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ON DECOMPOSITIONS OF E(G)1 

CARTER LYONS 

1. Introduction. The theory of near rings has been studied in some 
detail by several authors. In a paper that briefly summarized the ele­
mentary theory of near rings Berman and Silverman [ 1] generalized 
the Peirce Decomposition Theorem to obtain a decomposition theorem 
for near rings. Fröhlich [2], [3] studied the class of distributively 
generated near rings, and M alone [4] has emphasized the class of 
endomorphism near rings. 

For an arbitrary group G the set of endomorphisms of G, denoted by 
End(G), form a distributive generating set (d.g. set) for the endomor­
phism near ring E(G). The convention of writing functions on the 
right (i.e., f: G -> G sends g to (g)/) makes E(G) a left near ring. 
Therefore, all of the results in this paper are stated for left near rings. 

The decomposition of Berman and Silverman provides a starting 
point for the investigation of two basic problems related to endomor­
phism near rings. First, by examining the decomposition theorem and 
using a construction technique of M alone and Lyons [6] one is able 
to construct classes of groups for which the endomorphism near ring 
decomposes in a predictable manner. Secondly, one is able to supply 
a sufficient condition on the relationship between groups G and H so 
that E(H) embeds in E(G). This provides an embedding result for 
endomorphism near rings that parallels the results of M alone and 
Heatherly [5] for the embedding of transformation near rings. 

2. The decomposition. The statement of the Berman and Silverman 
decomposition theorem is 

THEOREM 2.1 [1, p. 27]. Let e be an idempotent in the near ring R. 
For each r G R,r= er + ( — er + r) = (r — er) + er. Thus R = Ae + 
Me = Me + Ae where Ae = {r - er : r E R} = {t Eî R: et = 0},Me = 
{erirG R}, and AeDMe = {0}. 

When no confusion can arise the summands Ae and Me will be 
designated by A and M respectively. 

Theorem 2.1 says that the group structure of any near ring with 
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nontrivial idempotent is a semidirect sum with normal summand A. 
The group morphism f : R -+ M via (r)f = er is associated with 
the sum R= A + M and motivates the following characteristics of 
the summand A. 

THEOREM 2.2. The following statements are equivalent. 
(1) f : R —* M via (r)f = erisa near ring morphism. 
(2) A is an ideal. 
(3) M A = {0}. 
(4) £res = ersfor each r,sŒR. 

PROOF. (1)=>(2) is obvious as is (4)=>(1). It remains to be shown 
that(2)=>(3)->(4). 

(2) =>(3) Since M = eR, MA = eRAQ e A = (0). 
(3) ==> (4) Let r , s G f i , then, er E. M, s — es E. A, and0 = er(s — es) 

— ers — eres. D 

The equivalence of (1) and (2) guarantees that if A is an ideal M is a 
homomorphic image of R. Thus M inherits all structural properties 
that are preserved by homomorphisms. 

If the near ring R contains a right identity one obtains another 
equivalence condition that A be an ideal. 

COROLLARY 2.3. Let R be a near ring with right identity 1. A is an 
ideal if and only if e is a right identity for M. 

PROOF. (=>) Let A be an ideal. Then for any r E R, ere = ere(l) = 
er(l) = er by equivalence (4). Thus, e is a right identity for M. 

(<=) Suppose that e is a right identity for M and let r,s E R. Then 
£res = (ere)s = (er)s = ers and equivalence (4) provides the result. D 

It is clear that e is a left identity for Hf. Thus, if R has a right iden­
tity, A is an ideal if and only if M has an identity. The condition that 
M have an identity is not as restrictive as it may seem. For example, 
consider the near ring E(G) with idempotent e. If the image of G 
under e, (G)e, is a fully invariant subgroup of G, then e is a right 
identity for M and A is an ideal. 

3. D. g. near rings. It is convenient at this point to make a 
definition. 

DEFINITION 3.1. Let R be a distributively generated (d.g.) near ring. 
The set S Ç R is called a d.g. set provided that S is a subsemigroup of 
(R, • ) and that S additively generates (R, + ). 

Throughout this section the near ring R will be d.g. with d.g. set S, 
idempotent e, and decomposition R= A + M. Both M and A are 
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subnear rings of R and have additive generating sets {es : s Œ. S} and 
{s — es : s G S}M = {m + (s — es) — m : m G M, s G S} respectively 
[6, Theorem 2.3]. The problem of constructing a d.g. near ring R 
from a d.g. set S and an idempotent e reduces to the construction of 
the summands M and A. 

Conditions under which the additive generating sets are in fact d.g. 
sets follow. 

THEOREM 3.2. A is an ideal if and only if M is d.g. with d.g. set eS 
and eses ' = ess ' for each s,s' G S . 

PROOF. (=>) Statements (1) and (2) of Theorem 2.2 imply that M is 
d.g. with d.g. set eS. Statements (2) and (4) conclude the proof in this 
direction. 

(<=) This implication will be proved by showing that eret = ert for 
each r, £ G R. For r, t G R, r = 2?=i n ^ and t = XT=i nj 'sj ' w n e r e 

ni? n / G Z and $, s / G S for i = 1,2, • * -, q a n d j = 1, 2, • • •, p. It is 
clear that for any x G R, s G S and n G Z 

( * ) x(ns) = n(xs) = (nx)s. 

It follows from equation (*) and left distributivity that 

v p 

eret= ere ^ w / V = S ere(nj'sj') 

= 2) n / ( e r e s / ) = j? V ( * ( S n ^ ) « * / ) • 
j = l j = l X X i = l 7 7 

But since eS is a d.g. set for M and every element of R is left distribu­
tive 

É V ( « ( È ni*i ) *V ) = É V ( ( Ê *(*«*) ) es/ ) 
j=i x x *=i ' 7 j=i x x i=i 7 7 

= É V ( ( Ê n;(e*i) ) * V ) 
j = l X N i = l 7 7 

p / q \ 
= S V ( X n ^ e « / ) j . 

j=l X i= l 7 

By the hypothesis of the theorem, the fact that S is a d.g. set for R, and 
the validity of equation (*), 



578 C. LYONS 

p / q \ p / Q \ 

Zé V ( S riiesies/ ) = £ V ( 2 *M»<V ) 

= É V ( ( É n ^ ) V ) = É V ( « ( S ni*i ) V ) 
j = l X X i = l ' ' i = l X X i = l ' ' 

P P P 

i=i j = i j = i 

THEOREM 3.3. if AM = {0} £/ien A is d.g. with d.g. set 

{ s - e s : s G S } M . 

PROOF. The set S' = {s — es : s G S}M is an additive generating set 
for A [6, Theorem 2.3]. To be a d.g. set for A each element of S ' must 
distribute from the right over A and S ' must be a multiplicative semi­
group of A. Let a,b G A and er + (s — es) — er = (s — es)^ G S ' . 
Then 

(a + b)(s - es)er = (a + b)er + (a + b)(s - es) - (a + fo)er 

= (a + b)s — (a + fo)es = as + bs 

= (aer + as — aes — aer) + (foer + fos — foes — foer) 

= a(s - esY + fo(s - es)er 

so that the elements of S' are right distributive over A. Now let 

(s — es)", (s' — es')et G S' and consider 

(s - es)er(s' - r« ')* = (s - es^'e* 

+ (s - 05)^(5' - es') - (s - es)eret 

= (s - es)<V - (s - es)*res' = (ss' - ess')™' 

which is in the generating set. D 

The AM = {0} condition is not necessary. The following example, 
which is due to Willhite [7], demonstrates this fact. Let the additive 
structure for the near ring R be the dihedral group of order eight. The 
addition table is included for reference. 
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+ 
0 
a 

2a 
3a 
h 

a + b 
2a + b 
3a + b 

0 

0 
a 

2a 
3a 
b 

a+b 
2a + b 
3a + b 

a 

a 
2a 
3a 
0 

3a + b 
b 

a+b 
2a + b 

2a 

2a 
3a 
0 
a 

2a + b 
3a + b 

b 
a+ b 

3a 

3a 
0 
a 

2a 
a+b 

2a + b 
3a + b 

b 

b 

b 
a+b 

2a + b 
3a + b 

0 
a 

2a 
3a 

a + b 

a + b 
2a + b 
3a + b 

b 
3a 
0 
a 

2a 

2a + b 

2a + b 
3a + b 

b 
a + b 

2a 
3a 
0 
a 

3a + b 

3a + b 
b 

a + b 
2a + b 

a 
2a 
3a 
0 

The multiplication table that follows (Table 6(4), p. 34-35 of [7] ) 
defines the unique d.g. near ring with identity on the dihedral group 
ot order ei 

0 
a 

2a 
3a 

b 
a + b 

2a + b 
3a + b 

ght. 

0 

0 
0 
0 
0 
0 
0 
0 
0 

a 

0 
a 

2a 
3a 

b 
a + b 

2a + b 
3a + b 

2a 

0 
2a 
0 

2a 
0 
0 
0 
0 

3a 

0 
3a 
2a 
a 
b 

a + b 
2a + b 
3a + b 

b 

0 
b 
0 
b 
b 
0 
b 
0 

a + b 

0 
a+b 

2a 
3a + b 

0 
a+b 

2a 
3a + b 

2a + b 

0 
2a + fc 

0 
2a + b 

b 
0 
b 
0 

3a + fo 

0 
3a + b 

2a 
a+b 

0 
a+b 

2a 
3a + b 

It is clear that the set S = {a, b} forms a d.g. set for R. Let a+b 
decompose R, then M = {0, a + b} = eS is d.g. Furthermore, A = 
{0, fo, 2a, 2a + b} is d.g. with d.g. set {s - es : s G S}M = {fo? 2a + fo}? 

but AM = {0,2a}. 
If the group sum R= A + M is direct then the summand M is 

normal and addition in R is componentwise. Conversely, if the addi­
tion in R is componentwise then the sum is direct. But, the normality 
of M is not enough to guarantee that M is an ideal. 

Componentwise multiplication in R implies that A is an ideal and 
that both summands are d.g. near rings with d.g. sets as described in 
Theorems 3.2 and 3.3. However, componentwise multiplication in R 
does not imply that M is normal. 

The link between componentwise addition and multiplication in R 
is provided by the condition that both summands are in fact ideals. 

THEOREM 3.4. R is the direct sum of ideals A and M if and only if 
both operations in R are componentwise. 

PROOF. (=>) Suppose that both A and M are ideals, then AM — 
MA = A f i M = {0}. Since M <\ R, addition is componentwise. It re­
mains to be shown that (ax + m ^ ^ + m2) = axa2 + mlm2 for each 
ax, a2 E. A and mi9 m2 G M. Let a2 = ^ = 1 n ^ and m2 = ^ j ^ i ^ / V 
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where ni? n / G Z and sh s / G S for t = 1, 2, • • -, 9 and j = 1,2, • • -, 
p. Now, the left distributive law and equation(*) provide that 

(ox 4- miXflfc + ^2) = (öi 4- mi)a2 + (#i •fm1)m2 

= S (ni(°i + mi))si+ S (V( f li+ mi))V-

But, since addition is componentwise, n{a,i + m{) = nax 4- ran! for 
any n G Z. Thus, 

(ox -h m1)(fl2 + m2) 

9 q V V 

= S (*M*iH + S (n»™i)*< + S (Vfli)V + S (Vmi)V-
i = l i = l j = l j = l 

Equation (*) and the left distributive property applied to the last 
equality give 

(ai + m^fla + m2) = a / ] ? n ^ ) + m A Y, n ^ j 

+ fli ( É W ) + mi( S w ) 

= a ^ + m1a2 + a ^ a + m1m2 = a ^ + ^1^2-

(<=) Suppose now that the operations in R are componentwise. Then 
AM = MA = {0}, so that A is an ideal. Also, the group sum is direct, 
so M is normal and hence a right ideal. It remains to be shown that 
RMC M. Let r = a + m G R and m ' G M. Then rm' = (a + m)m' 
= (a + ra)(0 + m')= a(0) + mm' = mm' which is certainly con­
tained in M. D 

If the conditions of Theorem 3.4 are satisfied then both M and A 
are d.g. with d.g. sets as described in Theorems 3.2 and 3.3 respec­
tively. 

4. Applications. For an arbitrary group G the endomorphism near 
ring E(G) is not easily found. Specifically, d.g. sets are elusive and 
any known construction technique requires at least an additive gen­
erating set. However, the results of §2 and §3 provide some insight 
into the structure of £(G) for certain groups. 

Suppose, for example, that G is a semidirect sum with normal sum-
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mand K The endomorphism e : G—» HQ G having Ker e = K with 
e2 = e yields a decomposition of E(G). Let S = End(G) so that eS is 
an additive generating set for M. Since e Œ S,eSQ S is a multiplicative 
•semigroup of right distributive elements and hence eS is a d.g. set for 
M. 

If the sum is direct and the summand H is fully invariant then e is a 
right identity for M and A is an ideal by Corollary 2.3. Consider the 
slightly more general case in 

THEOREM 4.1. Let e be any idempotent in E(G) such that (G)e = H 
is fully invariant. Suppose also that if f G End(H), / = f'\H for 
some f (E E(G). Then E(H) is isomorphic to M where e decomposes 
E(G) into A + M. 

PROOF. Let i : End(h) —» M via (f)i = ef. Now, H is fully in­
variant and e fixes H elementwise, thus e is a right identity for M. It 
follows that i is a semigroup morphism which extends to a near ring 
epimorphism V : E(/f) -> M. Suppose that (f)i' = 0. Then ef = 0 
and for h E H, (fo)ef' = (ft)/' = (h)f = 0, so that / is the zero map 
of H. Thus i ' is an isomorphism. D 

In a paper by Malone and Heatherly, [5], it is shown that if H is a 
direct summand of G then T0(H) embeds as a direct summand in 
r0(G), where T0(G)(T0(H)) is the near ring of transformations from 
G to G (H to H) that send 0 to 0. A similar result holds for endomor­
phism near rings whereby E(H) embeds as a direct summand in E(G). 

Let G = K © H with H fully invariant and abelian. If e : G-» H is 
the projection map, the decomposition E(G) = AH- M has M in the 
additive center of E(G) and the sum A + M is direct. This fact along 
with Theorem 4.1 provide the following embedding result. 

THEOREM 4.2. Let H he a fully invariant abelian summand of the 
group G. Then E(H) embeds in E(G) as a direct summand. 
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