 1961 when the Russian mathe­
matician J. P. Krasovskii proved the following results. 

THEOREM 2.1 [6]. There exist steady periodic waves satisfying 
(2.1) and (2.2) for which the maximum angle of inclination of the tan­
gent to the wave profile takes any value in the open interval (0, n76). 
The wave is symmetric relative to a vertical axis passing through the 
peak of the wave. Furthermore waves of this type with arbitrarily 
large Fronde number X cannot exist. 

Before sketching the proof of this interesting result, we note that 
the number 7r/6 appearing in the theorem is sharp in the sense that 
(i) Stokes' periodic "limit" waves have max |4>| = TTI6 and possess 
cusps [7], (ii) the solutions of (2.1), (2.2) show that steady periodic 
waves with max (4>| > 7r/6 do not exist (see Wehausen [27] for 
further information). Actually, Krasovskii proved a sharp analogue 
of Theorem 2.1 for waves of finite depth and periodic bottom, by 
slightly modifying the proof given below. 

SKETCH OF THE PROOF OF THEOREM 2.1. The proof breaks down into 
the usual steps: 

1. Representation of equation (2.3) as an operator equation of the 
form x = kAx in a suitable Banach space X. 

2. Proof of complete continuity of the map A in X. 
3. Application of the Leray-Schauder degree to the operator equa­

tion. 
4. Proof of the estimates necessary to calculate the Leray-Schauder 

degree. 
In order to carry out the steps 1—4, we need to know the following 
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analytic facts concerning the conjugation operator C of a harmonic 
function and the kernel K( 0 ', 0). 

Fact 1 (M. Rieszs theorem). For 1 < p < » , C(4>) is a bounded 
mapping of Lp[0, 2TT] -> Lp[0,2n] and ||C(<D)||P ^ (p/(p - 1))||<D||P. 

Fact 2 {Zygmunds theorem). If |<t>| ^ 1 and 0 < X < TT/2, then 
/o27rexp (XC(*)) d 0 ^ 4TT/COS X. ê 

Fac*3. m a x ^ W * 0 ) | » d 0 ' § Cp, and for 1 < p < oo and fixed 
0, (dK/d 0) maps Lp [0, 2TT] -> Lp[0, 2TT] boundedly. 

(A sketch of the proof of the first two facts will be found in 
Zygmund — Trigonometric series (Cambridge, 1968), pp. 254-257, 
whereas the third fact is a well-known property of the Green's function 
for A.) 

(Steps 1 and 2). Now let X = Co[0, TT] , i.e. the continuous functions 
on [0, TT] that vanish at 0 and TT. Let | |* | |x = sup[0,7r]P)(ö)| and 
define the operator 

(2.4) A*(0) = f* 2^(0 ' , 0)e3CW sin® dd'. 
Jo 

One shows that A is a completely continuous map defined on the 
sphere S(0, p) of radius p < 7r/6 in X. Clearly, by Facts 1 and 3 above, 
A is a well-defined and continuous map from S(0, p) —» X for p < TTI6. 

In fact, under Holder's inequality, one easily shows that, for <ï>l5 

* 2 G S ( 0 , p ) , p = 7 T / 6 ~ r f ( d > 0 ) , 

HA*, - Ad>2|| ^ K^ll*! - 0>2||. 

To verify" the compactness of A, we again use Facts 1 and 3 to show 
that if 4>(0)=A<I>, then for some s>l, \\d$ldO\\Lsß ^ for 
<ï> G S(0,p) with p = 7T/6 — d (as above). Consequently, | |* | |C 0 M = Mp 

for some /Lt > 0. The desired compactness of A thus follows. (Here 
Co M is the Banach space of Holder continuous functions of exponent 

(Step 3). In order to apply the Leray-Schauder degree to prove the 
existence of a solution of (2.3), we let 

4Ad> = X [ A * + € J" K(0', 0)sin0'd0' 1 . 

Note that Ae is compact (and positive). We prove 
(f) the Leray-Schauder degree of / — A^ on the positive cone 

Kß = {<D( 0)£> G Co[0,TT] , <D è 0, ||*||Co ^ ß], 0 < 0 < TT/6, is dif­
ferent for large and for small X. 

The last part of Theorem 2.1 and (f) suffices to prove the existence 
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part of Theorem 2.1. To see this, we first note that (t) implies that 
there are sequences {Xn}, {en}, {4>n} with Xn > 0, en —» 0, and 
4>n G C0[0,7r] suchthat 

(2.5) Q>n = knA€n<Pn, ||<Mc = 0 • 

By the compactness of A and the boundedness of |Xn| (due to the non­
existence part of Theorem 2.1) there is a (strongly) convergent subse­
quence {Xn } and {<I>n} with limits (Xß, 4>/3) such mat 

(2.6) <D, = X,A4>„ \\<t>ß\\c = ß> <M*) = ° on[0,7T]. 

Thus one can extend <&( 0) to an odd 2TT-periodic function of 0. 
(Step 4). First we prove (t). For X very small, d(l — A^, 0, Kß) 

= 1 since for X = 0, Ae x = 0. On the other hand, for X very large, 
4>( 0) — Aejfb( 0) cannot be positive for max |4>( 0) | ^ ß, so 

d ( Z - A ^ 0 , K , ) = 0 

in that case. 
The nonexistence result of Theorem 2.1 is somewhat more difficult. 

It is based on the following two a priori estimates for solution <ï>( 0) 
of (2.3): 

There are absolute positive constants y and 8 
(2.7) such that **( 0) ^ (kl8)yL(®y) where L3> = 

/o" K($', eyb( e')de' provided ||a>||Co s TT/2. 

(2.8) There is an absolute constant ß > 0 such that *?( 0) ^ 0 sin 0. 

Assuming (2.7) and (2.8) with ß maximal, the proof of nonexistence 
is as follows, applying the operator L to (2.8) and using (2.7) we have 

(8/A)*&* ^ L&v( 0 ) ^ )3L(sin 0) = ß sin 0, 

i.e. <ï>* è (X/8)Tß sin 0, so that (X/Ô)y ̂  1. Hence for X > ô, (2.3) can 
have no solution. To end our sketch of the proof of Theorem 2.1, we 
prove (2.7) and (2.8). To demonstrate (2.7), it suffices to show that, for 
<ï> G Kß, 

(2.9) L(e3C<*> sin O) ^ (lld)U^) "r. 

Now (2.9) follows from Holder's (inverse) inequality, since 

L(e3C(*)sin*)SL(e3C<*)*) 

è { L ^ C W ) } 1 ' ' ^ ! ^ ) } " ? 
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with llq + 1/y = 1 (q < 0). Then the basic Facts 2 and 3 imply 
that for 9 = -1 /10 and |* |"^ir /2 , \L(e*WcW )| < g-M. Finally, 
we prove (2.8). Applying the inequality (2.7) k times and letting 
&y( 0) = S"=i an sin n 0 > w e find 

(2.10) L ^ = ^ - ^ s i n n f l g ( v ) ^ ^ ' 
n=l n N A / 

Furthermore 

2 (aJnk) sin n 0 ^ ax sin 0 — I 51 ' ' ' I 
• n=2 ' 

and \^n==2(ajnk) sin n0\^ max» \an\ £n=2 (sin^n*"1. Thus (2.10) 
implies that 

*"(*)&; ( j J * { ^ - m a x k l S - ^ z r j s i n A 

Since 4>( d) = 0 on [0, ÎT] , Û^ > 0 and choosing fc suflìcientìy large we 
can choose {di — max |an l2n=2 ( l / n f c _ 1 ) } ^ ai/2. 

Paul Garabedian has observed that the results discussed here can 
be reformulated in terms of critical point theory. It is an open problem 
to obtain Theorem 2.1 by this approach. Another open problem of this 
type is to prove the existence of "solitary" waves as a limit of the 
periodic waves proved in Theorem 2.1. 

Lecture 3. Equilibrium states in elasticity. Perhaps the oldest non­
linear eigenvalue problem, dating back to 1744, is the "Elastica" prob­
lem of Euler in which one considers the equilibrium states of a thin, 
flat, narrow, elastic rod compressed uniformly along its length [8]. 
In this lecture, I hope to show that even simple problems concerning 
equilibrium states of thin elastic structures lead to a class of extremely 
interesting unsolved nonlinear eigenvalue problems. 

1. Some terms of elasticity. A solid body is elastic if it changes 
size and shape when a force (sufficiently restricted in magnitude) acts 
on it, but returns to its original size and shape when the force is with­
drawn. Elasticity is the study of deformations of elastic bodies. The 
mathematical foundations of the subject have been carefully studied 
since the basic work of Euler, Lagrange and Cauchy; and the 
associated problems in partial differential equations have been studied 
by Hadamard, Friedrichs, and John, among many others. 

One approach to the study of elasticity proceeds by attempting to 
obtain global results on deformations from local information. Two 
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basic tensor quantities enter at this point: strain a measure of the 
change of an element of length when a body is deformed (a purely 
geometric quantity), and stress a measure of internal forces acting in 
a body. 

A stress-strain law is a functional relationship between these two 
tensors, and characterizes the elastic properties of a given body. The 
simplest possible relation is the linear one (Hooke's law). 

We shall focus attention on equilibrium states of elastic bodies 
acted on by forces. The partial differential equations describing such 
states are obtained as Euler-Lagrange equations of the potential 
energy of the given elastic system. Problems arise in one, two or three 
dimensions depending on the relative dimensions of the elastic body. 

The solutions of the Euler-Lagrange equations, subject to the 
appropriate boundary conditions, determine "global" equilibrium 
states. The joint assumptions of small deformations and Hooke's law 
lead to linear equations and boundary conditions. However, if either 
of these assumptions is given up, nonlinear equations arise and the 
usual methods for studying the resulting problems become in­
applicable. It is at this stage that the qualitative methods of global 
analysis come to the fore. 

2. A 1-dimensional example. Consider a thin, flat, narrow elastic 
rod of unit length compressed uniformly along its ends which are 
constrained to lie on a fixed line. In 1744 Euler showed that the 
equilibrium states of this rod correspond to the solutions of the non­
linear equation 

d2yldx2 + ky(l + y2)m = 0 

subject to the boundary conditions y(0) = j/(l) = 0. (Euler obtained 
this equation by minimizing the integral of the square of the curvature 
over the deformed rod.) Here k is a measure of the compressive force 
acting on the rod {(x, 0) 10 â x = 1} and y(x) measures the vertical 
displacement of the point (x, 0) from its original flat state. This equa­
tion was solved by Euler by explicit integration using elliptic functions. 
He found that, for k = kx (the smallest eigenvalue of the linearized 
problem), y(x) = 0 is the only possible solution, but, for k > k\, the 
rod deforms out of its flat state. Furthermore as k —> <*> a countably 
infinite number of distinct equilibrium states are possible for the rod. 
Which of these states, existing for a given X, is preferred by nature? 
Following Friedrichs, we add 

Hypothesis E. Nature prefers the state with the least potential 
energy. 
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3. The two-dimensional problems of von Karman. The equations 
defining the two-dimensional analogue of Euler's example were formu­
lated over 50 years ago by T. von Karman. We consider a thin elastic 
body B which is flat in its undeformed state subjected to a compressive 
force (of magnitude A.) acting on the boundary of B. Then the stresses 
produced in B, as measured by the Airy stress function, f(x, y) + 
kFo(x,y), and the displacement of B from its flat state u(x,y) are 
defined by the following quasilinear elliptic system: 

Vf--!!*.]. 
A% = A[F0 ,u] + [/>«]> 

where A2 denotes the biharmonic operator and [f,g] = fxxgyy + 
fyyëxx ~~ Zfxygxy If w e represent B as a bounded domain G in 
R2 and the boundary of B as dG, we may consider the following 
boundary conditions associated with (3.1): 

u = ux = uu = 0 
(3.2) on dG. 

f=f* = fy = 0 

Here F0(x, y) is the function obtained by solving an associated inhomo-
geneous linear problem, and is a measure of the stress produced in 
the undeflected plate, if it were prevented from deflecting. 

The resulting equilibrium states are called "buckled" states, and the 
problem is referred to as "elastic buckling". 

Problem. Determine the totality of solutions of (3.1) and (3.2) as a 
function of A. and decide which among them are physically relevant. 

In order to answer this question we note first abstract reformula­
tions of (3.1) and (3.2) (see [9] ). 

(a) The solutions of (3.1) and (3.2) are in (1-1) correspondence with 
the solutions of the following operator equation in the Sobolev space 
W 2 ,2(G)J henceforth denoted by H: 

(3.3) u+ Cu = kLu. 

Here L and C denote certain completely continuous mappings of 
W2,2(G) into itself, with L linear and selfadjoint while C is homo­
geneous of degree 3 and a gradient map. 

(b) The solutions of (3.3) in turn are in (1-1) correspondence with 
the critical points of the functional (Lu,u) subject to the constraint 
||w||2 + \(Cu,u) = R ( 0 g ß < o o ) , that is, critical points of the 
functional (Lu, u) on the one-parameter family of Hilbert manifolds 

MH= { u | H 2 + \(Cu,u)=R}. 
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PROOF OF (a). By virtue of the facts that H is a Hilbert space with 
respect to the inner product 

(U, V)2j2 = jG{UXXVXX + 2UXyVXy + UyyVyy}, 

and that 

[/> g ] = (fw& " fxygv)x + (fxxgy - /xygx)y, 

weak solutions of (3.1) and (3.2) can be defined as pairs of functions 
u, f, each an element of H, which satisfy the following integral 
identities, for all <f), r) Œ. H: 

(*) ("> *?)2,2 = J [ (JxyWy - / r oMxK + (jxyW* - ^xWy)l7y] , 

(**) (f> 402,2 = 2 J (UXUyy<l>X - UXUXy(f>y\ 

where f=kF0 + f. Now it is a standard result of the regularity 
theory of elliptic partial differential equations that the solutions of 
(3.1) and (3.2) are in (1-1) correspondence with those of (*) and 
(**) (see [9, Theorem 2.1] ). We now show that the solutions 
of (*) and (**) are in (1-1) correspondence with the solutions 
of (3.3). To this end, we employ Sobolev's imbedding theorem and 
Riesz's representation theorem for linear functionals in the Hilbert 
space H. Define the operator C for g, w, <f> Œ. H by 

(C(lV, g ) , <f>)2>2 = J G (gXyWy - gyyWX)<j>X + (gXyWx ~ gXXWy)<f>y 

then, (i) (C(w9 g), <J>)2,2 = K||g||2f2 | |u;| |M | |0| |M where K is a constant 
independent of w, g, <f>; and (ii) C(w, g) is a bounded bilinear mapping 
of H X H into itself. Furthermore if wn —» w weakly in H, C(wn9 wn) 
—> C(w, w) strongly in H and 

||C(a>,W) - C(tt,«)|| ^ K{\\u\\ + \\w\\}\\u - w\\. 

Hence equations (*) and (**) can be rewritten 

(W, 17)2,2= (C(tl, J) , T))2,2, 

(fy 4)2,2= (C(tt, tl), <W2f2. 

Since these equations hold for all 17, $ G /f, we have that / = 
- C(u, w) and w = C(u, kF0 + / ) . Define C(w) = C(u, C(u, u)) and 
L(w) = C(u, F0); then the above equations can be wri t ten/ = — C(u, u) 
and u + Cw = XLw. Since w uniquely determines /, the solutions of 
equation (3.3) are in (1-1) correspondence with the solutions of (*) 
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and (**), as required. Note the stated properties of C and L 
follow immediately from the définition; the fact that C is a gradient 
map follows because the form (C(u, g), <j>) is symmetric in u, g and <f> 
so that if we set l(u) = \(C(u),u), a short computation shows 
l im^o (/(* + *<*>) - I{u))k = (C(II) , </>) for all <f> Œ H. 

PROOF OF (b). First we note that for fixed positive R the set dAR = 
{u | ||w||2 + \(Cu, u) = R} is a Hilbert manifold in H. Indeed setting 
F(u) = ||w||2 + | (Cu, u), so that grad F(u) = |(f* + Cu) = 0 implies 
u = 0 because (Cu,u) = || C(u, w) | | 2= 0. Thus the critical points of 
the functional (Lw, u) on dAR for some R coincide with the solutions 
of Lu = fc{w + CM}. NOW fc ̂  0 as Lu = 0 implies u = 0. So setting 
fc = A"*1, the critical points coincide with the solutions of the equation 
(3.3), u + Cw = ALu, on 5 AR for some R. 

In studying this problem, the following result is of some interest. 
We assume for simplicity (Lu, u) > 0 for M ^ O , SO that the eigen­
values of u = \Lu can be written 0 < Ax ê A2 = A3 = 

THEOREM 3.1. The solutions of the system (3.1), (3.2) have the fol­
lowing properties: 

(1) For A =i Ai, #ie onZt/ solution is w = / = 0 (£/i£ trivial solution). 
(2) //A > Ai, nontrivial solutions exist 
(3) TTie potential energy of any nontrivial solution is strictly nega­

tive, so that ifk > Ai, a nontrivial solution is preferred by nature. 
(4) There are at least a countably infinite number of distinct one-

parameter families of solutions (un(R),fn(R),An(K)) existing forcali 
R = 0 which tend as R -* 0 to the vector (0,0, An). 

_ PROOF OF (1). If (ü,J) satisfies (3.1) and (3.2) for A < Ai, then 
/ = — C(w, Ü) and ü + Cü = ALü with A < A^ Hence (U, u) + 
(Cû, W) = k(Lü, ü). By the variational characterization of At, for 
A = Ai, (ü, u) — A(Lw, ö) è 0. Combining these equations (Cü, Ü) 
= ||C(M, ü)| |2 and hence C(ü,ü) = 0. Since ü is smooth, this 
implies JG [w, Ü] <f> = 0 for all (f> Œ H. Hence 

" lac = 0. 

Thus the surface ü = ü(a, t/) has zero Gaussian curvature, and is 
generated by straight lines. Since ü= 0 on dG, we obtain w = 0 
so that / = — C(ü, Ü) = 0 also. 

PROOF OF (2). The numbers cx(R) = supM (Lu, u) are a one-
parameter family of critical values of the variational problem (b). 
These critical values determine solutions (ui(R),kl(R)) of (3.3) and 
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consequently solutions (tii(R),/i(R), Xi(R)) of (3.1) and (3.2). Now 
a s R ^ O , (w1(R),X1(R)) -» (0,Ai). Indeed as R -» 0 ||wi(R)|| -* 0 so 
supG |wi(R)| —»0 and X^R) —» A^ [See Appendix at the end of the 
lecture.] 

PROOF OF (3). The potential energy of a nontrivial solution (u, f, X) 
is proportional to V(u) = ||w||2 + \{Cu9u) — k(Lu,u). For a solution 
||w||2 + (Cu, M) = \(Lu, u). Thus V(u) = - \{Cu9 u) < 0. Hence the 
result follows by Hypothesis E. 

PROOF OF (4). To prove the existence of a countable number of 
distinct solutions un(R) of (3.3) on AR we use the results discussed in 
[17]. Since both u and - M Ê A R , A R / Z 2 is homeomorphic to infinite-
dimensional real projective space over H, P(H), and cat P(H) = » . 
Furthermore, it is immediate from the results of [3] that the varia­
tional problem (b) satisfies the Palais-Smale condition. Indeed it is 
sufficient to show that grad A(u) = u + Cu satisfies condition S, i.e., 
if un —> u weakly and (grad Aun — grad Au, un — u) —» 0, then wn—» u 
strongly. But this is clear as C is a completely continuous mapping. 
More precisely, un(R) can be characterized by the minimax principle 
of [2], setting B(u) = (Lu,u), B(un(R)) = sup[V]n infv B(u) where 
[ V] „ = {V | V G AR/ZJ, cat (V, AR/Z2) ^ n}. As this result is true for 
each R > 0, we obtain a countably infinite number of distinct one-
parameter families of solutions (wn(R), Xn(R)). Furthermore, we note 
that, by [9], as R -> 0, (un(R), Xn(R)) -» (0, Xn). 

The following graph of the norm of solutions u versus X summarizes 
the contents of the above results. 

A, A7 À, A 

FIGURE 1. Buckling of a thin elastic plate. 

The above diagram suggests the following: 

THEOREM 3.2. For X €E (kN,\N+i], the system (3.1), (3.2) possesses 
N distinct solution pairs (± Wi(X), /(A)), f = 1,2, • • •, JV. 
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SKETCH OF PROOF. Arguing as in Hempel [21], we consider the 
critical points of the functional (Cu, u) subject to the constraint of lying 
in S = {u | (u, u) + (Cu, u) = k(Lu, u), u ^ 0}. Since S does not 
contain 0, the critical points of this isoperimetric variational problem 
satisfy Cu + g(u + 2Cu — kLu) = 0 where g is a constant ^ 0. We 
can show g = — 1 by taking the inner product of this last equation 
with u. Thus the main difficulty is demonstrating the existence of 
nonzero critical points. To accomplish this, one uses the characteriza­
tion of the eigenvalues of a compact selfadjoint operator defined on a 
Hilbert space to show that for k G. (kN,kN+ì), S contains sets of 
category ^ N but not sets of category > N. One now shows that the 
Ljusternik-Schnirelmann principle applies to this isoperimetric prob­
lem. Of course the main difficulty in this step is the singular point 
u = 0 for S. Full details will appear in a future publication. 

Another problem of importance is "combined buckling-bending" 
where in addition to the compressive force acting on dB there is a 
force / on the plate normal to B. Again the von Karman equations 
defining equilibrium states can be written as operator equations in the 
Hilbert space H. Indeed (using the same notations as above), the 
equation is 

(3.4) u + Cu = kLu + / . 

Clearly the solutions of this equation in H coincide with the critical 
points of the potential energy functional 

(3.5) V(u) = ||u||2 + \(Cu, u) - 2(f u) - k(Lu, u) 

and, by Hypothesis E, the physically relevant solution u can be 
characterized by 

(3.6) V(u) = min V(u). 
H 

In this connection the following theorem is of interest. 

THEOREM 3.3. The problem of elastic bending, defined by equation 
(3.4), always has a solution u, characterized by (3.6). For X 6E [0, X j 
and sufficiently small f, the solutions of (3.4) are unique, but (in 
general) not otherwise. 

PROOF. The functional V(u) is (i) lower semicontinuous with respect 
to weak convergence in H, since C(u) is completely continuous in H; 
and (ii) coercive in the sense that V(u) -» <» as ||w|| —> <». Indeed 
since Lu = C(u,f), 
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V(«) = ||u||2 + {{Cu, u) - 2(/,u) - \(Lu, u) 

= ||«||* + | \\C(u, «)| |2 - 2(/, u) - k(f, C(u, u)) 

^ IN 2 -211/11 IN - ! M Il/Il2-

To prove uniqueness for small / , the following inequality is useful: 

| | c« - co||^MINI2 + INI2}»«-»II 

where fc is a constant independent of u, v G H. First, for X = 0, if 
u - Cu = f, (u, ti) + (Ci*, M) = (/, ii) so that as (Cu, ii) è 0, ||u|| ^ ||/| |. 
Hence if u, v are solutions of (3.4) for X = 0, then (u — v) — (Cu — Cv) 
= 0. Hence ||u - v\\ = \\Cu - Cv\\ ^ fc{||u||2 + |M|2}||ii - v\\ so 
that if u^v, then 1 ^ fc(2||/||2), i.e. | | / | | 2 ^ l /2 fc . Hence if 
11/112 < 112k, the solutions of (3.4) are unique. 

To illustrate nonuniqueness for large f, we consider the example of 
a thin circular plate B deformed under a large force normal to the 
plane of B. Yanowitch [22] has shown that (3.4) has a radially sym­
metric solution u = u(r), but that the critical point of (3.6) is not 
radially symmetric. 

4. The effect of curvature. A thin elastic body which is curved in 
its undeformed state is called a shell. The buckling problem for a 
thin, shallow shell B, subjected to a force (sufficiently restricted) of 
magnitude X acting on the clamped boundary of B, can be formulated 
as the following system of nonlinear elliptic partial differential equa­
tions and boundary conditions (the so-called von Karman equations) 
(see [32] ): 

- 5 [ii, II] - (kxwx)x - (k2wy)y, 

[f,u] + (k,fx)x + (k2fy)y + Z 

where [/, g] = fxxgyy + fyygxx - 2fxygxy, 

0, \a\ ^ 1, 

K»m H ^ 1. 

Here k{ are the principal curvatures. Again we can translate the prob­
lem into a variational problem on an infinite-dimensional manifold 
dAR in the Sobolev space W2^(C). However in this case the struc­
ture of the critical points for the problem is quite different if fc^ fc2 

jt 0. This can be seen most easily by the following graph showing 
the norm of solutions w versus X. 

(3.7) A2//E = 

DLhilh = 
(3.8) 

(3.9) D«u\m = 

(3.10) D f U = 
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IN t 

FIGURE 2 

More explicitly, 
(a) the problem (3.7)—(3.10) is equivalent to an operator equation 

(3.3 ') analogous to (3.3). In fact, as in §3, we find 

(3.3a') / = -\C(u,u)- kLu, 

(3.3b') u = KLxu + C(u,f) + kLf, 

where we have set k = (kx
2 + k2

2)112. Substituting (3.3a') into (3.3b') 
and simplifying, we obtain 

(3.3') u + | Cw + kC(uy Lu) + {kLC(u, u) + k2Lhi = kLxu. 

(Note that ifk = 0, then (3.3 ') reduces to a variant of (3.3).) 
(b) The solutions of (3.3 ') are the critical points of (Lu, u) subject to 

the constraint u G dAR, where 

dAR = {u | A(u) = ||u||2 -h \{Cu, u) + k(C{u, u), Lu) + k2\\Lu\\2 = R] 

(for small R) is a Hilbert manifold. 
PROOF OF (a). Repeat proof of (a) of §3. 
PROOF OF (b). Apart from a constant factor, grad Au coincides with 

the left side of (2.3). Furthermore, the critical points of the functional 
B(u) = {Lxu, u) coincide with the solutions on dAR of (3.3'). We shall 
show that for sufficiently small R (say R ^ Bo), dAR is a Hilbert 
manifold in H. To this end we recall that I(u, v, w) = (C(u, v), w) is 
a symmetric function of u, v, w. Thus grad Au coincides with the right 
side of (3.3'). If 

A(u) = H 2 + i C(u, u)2 + fc(C(fi, II), Lu) + k2\\Lu\\2 = R, 

then | |u | | 2 + | |jC(ii,ii) + kLu\\2 = R. So \\u\\2^R for u G dAR. 
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Also if grad Au = 0, 

(gradAw,w= ||u||2 + \\\C(u, u)\\2 + fjfc(C(i*, u), Lu) + fc2||Lu||2 = 0, 

from which | |w||2^|fc| |Lu| | ||C(t*,tt)||. Thus ||w||2 ^ cci||u||3 where 
c = | | L | | and ||C(ii, u)\\ ^ cJtiH2, so that 1 ^ cci||u||. If u G dAR 

and grad Au = 0, we have 1 < CCXVR Therefore if R < (l/cc^)2, 
then grad A(u) j^ 0 on d AR and d AR is a Hilbert manifold. 

Furthermore, the functional B(u) defined on AR (for R ^ RQ) 
satisfies the Palais-Smale condition. To check this, as in the proof of 
Theorem 3.1 we need only note that whenever un -* u weakly in H, 
un G dAR, and grad Aun —» grad Au strongly in H, then un —> u 
strongly in H, so that u G dAR. Now the critical points of B(u) on 
AR are the solutions of grad Au = kLxu for some k with ||w||2 ^ R, and 
so the stated result follows. 

In order to explain Figure 2 the following result, analogous to 
Theorem 3.1, is of interest. (We assume for simplicity that Lxu = 0 
implies u = 0.) 

THEOREM 3.4. The solutions of the system (3.3') have the following 
properties: 

(i) Let Ai* be the smallest positive eigenvalue of the problem 
u = kLxu. Then the potential energy of a nontrivial solution of (3.3) 
is strictly positive for k < A^*. Hence the shell will not buckle for 
k < Ax*. 

(ii) Let kn denote any eigenvalue of u + k2Lhi = kLxu. Then for 
R sufficiently small, the system (3.3) has a one-parameter family of 
solutions (un(R), An(R)) -* (0, An) as R -» 0 where un(R) G dAR, for 
each R. 

PROOF, (i) The potential energy of a solution of (3.3) is proportional 
to 

V(u) = \\u\\2 + \C(u, u)2 + k(C(u,u), Lu) + fc2||Lw||2 - k{Lxu, u) 

= ||w||2 + || \C(u, u) + kLu\\2 - k(Lxuy u). 

Now if k ^ kx* then ||u||2 - k{Lxu, u) g 0, so V(u) ^ 0. 
(ii) This result follows from the bifurcation theorem of Appendix 

A. The solutions are obtained by comparing the critical values of 
B(u) on dAR ( R = Ro) with the critical values of B(u) on the set 
dSR= {u | ||a||2 + fc21|La||2 = R}. The latter critical values are pre­
cisely the numbers Rkn ~l. 

REMARK. A global one-parameter family of solutions for (3.3 ') can 
be found as the critical points of the (conjugate) variational problem: 
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Minimize A(u) subject to the constraint B(u) = R. However the 
existence of global families of solutions as in Theorem 3.1 is as yet 
unknown for k y£ 0. 

Appendix — Proof of the fact that Xi(R) -»Xx in Theorem 3.1(2). 
Let cL(R) = sup (Lu,u) over dAR and Ci(R) = sup (Lu, u) over 
dXR, where dXR = {U\\\U\\'H= R}. NOW the sets d£ R and dAR 

are homeomorphic by means of the natural mapping defined by rays 
through the origin. Thus if u €E d 2 R , then there is a unique positive 
real number t such that tu G dAR and t = 1 + o(R). Consequently, 

(t) c^R) = sup t'2(Lu,u) and \cx(R) - ci(R)\ = o(R). 

Next we note that if sup (Lu, u) over dAR is attained at ü, then ü 
satisfies u + Cu = ki(R)Lu. Thus 

Ci(R) = X1-1(R){(ü,ü) + (Cü,ö)} 

= krl(R){R + i(Cu,u)} = xrKRHR + o(R)>. 
Since 2i(R) = sup a s (Lu, u) = fl\i-1, (t) implies that 

IkrKR)-^!'1]^ o(l) a sR->0 . 

Consequently Xt(R) -» X! as R —» 0. 

Lecture 4. Compactness lost and compactness regained. In our 
final lecture, we consider two special nonlinear eigenvalue problems 
in which certain compactness properties are absent. In each case, 
under certain special circumstances, we shall show that these com­
pactness properties may be regained. This leads one to suspect that 
many of the abstract results, mentioned in the introduction, can be 
extended to a class more general than those of the form Ax = Xfir 
with B compact. (Such results are well known for bifurcation theory, 
but not for more global problems.) 

We shall however restrict attention to problems involving gradient 
mappings. This limitation enables us to readily discern the essential 
difficulties in each example and in addition to distinguish two types 
of loss of compactness: strong compactness (illustrated by the first 
problem) and weak compactness (illustrated by the second). Of course 
there is a large body of work attempting to extend the Leray-Schauder 
degree theory to noncompact perturbations of the identity. We shall 
not mention applications of this work here, since it will be discussed 
by other speakers. 

The first problem discussed points out the difficulties of studying 
nonlinear problems on unbounded domains when nonuniqueness is 
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the main object of study. The second problem has a long and interest­
ing history dating back to studies of Klein and Poincaré on the uni-
formization theorem for Riemann surfaces. In each problem studied, 
necessary and sufficient conditions for solvability will be obtained. 
This fact points up the possibility of a precise abstract theory for this 
class of problems. 

Case I. Stationary states for nonlinear wave equations. We 
seek complex-valued solutions u(x, t) of the following nonlinear wave 
equation defined on RN X Rl (N > 2) 

(4.1) utt = Aw - fix, \u\2)u 

of the form u(x, t) = eiktv(x). Here x GE RN, À is a real number, and 
v(x) is a real-valued exponentially decaying function of x. Thus we 
seek solutions (v(x), k) of 

(4.2) Av + k2v - fix, \v\2)v = 0 on RN 

such that |Ü| —»0 exponentially as |x| —> °°. Suppose for simplicity 
that/(x, |Ü|2) = m2 — \v\a, then we prove the following [12] : 

THEOREM 4.1. If fix, \v\2) = m2 - \v\°, then ifß = m2 - A2, 
(i) for 0 < a < 41 (N — 2) and each ß > 0, (4.1) has a countably 

infinite number of distinct stationary states, 
(ii) for a ^ 4I(N — 2), (4.1) has no nontrivial stationary state for 

anyk. 

To prove (i) we restrict attention to radially symmetric states of the 
form u(x, t) = eiKtv{\x\), \x\ = r and w(r) = r(N~i)l2u(\x\). After a 
simple computation one finds that the stationary states of (4.1) are in 
(1-1) correspondence with the nontrivial solutions of the following 
equation on [0, » ): 

(,3> „ „ - ( ^ ( " - ^ - i ^ + M-W 

(4.4) u>(0) = w(oo) = 0. 

One then considers the Hilbert space Wi^tO, °°) with inner product 
(w, w) = So*(wr ' &r + ww) dr. Now we note that the map J\l : 
^i,2(0> °° ) - • W12(0, oo ) defined implicitly by the formula 

{cNw,4>) = r ^r~w<l> dr (0<a< 4J(N - 2)) 
Jo Irl*7 

is compact; whereas the map <P : Wx 2(fi
N) -» Wii2(R

N) defined by 
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(fPw, v) = fRN \u^uv is not compact. Thus we have the first instance 
of compactness lost and regained. 

Suppose, for simplicity, that N = 3. Now after scaling by a constant 
factor we find that the solutions of (4.3) are in (1-1) correspondence 
with the critical points of the isoperimetric variational problem (IT): 
Find the critical points of the functional J(w) = Sgr'^wY*2 dr 
subject to the constraint XR — îo (wr2 + ßw2) dr = constant (R say). 
Thus J(w) is weakly continuous when restricted to the sphere 2R in 
the ^1,2(0, °° ) topology, so that (n) satisfies the "compactness" 
hypotheses necessary for the application of the general critical point 
theories of Ljusternik-Schnirelmann. Consequently making use of the 
antipodal symmetry of (IT) and the results of the introduction, we 
obtain the desired fact (i). 

To prove (ii) we need the following: 

LEMMA 4.2. Any solution v(x) (vanishing exponentially at «>) of 
At; + f(v) = 0 in RN satisfies the identity 

where F'(s) = f(s). 

PROOF. The function v(x) is a critical point of 0(u(x)) = 
ÎRN [ i |Vw| 2 - F(u)] dx. Thus as a function of c, (dldc) 0(v(cx))\c=l 

= 0. After a simple calculation and a change of variables, we find 

0(v(cx)) = i c * - " jRN |Vo|* - c-N \RN F(V), 

so 

(N - 2) j R N |Vt>|* = 2N | f l V F(v). 

Since also fRs |Vt)|2 = ÎR*f(v)v, the result follows. 
Now (ii) follows immediately from Lemma 4.2. Indeed in the 

present case f(v) = — ßv + \v\av so that F(v) = — \ßv2 + 
(l/(cr + 2))\v\(Tv2. Hence, by the lemma, 

-[(^i)(^)-']Li^ 
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Now (4.5) implies that for a nontrivial stationary state, with ß > 0, 

ll(a + 2) > (N - 2)/2N or a < 4I(N - 2). 

Furthermore if ß = 0, the lemma implies a = 41 (N — 2). An applica­
tion of the Kelvin transformation to transform the point at infinity 
to the origin and the unique continuation theorem shows that the 
resulting equation (4.2) has no exponentially decaying solutions. 
Thus there remains the possibility that ß < 0. However the possibility 
of a nontrivial solution in this case can be ruled out by applying the 
results of Kato [28] on the reduced wave equation to (4.2). 

Case II. A nonlinear eigenvalue problem in global differential 
geometry. We consider the following problem: 

(TT) Let (J\K, g) denote a smooth compact two-dimensional manifold 
equipped with some Riemannian metric g. We seek sufficient condi­
tions for J\\ to admit a Riemannian metric g conformally equivalent 
to g with arbitrarily prescribed Gauss curvature K(x), assumed 
Holder continuous on (Jl/[, g). 

Clearly, in this form (IT) does not seem to be a nonlinear eigenvalue 
problem. However we can formulate a semilinear elliptic partial 
differential equation for a £ C2{JA, g) by setting g = e^g. Indeed, 
in terms of isothermal parameters (u, v) on J\K with ds2 = 
y ' {du2 + dv2} the Gaussian curvature can be written 

(4.6) K= - I y ' - i { ( l o g r ' ) „ u + ( l o g y ' W 

so that setting y ' = y exp 2cr in (4.6), we find the following equation 
for the unknown function a: 

(4.7) Aa - k(x) + K(x)e^ = 0, 

where A is the Laplace-Beltrami operator relative to g on J\i, and 
k(x) is the associated Gaussian curvature of (JH, g). Now (4.7) is a 
nonlinear eigenvalue problem in the following sense: 

LEMMA 4.3. If the Euler characteristic of JH, X(JH) J^ 0, then the 
solutions of (4.7) are in (1-1) correspondence with the critical points of 

%(?)= \ ( | |Va|2+fc(x)a)dV 

subject to the constraint F(u) = / K(x)e2a = 2TTX(^M). 

PROOF. A smooth critical point u of the isoperimetric problem satis-
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fies the Euler equation 

(*) Aw - k(x) + ßK(x)e2u = 0 

where ß is some constant. To determine ß, we integrate (*) over 
JH to find J\„ k(x) dV = ß J\„ K(x)e2u dV. Thus, since X ( J ) ^ 0 , 
ß = 1, so that any solution of (*) satisfies (4.7). 

In order to demonstrate the existence of critical points for the 
isoperimetric variational problem described above, it is convenient 
to restrict the admissible class C to an appropriate Hilbert space. To 
this end, we denote by Wl)2Ml g) the set of functions u(x) defined on 
JH such that (relative to the Riemannian structure g) u and Vw = 
grad u are square integrable over JH. W1)2(<^i g) is a Hilbert space 
relative to the inner product 

= j uvdV+ J V u • Vt> dV. 

Now one can prove the following result for manifolds (JW, g) with 
X(JW) < 0, using the fact [13] that the functional F(u) is weakly 
continuous in the appropriate Hilbert space Wh2(^K g)-

THEOREM 4.4. IfX(JH) < 0, then the problem (77) is solvable for any 
function K(x) <0 onJH. 

The reader is referred to the proof in [ 14]. 
It is rather surprising that the analogue of Theorem 4.4 is unproven 

for simply connected J\K (i.e. X(JH) > 0) due to lack of compactness. 
To see this we argue as follows for (JH, g) = (S2, gi), the sphere with 
metric of constant curvature 1: In accord with Lemma 4.3 we consider 
minimizing F(u) = /S2 ( i | V a | 2 + k(x)a) dV over the class 
W12(S2 , gi) subject to the constraint: 

(*) / s 2 K ( x ) ^ = 4 ; r . 

Set a = <r0 + am where fji(JH)arm = J*̂  a and /,„ <r0 = 0. Then 
(*) implies log / K(x)e2ao = — 2am. Thus 

inf F(u) ^ inf «H f IV1/0I2 - 2TT log f , K(x)e*>o - c\ . 
s w l i2(s^ |} I - J Js2 J 

Since K(x) is bounded, it suffices to bound log/e 2 uo in terms of 
/ |Vu 0 | 2 = KU2- To this end, set 2u0 = 2||w0||t; ^ 4m;2 + ||w0||

2/47r 
and use the fact proved by Moser [15] that s u p ^ u ^ f exp (énv2) 



350 M.S. BERCER 

^ Ci (where the constant 4ar is sharp). Thus 

inf F ( « ) ^ inf { c + ^| |u0 | |2 

S Wl,2<S2.K,) l 

- 2-n [ log J exp ( W + - ^ | |« 0 | | 2)] } 

^ const > — oo. 

However, due to a lack of weak compactness, to date no one has been 
able to show precisely when infs F(u) is attained, even though it is 
bounded from below. (Although recently, J. Moser [30] showed that 
infs F(u) is attained if K( — x) = K(x).) Hence we arrive at the 
general question of why, in general, nonlinear eigenvalue problems 
in global differential geometry are more easily resolved for complicated 
nonsimply connected manifolds J\A than for relatively simple simply 
connected ones. 

Now in the intermediate case when X(Jl/{) = 0, we shall show that 
we can regain weak compactness by the addition of a simple explicit 
constraint in the isoperimetric problem of Lemma 4.3. In fact, we 
shall prove the following sharp result. 

THEOREM 4.5 ([14], [23]). Suppose X(JH) = 0. Then the prob­
lem (w) is solvable if and only if either K(x) = 0 or K(x) changes sign 
on M and S^ K(x) exp (2u0) dV < 0, where u0 is any solution of 
Aw = k(x) on M. 

PROOF OF NECESSITY. If u satisfies (4.7) and X(^) = 0, then 
LM K(X) exp (2M) dV = 0. Thus if K(x) is not identically zero, K(x) 
must change sign on JH. On the other hand, if we set u = u0 + w, 
the function w satisfies the equation 

Au; + K(x) exp (2u0 + 2w) = 0. 

Multiplying this equation by exp ( — 2w), integrating over JH and 
integrating by parts, we find 

2 [ exp (-2u>)|Vu;|2 dV = " \ , K(x) e x P (2MO) dV > 0. 

PROOF OF SUFFICIENCY. First we prove an analogue of Lemma 4.3 
for the case X(JH) = 0. 

LEMMA 4.6. Suppose X(JH) = 0 and K(x) is a given function defined 
on J\K such that relative to some Riemannian metric g defined on cM, 
LwK(x) exp (2u0) dV < 0. Then the (smooth) critical points of the 

functional tB(u) subject to the constraint 
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S' = l w | u £ W 1 ) 2 ( 4 g ) , | M t i d V = 0 , | K(x)e2udV=0 \ 

are (apart from a constant) solutions of the equation 

Aw - k(x) + K(x)e2u = 0 

where k(x) is the Gauss curvature of(JH, g). 

PROOF. A smooth critical point u of the isoperimetric variational 
problem satisfies the Euler equation 

(t) Aw - k(x) + ßlK(x)e2u = ß2 

where ßx and ß2 are constants. Since JÄM K(X) exp (2w0) dV j4 0, 
both ßi and ß2 cannot be zero. To show that ß2 = 0, we integrate 
(f) o v e r h a n d find 

j fc^dV + ftJ K{x)e2u dV = ß2ix(M). 

Since JÄ|| k(x) dV = 0, and M £ S ' , ß2 = 0. Since /^ ^ 0, there is 
a constant c such that ± exp (2c) = ßx. Hence w = u + c satisfies 

Aw - k(x) ± K(x)c2ir= 0. 

Now we show that ßi > 0 so that ßi = exp (2c), and consequently 
M = M + C satisfies equation (4.7). Set u = u0 + u; in (f). Then by 
hypothesis, since ß2 = 0, 

Au? + ßiK(x) exp (2uo) exp (2u>) = 0. 

Again multiplying by exp ( — 2w), integrating over Jl/l, and integrating 
by parts, we find 

| H exp(-2w)\Vw\2dV = -ßl f K(x) exp (2w0) dV. 

Thus j81 > 0 since w ^ 0. 
To prove the existence of a critical point for this variational problem, 

we set a = <T0 + crm so that 

^ ( a ) = ^ | H ( |Va 0 | 2 +fc(x)a 0 )dV /since J ^ k(x) dV = 6\ 

^i\\a0\\
2^c\\k(x)\\\\a0l 

Consequently, ^(cr0) -> °° for a G S ' as ||a0|| -> » , and ^(<r) is 
weakly lower semicontinuous with respect to weak convergence in 
Wlj2(^M, g). Furthermore S' is weakly closed. Thus i n f ^ ( a ) over 
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S ' is attained by an element M E S ' , and u is a weak solution of the 
equation (4.7) in the space Wli2(^l, g). Therefore u is a solution of a 
linear equation of the form Au = f with f G. Lp for all finite 
p > 1. It follows that u is smooth enough to satisfy equation (4.7) 
in the classical sense, and the theorem is thereby proved. 

Appendix A. A bifurcation theorem for gradient operators. We 
consider the operator equation 

(A.1) f(x, u)=(I- kL)x + T(x, k) = 0 

defined on a real Hilbert space H. Suppose that L is a selfadjoint 
bounded operator mapping H into itself, and T(x,k) is a real C2 

higher order gradient mapping, so that T(0, k) = Tx(0, k) = 0 and 
T(x, k) is the Fréchet derivative (w.r.t. x) of the real-valued functional 
^(x, k). We now state and refer to the author's recent paper in Proc. 
Nat. Acad. Sci. U.S.A. 69 (1972), 1737-1738. 

THEOREM. Suppose that the linear operator fx(0, ko) = I — k0L 
is a linear Fredholm operator and is not invertible in H. Then (0, X0) 
is a point of bifurcation relative to the equation (A.1). 

SKETCH OF THE PROOF. There are two main ideas that are essential. 
First, the well-known observation that the solutions of (A.1) near 
(0, X0) are in (1-1) correspondence with the solutions of the "bifurca­
tion equations" for the problem. Relative to (A.1), these equations can 
be written in the form 

(A.2) h(u, X) = (I - kh)u + PT(u + g(u, X), X) = 0, 

where u G Ker (I — k0L), P is the standard projection of H —» 
Ker (/ — k0L), and g(u, X) is a real C2 higher order mapping of 
H —» [Ker(Z — XoL)]1 . A further observation is that the operator 
h(u,k) is also a gradient operator mapping Ker (I— koL) into itself. 
Indeed one easily shows that 9 u(u + g(u, X), X) = PT(u + g(w,X), X). 

The second idea in the proof is the use of the type numbers of M. 
Morse [29, p. 149] to describe the isolated critical point of a real-
valued function H(u,k) of a finite number N of real variables. If 
(0, X) is an isolated nondegenerate critical point of H(u, X), its type 
number Mx is its Morse index, the number of negative eigenvalues 
(counted with multiplicity) of the Hessian matrix HUM(0, X). If (0, X0) 
is degenerate, its type number MXo = (ra0(Xo), * ' * ,^N(^O)) is an 
(N + l)-vector of integers (and in fact are the Betti numbers of certain 
local homology groups). These numbers are so assigned that if 
H(u, X)is C3 and all the critical points of H(u,k) are nondegenerate, 
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for fixed X in a small deleted neighborhood V of X0, then there are 
at least mk(K0) nondegenerate critical points of index k of H(u,\) 
near u = 0 for each X in V. 

With these preliminaries the proof is easily carried out. Suppose 
(0, X0) is not a point of bifurcation of (A.1). Then (0, X0) is not a point 
of bifurcation of (A.2). Thus there is a small spherical neighborhood 
of (0, X0) such that for fixed X, (0, X) is an isolated critical point of 
H(w,X) = (u + g(u,k),k). Since det |M0,X)| / 0 for X in a small 
deleted neighborhood Vx of X0, (0, X) is nondegenerate for \ £ V 1 ( 

Furthermore, a simple computation shows that the type number mN(k) 
of (0, X) relative to H(u, X) is 0 for X < X0 and unity for X > X0. On 
the other hand, (0, X0) is an isolated degenerate critical point of 
H(u,k0) and its type number is inconsistent with these facts since 
type numbers are homotopy invariant. This is the desired contradic­
tion and the result is thus proved. 
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