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MATRIX INTERPRETATIONS AND APPLICATIONS OF THE 
CONTINUED FRACTION ALGORITHM 

WILLIAM B. GRAGG* 

1. Introduction. This paper is concerned with certain aspects of 
the one to one correspondence between real sequences {cn} o, formal 
Laurent series f(z) = ^ocJzU+l a n d infinite Hankel matrices 
C = (ci+j)\j=Q. The finite 'connected' submatrices of C will be de­
noted by C n

( m ) = (cm+i+j) £7=0 , with Cn = Cn
{0\ and their deter­

minants by cn
(m> = det Cn

(m). 
Also associated with {cn} is the linear functional c* which acts on 

the vector space of real polynomials and is determined by c*(zn) = 
cn, n ^ 0. With the ordinary (Cauchy) product of two polynomials 
c*(pq) becomes a (Cauchy) bilinear functional on the algebra of real 
polynomials. If p(z) = 2 #M q(z) = X bp$ and a = (a0, aÌ9 a2,- • -)T, 
b= (b0,bi,b2, ' ' ')T are the column vectors of coefficients then 

c*(pq) = S aici+jbj = aTcb-
The functional c*(pq) is an inner product if and only if {cn}, f 

and C are positive definite, that is c*(p2) > 0 if p ^ 0, or equivalently 
cn

(0) > 0 for n = 0. An alternative characterization is that p ^ 0 and 
p(x) i^O for — 00 < x < + 00 imply c*(p) > 0. This involves the 
(unique) decomposition of such a (positive) polynomial p as the sum 
of two squares of real polynomials whose zeros interlace (strictly) and 
gives rise to the geometric theory of moment spaces [20, 18, 19]. 
If the coefficients cn = J l S tndfi(t) are moments of a bounded non-
decreasing function jjL with infinitely many points of increase then all 
c n

( 2 m>>0, since c*(t2mp2) = ft S t2m [p(t)]2dfi(t). Conversely if 
all cn

(0) > 0 then the existence of such a fi follows by compactness 
arguments from the algebraic results to be given below [12,34,1] . 

2. Lanczos polynomials. The algebraic aspects of the theory of 
orthogonal polynomials carry over to the case in which all cn

(0) j£ 0. 
Hence this will be assumed. The material of this section is readily 
adapted from [29,32,11], for example. 
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THEOREM 1. There exists a unique sequence {qn(
z)}o — 

Œj=$njZj}n=o of monic polynomials for which c*(qmqn) = 0 when 
mj^n. The determinant representations 

Co 

^det 1 
1 cn_i 
\ 1 

Cn • 

Z 

' ' C2n-l 

zn 

qn(z) 

are valid. The sequence {qn}o satisfies the three term recurrence 
relation 

9-1(2) = 0, q0(z) = 1, 

(1) 9n+i(z) = (z - ofe+1)qfn(z) - ßn
2qn-i(z), 

n = 0,1,2, ••• , 

in which 

^ n + l = ^2n+ll^2ny ßr? = 7r2nl7r2n-2 (ßo* = co)> 

^ n ^ ^*(9n2) = C * ( ^ n ) = * Ä l f c „ ( 0 ) , 

^ 2 n + l = C*(zq n
2 ) . 

In accordance with their use in numerical linear algebra [16] 
the generalized orthogonal polynomials will be called the Lanczos 
polynomials of the first kind for {cn}. They are related to the denomi­
nators of the (n — 1, n) Padé fractions for the formal power series 
5]ôc n z n by qn(z) = znqn_itn(llz). In this context (1) is a special 
Frobenius identity. Observe that {cn} is positive definite if and only 
if all 7r2n > 0, or equivalently all ßn

2 > 0. In general ßn
2 may be nega­

tive. 
According to Wall [32], Chapter 11, the following algorithmic 

consequence of (1) dates back to Chebyshev [3]. It is more general 
than the quotient-difference algorithm [25, 13, 14, 17] which serves 
a similar purpose but also requires all cn

(m) ^ 0 (When cn = 
!otndfi(t) one has all cn

im) > 0 and this is implied by cn
(0) > 0 and 

c ^ X J f o r n ^ O [28].) 

THEOREM 2. The coefficients jS^-i, o^, {&n,j}3=o> n = 1,2, • • -, N, 
may be computed recursively from the sequence {cn}o2N_1 by the 
rational 0(N2) process: 
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(7_! = 1,T0 = 0, £0,0 = h 

forti = 0 ,1 , • • -, N - 1 

j = 0 

T n + 1 ~" ( ZJ &n,jcn+j+l )/°"n> 

ßn2 = <rJ<Tn-l, Otn + 1 = T n + 1 - T n , 

^n-l,n = ^ n , - l = U, * n + l , n + 1 = -*•> 

/ o r / = 0,1, • • -, n 

PROOF. Let 

°n = ^ n = C*(<?n2) = ß0
2ßx

2 • • • )8n
2 

n 

= c*(znqfB) = 2 AnjCn+i 
i -o 

ana 

Then 

so 

<7nTn + 1 = C*(zn + 19n) = J ) lnJCn+j + l. 
J=0 

= o w 1 a n + /3n
2<7n_1Tn 

Tn = «1 + <% + ' * « + On (To = 0). 

The rest follows by equating coefficients in (1). 
It is known from practical experience with the positive definite case 

that ßn
2 = ßn

2(c0, cl9 ' • % c2n) and a„+ 1 = a^+1(c0, c b • • -, c2n+1) are 
ill conditioned functions of the moments {cn} although this has not 
been quantified precisely. Hence the algorithm can only be recom­
mended if the {cn} are rational and rational arithmetic is used. How-
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ever see [26] for a treatment of 'modified moments', [6,7] for 
related analysis and [33] for an application. 

The nth reproducing kernel function, 

j=0 *% 

satisfies p(z) = ct^(Kn(z, t)p(t)) when deg p ^§ n. 

THEOREM 3. 1. (CHRISTOFFEL-DARBOUX). The following relations 
hold: 

KniZ, W) - , ZfW, 

_ q^+l(z)qn(z) - qn
,(z)qn+l(z) 

9 z — w. 

H"2n 

2. The alternative representations 

Ci • - cn 1 

Kn{z9w) = - (ö rde t 
cn + l 

c2 ' cn+l % 

n + 1 ' C2n % 

1 w wn 0 
n - l 

^ -1/ - (0) ~(0) 

are t;a/id. 
3. (CHRISTOFFEL). If qn{a) ^ 0, n ^ 0, £/ien £/ie Lanczos poly­

nomials of the first kind associated with the linear functional ca*(p) = 
c*((z — a)p) also exist and are given by 

qn
a(z) = 7T2nKn(z, a)lqn(a)9 n ^ 0. 

The Lanczos polynomial of the second kind for {cn} are denoted by 
{pn(z)}o- They form a second linearly independent solution of (1): 

p-i(z)= -l,p0(z) = 0, 

pn + l(z) = (Z - ûfe + 1)pn(z) - ßrfyn-M, *, = 0, 1, 2, • ' • . 

Note that pn(z) = c0zn _ 1 + • • • for n ^ 0. The twin recurrence rela­
tions (1) and (2) lead to the following, via the elementary theory of 
continued fractions. 
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THEOREM 4. There is a one to one correspondence between formal 
Laurent series f(z) = ^oCnlz

n+1 with all cn
(0) ^ 0 and formal 

(associated) continued fractions 

ßo2 ßi2 ßz2 

F(z)= " " - " l p 2 

z — OL\ z — a2 z — a3 

withallßn
2f0. If 

™n(z) = pn(z)lqn(z) (n ^ 0) 

is the nth approximant ofF(z), then 

(3) p n ( z ) 9 n _ ! ( z ) - pn^iziqniz) = 7T2n_2 ^ 0 

and £/ie Taylor expansion of wn(z) about z = <*> coincides with f(z) 
precisely through the term in l/z2n: 

(4) f(z) = Wn(z) + 7T2n/%
2" + 1 + 0(l/z2»+2). 

The following representations hold: 

( - l ) n 

0 C0 C Q Z + C J • • ' C0Z
n~l + • ' • + C n _ x 

C0 C! C2 • • • Cn 

P»(*)Œ T7b7de tl 

<qn(z)- qn(t) = c* /<lnW-qnW \ 

The polynomials {pn} are related to the numerators of the (n — 1, n) 
Padé fractions for ^ o ^ " by Pn(z) = zn_1Pn-i,n(l/z)* I n this con­
text the use of bigradient determinants [ 17] provides a short proof 
of a generalization of (4). 

It will be assumed that the zeros {zn,fc}£=i of qn are distinct for each 
n = 1. One may then obtain a 'generalized' Gaussian quadrature for­
mula. For the construction of such formulas in the positive definite 
case see [5, 8] . 

THEOREM 5. The partial fraction expansion ofwn(z) is 

WnW = z ~~zr— wtth wn,k = 
k = lZ Zn,h ' Kn(zn,k> zn,k) 
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Consequently from (4), 

n 

C*(P) = S wn,kP(zn,k) i f deg p < 2n 

and 

c*(z*») - J ) u ^ a f t = ,r2n ^ 0. 

In particular {cn} is positive definite if and only if all wHfk > 0 and 
then the zeros {zn>fe}g=1 are real, distinct and (strictly) separated by 
those of pn and qn-\. 

3. Matrix interpretations. The results of the previous section be­
come more transparent when viewed in terms of matrices. 

Let the unit left triangular matrices 

L = (£i,X'=o and Ln = (iuTij=o 

The 'orthogonality' of the polynomials {qn} is then equivalent with 

LCLT = ? = diag (TT0, TT2, TT4, • • •). 

and with 

(5) LnCnLn
T = Pn= diag(7T0, ir2, ' • ', TT^n-i) 

for n = 0. In other words 

C = L-lP(L-l)T 

is the Gauss-Banachiewicz LDR factorization of the symmetric Hankel 
matrix C. This factorization exists if and only if all cn

(0) jt 0. The 
algorithm of theorem 2 effects the factorization (5) in 0(n2) operations 
as compared with the usual 0(n3) for an arbitrary (symmetric) n X n 
matrix. 

The recurrence relations (1) and (2) are related to the tridiagonal 
matrix 

(' l , 1, 1, 

£*!, 0 2 , a 3 » « 4 , ' ' ' 

ßl\ 022, ZV, ' * * 

its nth leading principal submatrices Jn and the submatrices Jn' of 
Jn in which the first row and column are deleted. One has 
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Pnit) = Codetizln^ - / „ ' ) , 

qn(z) = det(z/n - / n ) , 

with In the n X n identity matrix. 
Let the translation matrix 

T— (8i+ 1 j)°5j=o 

and the Frobenius matrices 

0 1 0 • • • 0 0 

0 0 1 • • • 0 0 

0 0 0 

The Fn are the companion matrices of their characteristic polynomials 
qn. From theorem 2 one then finds 

JL = LT and JnLn = LnFn. 

The first of these relations was given by Stieltjes [27] ; the second 
is its finite analogue. Finally, denote by 

the Vandermonde matrix of the zeros of qn. Then 

FnVn = V nD n , Dn = diag(zn>1, zn>2, • - , zn>n) 

Qn=LnVn= (9i-l(^n,i))lj = l> 

and 

JnÇn = Ç A , 

showing explicitly the similarities among the matrices Jn, Fn and Dn. 
Further consequences arise from theorem 3. First of all the Chris-

toffel-Darboux formula shows that the matrices 

(Kn(znA,znJ))=ÇnTpn-iÇn 

are diagonal. There follows 

(6) QnWnQnT = Pn, Wn = d i agK, ! , u>M, • • -, wn>n), 
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and with (5), 

(7) C„ = VBWBV„r, 

exhibiting the explicit congruences among Cn, Pn and Wn. Equation 
(6) shows the 'orthogonality' of the polynomials {qkio1 w * t n respect 
to 'weighted' summation over the zeros of qn, and (7) essentially con­
tains the 'quadrature formula'. From theorem 3.2 Kn_1(z;3 it?) = 
2 bijtv1'1^'1 is the generating function for the elements of Bn = 
Cn

_ 1 . Theorem 2 and the Christoffel-Darboux formula thus provide 
an 0(n2) algorithm for the inversion of n X n Hankel matrices: 

for i = 0,1, • • -, n — 1 

&<,n+i = 0, 

for j = i + 1, i + 2, ' " , n 

if i = 0 then fo0j- = 0, 

See also [30, 31]. 
Let the nth resolvent 

Then the residues R ^ satisfy 

= 2 /„m/*m+1 = 2 - _ r 
m = 0 fc = l * *n,fc 

fc=l fc=l 

Moreover from the above 

R n ( Z ) = Ç n ( z Z n - P n ) - 1 W n Ç n ^ P n - i 

giving 

and 

ßn,fc = WnAqi(Zn,k)qj(Zn*)fr2jJii=0> 
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In particular the nth approximant of the continued fraction F(z) is 

Wn(z) = Pn(z)lqn(z) = C0r
(o,o(z) 

and likewise 

' n - l , n - l ( s ) = %-l(ZV%(Zy 

The Christoffel-Darboux formula shows that the residues are pro­
jectors: R%k = jR̂ fc. When {cn} is positive definite the polynomials 
{%}- {qJvlnJ are orthonormal, Çn = Pn'^nW^2 i s j in ortho­
gonal matrix, Jn = Pn~

1,2JnPn112 1S symmetric and JnQn = QnDn. The 
residues fì^ = Pn ~

 1/2JRn>fcFn
 1/2 of the resolvent of /„ are then also 

orthogonal projectors: #„*. = R%k. 
Let A be a real N X N matrix and consider the Krylov sequences 

xn = Axn_l = A"x0, yn = ATyn_x = (AT)ny0 

of A and AT with respect to initial vectors x0, t/o f° r which t/or*o ^ 0. 
For n è 1 put 

Xn = (x0, Xi, ' • % Xn_i), Yn = (t/o, J/l, * ' % t/n-l) 

and 

C» = Yn^Xn = ( y , ^ ) = (y0TA^Xo) = (ci+j). 

The matrices Cn are ultimately singular, at least for n> N. Let f be 
such that c ^ W » • • • c„<°> ^ 0 but ^ = 0. Then the sequence 
{</n} 'terminates' with qv but all previous relations, as well as the fol­
lowing, hold for n ^ v. If 

n 
*n ~ qn(Ä)X0 = ^ Än>fcXfc, 

(8) 
n 

yn = qn(AT)y0 = 2 J t̂/fe 
fc=0 

then 

t* - (#» #1* * • #, #m-l) = Yn^n r 

and (5) shows that 

(9) Yn
TXn = P„. 

That is {fnjtf and {$/„# are biorthogonal. From (8) 

AX„ = (*„ x2, • • -, xn) = XnF„r + (0, • • -, 0, *„) 
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and the re la t iona le = LnFn gives 

A X n = £ j n r + ( 0 . - - - , 0 , * n ) L n
r . 

Consequently from (9) 

(10) f / A t = P J / = / „ P r 

The three term recurrence relation now provides the algorithm 

x_l = j / _ ! = 0, ±0 = x0, y0 = i/o, 

Xn + 1 = (A — O^+x/jXyj — ßn Xn_i, 

yn + l = (AT - Oh+i/)0n - ßn%-l, 

n = 0 ,1 , • • -, v - 1, 

in which, on comparing coefficients in (9) and (10), 

Moreover 

cnm = "n &%• 
fc=0 

This is the essence of the Lanczos algorithm [21] for tridiagonaliza-
tion. If the algorithm can be completed (v = IV), which is possible if 
A is symmetric with distinct eigenvalues and x0, y0 are chosen appro­
priately, then A is similar to JN

T: 

XN~ AXN = JN . 

In particular if A is symmetric and t/0 = XQ then XN = XNPN~m is 
orthogonal and XN

TAXN = /# is also symmetric. It is always theoreti­
cally possible to complete a modified version of the algorithm [16]. 

3. Concluding remarks. The material of this section will be de­
veloped in detail elsewhere, but is mentioned here for the sake of 
completeness. 

The Lanczos polynomials {pn}o a n d {qn}o m a v D e generalized to 
maintain their connection with the Padé numerators and denom­
inators, which are defined even though nontrivial blocks may occur 
in the Padé table; see [11]. The {qn} remain monic of degree n but 
the 'orthogonality' is lost. The matrix P = LCLT is now block diagonal 
and the diagonal blocks are lower triangular (A) Hankel matrices 
which are nonsingular, except possibly for a last one which is the 
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infinite null matrix (f(z) rational). This 'left triangular congruence' 
arose in connection with the determination of the signature of a 
general Hankel matrix and certain theorems from [4] were used in 
the proof. The matrix / becomes block tridiagonal and the diagonal 
blocks are companion matrices. The off diagonal blocks are null apart 
from their lower left element which is unity for the superdiagonal 
and nonnull for the subdiagonal. These results are intimately related 
to P-fractions [22, 23, 24] which, however, are developed in the 
ascending power notation. A generalization of the algorithm of 
theorem 2 follows from the theory of continued fractions. 

Inclusion disks for the approximants of positive definite '/-fractions' 
F(z) are classical [12, 32, 36, 1]. When fi has a restricted set 
S of points of increase these classical regions are not best possible. In 
[1] the best regions are described when S is the complement of a 
finite interval, in [15] the Stieltjes case S = [0, +oo) is treated and 
in [9, 10] the extended Hausdorff case S = [a, b]. The best re­
gions are now intersections of two circular disks, or lunes. It will now 
be indicated how to construct the best inclusion lunes Ln(z) for 
/(*) = fa dfi(t)l(z — t) ( - o o < a < & < + o o ) when the moments 
{e* }g are known. 

Thus let Kn(z) be the classical disk for f(z) when {ck}*n~2 are 
known. The functions 

/. / v fb (t ~ a)diilt) . 
/«(*) = „ ; = (z - a)f(z) - c0, 

J a Z T 

Ja Z — t 

(b (t-a)(b- t)dfi(t) 
jab(z) - r z~7 

Ja Z — t 

= (z — a)(b — z)f(z) + (z — a — b)c0 + cx 

each have (convergent) /-fraction expansions. Let K^iz), Knh{z) 
and Kn^z) be the corresponding classical disks. Transforming back 
to f(z) gives 

K„«(«)= [£,«(*) + c 0 ] / ( z - a ) , 

W)= [Knb{z) - c0]l(b - z), 

Kna\z) - [K^Kz) ~(z-a- b)c0 - Cl]l(z - a)(b - z). 

Observe that K„a(z), K„b(z) require the moments {ck}
2n~l and K„ab(z) 

requires {c^} Q". The lunes are thus given by 
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L2„-i(z) = KAz) H K ^ z ) , 

L2n(z) = K„+1(z) H K^\z). 

An application of ChristoffeFs formula, theorem 3.3, then shows that 
the vertices of the lunes Ln(z) may be expressed in terms of {pk(z)}> 
{gfc(z)}, (9fe(ö)} and {qk(b)}. In particular only one application of the 
continued fraction algorithm of theorem 2 is necessary. 

The advantage of this technique over those using continued frac­
tions of special form is its extension to the case when S is the union of 
a number of disjoint intervals. For example if S = [a1? bx] U [a2, b2] 
then each inclusion region is the intersection of four circular disks. 
The polynomials corresponding to 1, t — a, b — t, (t — a)(b — t) 
above are now 1, t — al5 b2 — t, (t — al)(b2 — t), (t — b{){t — a2), 
(t - ax)(t - fciX* - a2), (t - b{)(t - a2)(b2 - t) and (t - ax)(t - bx) 
(t - a2)(b2 - t). 
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