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1. This article is a revised version of a talk given at the Conference 
on Evolution Equations and Functional Analysis, University of Kansas, 
June 28-July 18, 1970. The contents form a partial survey of some 
work done a few years ago (see [14; 15; 16; 17; 18] ) plus some reorgani­
zation and modification to simplify and improve the material. We 
were motivated originally in part by a desire to "understand" the 
recovery formula 

(1.1) u(t)=G(t,T)u(T)+ P G(t,Ç)f(Ç)M 
J T 

which, under suitable hypotheses, expresses the solution of the evolu­
tion equation u ' + A( • )u = f where U(T) and / are prescribed and 
A(t) is a family of linear operators. One can ask for solutions to this 
problem in various contexts and in various senses of the word solution 
and as a guide to the literature we mention [1; 6; 7; 8; 11; 12; 15; 16; 
17; 19; 20; 28; 29; 30; 31; 33; 34; 35; 36; 37; 38; 40; 41; 42; 42a; 43; 
44; 45; 45a; 46; 47; 48; 49; 50; 52; 56; 57; 58; 59; 60; 65; 66; 67; 69; 
70; 72; 73; 74]. This list is certainly not complete and we only mean 
it to be representative. For simplicity we will work in a separable 
Hilbert space F with A(t) a closed densely defined linear operator 
having domain D(A(t)) C F. Let us recall that A(t) is said to be closed 
if the graph G(A(t)) C F X F is closed. In practice A(t) is often deter­
mined by an elliptic differential polynomial ]£ aa(t, JC)L> where \a\ = 
£ ai ^ 2m and D^ • • • Dn«-, = Da with Dk = (W)dldxk (cf. [19; 
47] ) while in the simplest cases A(t) = — A with G(t, s) = 
exp [ — (t — s)A] the semigroup generated by — A (cf. [ 19; 30; 37] ). 

Now we want to assume as little as possible about the A(t) and even 
about G(t, s) in order to see what consequences follow from (1.1) 
itself. First we pick for convenience the space H — L2(T, T; F) in 
which to study (1.1). Thus H consists of F valued functions w defined 
a.e. on [r,T]y T< oo, with JT

T \w(t)\2 dt < oo where ||(resp. (, )) 
denotes the norm (resp. scalar product) in F (we will not distinguish 
between functions and equivalence classes). We can regard any 
u G H as an F valued distribution on (T, T) and hence u ' makes sense 

Received by the Editors March 6, 1972 and in revised form January 12, 1973. 

Copyright © 1975 Rocky Mountain Mathematics Consortium 

61 



62 R. CARROLL 

in D'(F) (cf. [19]). Thus for any h G F (u( • ),h) ' = (t*'( • ), Ä) 
in D ' , and when u' G H this means fT(u'(t),h)<p(t)dt= — 
fT

T(u(t)yh)<p'(t)dt for all <p G C0°° (T, T). (C0°° (T, T) is the space of 
C °° functions on (r, T) with compact support where support <p = supp <p 
is the smallest closed set outside of which <p vanishes identically). We 
define operators L0 = dldt and Lx = dldt in if by the prescription 
of dense domains D(L0) = {u G H; u' G H; u(r) = 0} and D^) = 
{u G H; u ' G H}; it is easy to see that u G H and u' G H together 
imply that u can be identified with the continuous function 
J* u '(£) d£ -h c so that it makes sense to speak of point values M(T) 
(see [19]). An elementary distribution argument shows that L0 

and LY are closed. Indeed, if, for example, un—> w with w n % î ; m i f , 
then in D'(F) un' —» t; and un' -+u' by the continuity of differentia­
tion which implies that v = u' (cf. [19] ). The preservation of initial 
value zero for un G D(L0) follows from the representation of un as a 
continuous function given above. We will assume now that the A(t) 
determine a closed densely defined operator A in H with D(A) = 
{u G H; u(t) G D(A(t)) a.e.; A( • )u( • ) G H}. That A be closed is no 
problem (cf. [15; 19; 47] ) and D(A) dense can be assured for example 
by imposing measurability requirements on the way in which the 
A(t) vary. Thus if A(t) is 1-1 onto F with A~l(t) G L(F) weakly 
measurable and uniformly bounded, then D(A) is dense (L(F) 
denotes the space of continuous linear maps F-+ F). To see this note 
that (A~1( • )h,k) measurable impies A~l( • )* is weakly measurable 
and hence, for u G H, (A_1( • )u>h) = (u, A~1( • )*h) is measurable 
with A~l( - )u G H (cf. [19], and recall that weak and strong mea­
surability coincide for F separable). Therefore if ((A_1( • )u,v)) = 0 
for all u G H, (( , )) denoting the scalar product in H, it follows that 
A - 1(t)* v(t) = 0 a.e. or that v = 0. We write now S0 = L0 -f A and 
Si = Lx + A with D(S0) = D(L0) Pi D(A) and D(SX) = D ^ ) Pi D(A). 
By imposing smoothness requirements on the variation of the A(t) one 
can assure that D(S0) C D(SX) is dense; for example (cf. [19; 40]) 
this holds if A-!( • ) GCl(Ls(F))(Ls(F) is L(F) with the strong 
operator topology where Aa—> A means AJi-^ Ah for each fixed 
h G F). In particular there will be many realistic instances with A 
and S0 densely defined and we need not go into this further in view of 
our intention to concentrate on (1.1). We remark that in general S0 

is not closed but it frequently is closeable with range R(S0) = H (cf. 
[15; 19; 29; 48; 39a]). 

Thus we can formulate the evolution problem in H, u ' + A( • )u = f, 
U(T) = UQ, in the form Sxw = / with U(T) = u0, and we will give a 
diagrammatic sketch of this operator equation in § 2 in connection 
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with a study of (1.1) (cf. also [57; 72] ). Further in § 3 we will give 
a diagrammatic presentation of certain more general abstract 
boundary value problems and recovery formulas (cf. [5; 13; 14; 15; 18; 
27; 39; 58; 71] ). Then the nature of some of these recovery formulas 
will be indicated in terms of the reproducing kernels of Aronszajn 
(cf. [2; 3; 4; 9; 10; 55] ) and (in § 4) in terms of Schwartz kernels (cf. 
[61; 62; 63; 64] ). These general formulas apply in particular to a 
version of (1.1), and an example appears in [15]. §4 represents an 
improvement and clarification of the formulation of [18]. 

2. Let H0 = D(S0) (resp. Hx = D(Sj)) with the graph Hilbert struc­
ture (i.e. for u,v ELHQ ((U, V)) = (u, v) + (S0u, S0v)) and consider the 
following diagram of linear maps 

j 
0 

(2.1) 

RCH 

Here we write fì= R(S0) = R(SX)9 G = S0~
l (defined on R), T = 

ker Sl where H{ = H0 + F (topological direct sum) with j the 
associated projection, H0 = ker 8, and p is obtained from the induced 
algebraic isomorphisms between /, T, and HJHQ. Thus i,j, S0, and S2 

are continuous maps but nothing is assumed for the moment about 
G, 8, or p. We think here of I as the space of initial values, and in 
general one does not expect R or / to be closed. On the other hand 
one usually deals with situations where R and I are dense (cf. in par­
ticular [7; 51] concerning /). Let us now index all spaces and maps 
in (2.1) with a parameter r so that (2.1) implies 

(2.2) u = pTÔTu + QSfii ; / = S^GTf = So 'Q/ 

for u G Hi and / G RT. The first equation is an abstract recovery 
formula corresponding to (1.1) with 8Tu = U(T), SY

TU = / , GT an integral 
operator with kernel G(t9 s), and pT = G(t, r). We remark that a priori 
there is only the connection (2.2) between pT and GT, but the formula 
(1.1) will in fact follow from (2.2) under certain weak hypotheses (cf. 
theorem 2.3). 

DEFINITION 2.1. An operator valued function G(t,s) E. L(F), 
T ^ s ^ t S T, will be called a propagator if (1) G(s, s) = I and (2) 
G(t, s)G(s, r) = G(t, r) for r ^ s g t. If in addition (3) (t, s) -* G(t, s) G 
C°(LS(F)) for s^t, then G will be called a strongly continuous 
propagator. 
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Now, as indicated in § 1, DiSJ C D^) C C°(F), so that for 
h E IT, pT(h) ETEHl = D(Sx) has point values pT(h)(t) = P(t,r)h 
where P(t9r) is obviously then a linear map from R,. to F. For r ^ s 
let k(s, r): Hir—» Hx

s and ß(s, r) : fy—> Ks be restriction maps so that 
Sisk(s, r) = ß(s, r) Sx

r (more general maps X and ß enjoying this prop­
erty might be envisioned, but it would be somewhat artificial to work 
at that level). Then from (2.2) a routine calculation (see [16] ) yields 

(2.3) pA\(«, r)pA = k(s, r)pr8r 

Setting now dsu = u(s), which makes sense, we obtain on Ir 

(2.4) P(t, s)P(s, r) = P(t, r); P(r, r) = I 

PROPOSITION 2.2. Given 8su = u(s), (2.2) implies that P is a propa­
gator on its domain of definition. 

We assume now that the linear operator GT has a kernel G(t, s) G. 
L(F)wi ths -> G(t,s) G C°(LS(F)) for t ^ s so that for fixed t 

(2.5) (GTf)(t)= £ G(t,s)f(s)ds. 

To check that everything makes sense we note first that since [r, t] 
is compact the set Q = {G(t, s) : s E [r, t] } is compact in LS(F) and 
hence bounded there. By the Banach-Steinhaus theorem (see [19]), 
Ç is then norm bounded. Since f E L2 E Ll is measurable on 
[T,t] (with values in F), we have (G(t, s)f(s), h) = (/($), G*(M)h) 
measurable for h E F (since G(t, -)k E C°(F) for kEF implies 
G*(£, • )h is weakly continuous and hence strongly measurable); this 
implies that s—» G(t,s)f(s) is weakly and hence strongly measurable. 
Hence the integral in (2.5) makes sense. Finally we note as above that 
H(GT) = D(S0

T) C C°(F), so point values make sense. Now one 
expects that P(t, s) = G(t, s), but normally one has various stronger 
continuity or differentiability properties of P and G available to prove 
this. In fact, however, it is true under much weaker hypotheses, and 
G(t, s) will be a propagator essentially by virtue of the recovery for­
mula (2.2) which now takes the form 

(2.6) u(t) = P(t, T)W(T) + I* G(t, s)f(s) ds. 
J T 

Now we say uECl(F)n C°(D(A)) if u E Cl(F) with A( • ) " ( • ) 
EC°(F). The following theorem was proved in [17] where the 
explicitly used assumption of uniformity (see proposition 3) was some­
how omitted from the statement of theorem 1. 
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THEOREM 2.3. Let (2.6) represent the unique solution of SiTu = f 
with U ( T ) G / T and f G R, given. Assume s-* G(t,s) G C°(LS(F)) 
for t^ s, C1(F) H C°(D(A)) has a dense set of initial values 
îs C Is on any interval [s, T] for s ê r , and P(t, s) is uniformly extend­
able by continuity from Is to F for s G [r,T] fixed. Then P(t,s) = 
G(t, s) on Is, and G(t, s) is a strongly continuous propagator. 

REMARK 2.4. The condition on Cl(F) fi C°(D(A)) is perfectly 
natural and we refer to [47] for further information on this. The 
results of [16] yield a similar conclusion under a hypothesis that 
D0 = H D(A(t)) belong to Is for all s and be dense in F (instead of the 
hypothesis about îs). A stronger continuity assumption on G( •, • ) is 
made in [16] but this could be weakened to that of [17]. 

REMARK 2.5. By P(t, s) being uniformly extendable we mean that 
P(t,s) extends by continuity from Is to a (unique) P(t,s) G L(F) for 
each t G [s, T] while \P(t,s)h[= c(h) for h G F. Consequently the 
set Ç = {P(t, s)} for t G [s,T] is weakly bounded, and by the Banach-
Steinhaus theorem Ç is norm bounded and equicontinuous; this is 
used in proving theorem 2.3 (see below). As a natural example where 
this occurs we consider u ' + Au = 0, take scalar products with u and 
real parts, and integrate to obtain 

(2.7) i ( \u(t) P - |«(T) |2) + Re J"' (A(£)u(0, u(0) d€ = 0. 

The standard evolution problems involve situations where Re(A(£)t/(£), 
u(Cj) = ~-A|W(£)|2, and using the Gronwall inequality (2.7) then 
yields (cf. [19]) 

(2.8) KOI2 = \P(t, T)W(T)|2 ^ e^-^\u{r)\2. 

Consequently \P(t, r)h\ = c\h\ for h G IT (since T < <» ) and 
\\P(t, T)|| = c; the uniform extendability is immediate. 

We will indicate briefly the method of proving theorem 2.3 used in 
[17] by stating some of the ingredients. First one knows t—> P(t,s)h 
is continuous for h G Is since His (Z C°(F). However on the set 
Ç = {P(t, s)}, t G [s, T], of remark 2.5 the topology of simple conver­
gence (i.e., the strong operator topology) is equivalent to the topology 
of simple convergence on a dense set such as Is C F (cf. [19] ). Hence 
t —» P(t, s) is strongly continuous. If one can show that s—> P(t, s) is 
also strongly continuous then using proposition 2.2 (which extends by 
continuity to P(t,$)) it follows that (t,s)-+ï(t,s) G C°(LS(F)). 
This is achieved by showing that P(t, s) = G(t, s) on Is so that G(t, s) = 
P(t,s) is then a strongly continuous propagator. The argument of 
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[17] proving that P(t, s) = G(t,s) on îs is somewhat lengthy and 
we omit the details here (essentially the same argument appears in 
[ 16] under slightly different hypotheses). 

REMARK 2.6. The "meaning" of the formula dG(t,s)lds = G(t, s)A(s) 
(suitably interpreted) in the integrated form J* Gs(t, s) ds = I — G(t, r) 
= il G(t, s)A(s) ds can be abstracted from (2.1) as follows. Assume for 
simplicity that u0 G IT belongs to D0 = fl D(A(t)). Then u0 G Hx, 
with LiU0 = 0, and we let u G Hx be any element satisfying 8Tu 
= U(T) = u0. Thenw — u0 G H0, and hence u — u0 = GTSiT(u — u0) = 
GTSiTu — GTSiTu0. But u = pTu0 + GTS1

Tw by (2.2) so we obtain 
pTu0 = u — GTS1

Tw = u0 — GTSiTu0. Since SiTu0 = Au0 and P(t, s) 
= G(t, s) on Is we have G(t, T)U0 = u0 — Î* G(t, s)A(s)u0 ds. 

3. We take H to be a separable Hilbert space with S0 and S0 ' 
closed densely defined operators in H. The pair (S0, S0 ') is formally 
adjoint if (S0x, y) = (x, S0'y) for x G D(S0) and y G D(S0 '). Define 
Si = (S0')*D S0 and set H0 = D(S0) with HY = D(Si) (in graph 
Hilbert structure). We recall that xGD((S 0 ' )* ) if the map 
y—» (x, S0'y) : D(S0)^> C is continuous in the topology of H so 
that (x, S0'y) = ((S0')*x,y). One writes Hx = H0 + T where T 
denotes "abstract" boundary conditions (cf. [5; 13; 27; 39; 58; 71] ) 
and + means topological direct sum. We assume S0 is 1-1 with 
closed range and that K(SX) = H. Operators S with S0 C § C Sx 

are characterized by linear subspaces f of r such that H = D(S) = 
{Ui G Hi; jUi G t} where j : Hx —» T is the projection determined 
by Hi and T (thus H = H0 -h £). The following diagram gives a 
more refined breakdown of the situation where V = ker Sx + T 

(3.1) 

H0 + ker SY + T —^{0} + i \ + f 

Si 

R(S0) + {0} + H 

Here T (identified with jT) is any topological supplement in HY of 
H0 H- ker Sx and, with ker S1? determines j as above, Tx = j(ker Sx) = 
ker Sl7 and H = Sxf with H = R(S0) 4- H. One checks that every­
thing makes sense and that the Green's operator G : (jwl5 SiUi)—* 
ux : r X H-+ Hx is well defined; it is easy to verify that G is also 
continuous. 

Now decompose G as follows. If jux = 0 (i.e., ux EL H0), then 
G(0, Sitti) defines a continuous map G2 : R(S0)-» H^ By [13] there 
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exists a solvable realization operator § for (S0, S0 ') (i.e., S is 1-1 onto H 
with S 0 C § C Si), and on R(S0) one has G2 = S0~

l = § - 1 which 
means that G2 extends (as §_1) to a continuous map G2 : H-+ H0 + F. 
Similarly if ul G ker Si then G(jux, 0) determines a continuous map 
Gx : Fx —> Hi (the identity, which extends, as the identity) to a con­
tinuous map Gi : Tj + F —> Hx. Then for ux G H0 + ker Sx one has 
wi = Gi(jui) + Q^Si^i) whereas for Mi G T , Uj = Gi(jUi) = 
G ^ S ^ i ) . There are now two recovery formulas for ux G Hx. Thus in 
the first place 

(3.2) ui = G2(pSii*i) + Gi(/"i) 

where p : H - * R(S0) is the projection determined by K(S0) and H. 
On the other hand, if p : F-* Tx is the projection determined by Tl 

and f in T, then 

(3.3) Ui = G2(SiKi) + Gi(pjt/i). 

Evidently (3.3) is a possible interpretation of (1.1) and one can obtain 
information from both (3.2) and (3.3) (cf. [14; 15]); we refer to [15] 
for concrete examples from evolution equations. 

We recall the notion of kernel following Aronszajn for a linear map 
T : E—> F (here E and F are separable Hilbert spaces of equivalence 
classes of measurable functions on a suitable space X). Thus T has a 
kernel % , •) if (1) for all y G X, T(y, • ) G E (2) the map;/-» T(y, • ) : 
X-H> E is measurable, and (3) for all e G D(T), (Te)(y) = (e, T(y, • ))E 

almost everywhere. Suppose that Gi and G2 have kernels gx and 
g2(Gi : r - > Hi and G2 : H-> Hx). Then, writing T (resp. T*) for the 
adjoints of continuous (resp. unbounded) maps, (3.2) and (3.3) become 
(suppressing the y variable) 

(3.4) ^ = K / S / p g 2 + î/gi)Hi , 

(3.5) t/i = ( t / i / S i g 2 + y p g l ) f / l . 

THEOREM 3.1. If Gx and G2 have kernels as above then Hx has a 
reproducing kernel (i.e., the identity operator on Hl has a kernel) 
given by either of the formulas 

(3-6) hx = <Si<Pg2 + fei, 

(3.7) K = <Sig2 + fpgl. 

One notes here that if hY is given then gx = Jhl is the component of 
hi in r in the decomposition Hx = F © (Hi © T) where © denotes the 
orthogonal direct sum. Thus 
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THEOREM 3.2. If Hl has a reproducing kernel hx, then G2 has a 
kernel determined by (3.7). 

For purposes of calculations we observe that if ' S ^ = w then w = 
S0'(v — Sxw) so that w G R(S0 ') and therefore (3.7) can be written 

(3-8) g 2 = [ ( S 0 ' ) - 1 + S 1 ] ( / » 1 - ^ g l ) -

Such formulas can be used in concrete examples as in [15] (for (3.6)). 
If one is given hi and uses (3.6) then the element <p determined by 
%<p = hY - tjgl lies in HO H = R(fp), but since ker 'p = H © R(S0) 
this only determines g2 up to an arbitrary element of H © R(S0). 
Writing (p = *pg2 in this case for some such nonunique g2, one gets 
(pSiWi,g2) = (Siu^ip) = (ul,h1 - J/g!) = G2(pS1w1) and we could 
of course use here the uniquely specified component g2 = *p~l<p of 
g2 in R(S0) to produce a kernel for G2 : H(S0) —> Hv There is no need 
to insist on H = R(S0) © H as in [ 14]. 

THEOREM 3.3. If Hl has a reproducing kernel hx, then one can 
specify a kernel g2 = ep _ 1 tSl~

l(hi — ^gi) for G2 : R(S0)^> H^ 

We remark that (§, S0')> (S, S*), and (S0, S*) are formally adjoint 
pairs and various formulas become more manageable for calculations 
when these pairs are used (provided S and/or S* is known). Thus, if 
one looks at (§, S0 ') then H = {0} = T, so p = identity = p, and (3.6) 
= (3.7). If we consider (S0, §*), then Sx = S, so ker Sl = T1 = {0} 
and we have p = 0 = *p; in this case Hx = H0 © T can be envisioned 
(note r x is not orthogonal to H0). Finally using (§, S*) with H0 = Hl9 

we obtain from (3.8) (cf. also theorem 4.1) 

(3.9) g 2 = [(S*)-i + 3]N. 

This formula was used in [15] to compute hY and g2 in an evolu­
tion problem (the discussion in [15] indicates situations and contexts 
where the procedure is justified, and we refer also to [19] ). Various 
diagrams are drawn in [14; 15] to show how the maps j , J, etc. 
behave and some criteria are established for an element of Hx to 
belong to various subspaces (note for example that gl = JhY means 
hx - Jhx G Hl © r while ^ = tjgl = ^ G Hx © H0 with hx -
J/Tii E. HiQ r ) . Thus, taking H = R(S0) © H for convenience, one 
proves 

THEOREM 3.4. Assume H= R(S0) © H (with T= S~lH). Then 
« G ^ e r if and only if u G R(S0 ') with [(S0')-

1 + S J u G R(S0). 
Similarly u £ ^ 9 H0ifandonlyif(l + So*Si)w = 0. 
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4. We recall first a few ideas and facts about Schwartz kernels, 
and in order to simplify the notation we will work with the equivalent 
notion of antikernel (see [19; 61; 62; 63; 64] ). The idea is to character­
ize Hilbert subspaces of very general topological vector spaces in 
terms of certain "intrinsic" operators (either kernels or anitkernels). 
By way of application this idea was used by Schwartz to describe 
elementary particles in quantum mechanics (cf. [62; 63] ). 

We restrict ourselves here to Hilbert subspaces of Hilbert spaces, 
and thus some of the constructions will be seen to be related to tech­
niques and ideas in interpolation theory, for example, but we will not 
attempt to be biographical in this respect. Thus let V C H be separ­
able Hilbert spaces and let V denote the dual of V (i.e., V is the space 
of continuous linear functionals on V). Note that one has a canonical 
antiisomorphism 6 : V -» Vdeterminedby (w ', w) = ((w, 6w ')) (simi­
larly 6 : H' -+ H is defined). The Schwartz operator (or antikernel) 
L of V relative to H is the composition L = iOi* : H' —> H where i : V 
—> H is the injection. The operator L is characterized by the property 
(h\ w) = ((w, Lh')) for ft' GH' and w G V where < , ) denotes the 
H — H' pairing (we write (( , )) for the scalar product in V and (, ) 
for that in H); note that L is antilinear (i.e., conjugate linear). Define 
now T = 6L~l : R(L) C H —> H; then T is an unbounded self ad­
joint positive definite operator mapping onto H, and V is characterized 
as D(T1/2) (cf. [18; 19; 64]). We write T"2 = S and call S 
the standard operator for V in //((note that (Sx, Sy) = ((x, t/))). Let 
us mention that the use of such standard operators in describing the 
variation of domains V(t) G H has been systematically exploited in 
the study of variable domain abstract evolution equations and has led 
to general existence-uniqueness results in coercive and noncoercive 
situations (see [17; 19; 20; 22; 23; 24; 25; 26; 53; 54; 54a; 68]). In 
[18] there are also some preliminary applications of standard opera­
tors to homotopy properties of operators. 

We will now indicate another way to look at some of the results of 
§ 3 (cf. [18] ). Let us assume we are working with Hilbert spaces of 
distributions where one has a natural conjugation (<T, <p) = (T,ïç>) for 
T G D ' and (p G D where <p denotes ordinary complex conjugation). 
Thus we assume h G H when h G H without loss of generality since 
with more elaborate notation one can develop all this in terms of an 
arbitrary conjugation (or in terms of kernels and antispaces). Let anti-
linear action of h G H on h ' GH' be defined by linear action of h on 
h' (cf. [61]). Let {Vi} be an orthonormal basis in V and note that 
the antilinear map L : H' —> H can be written 

(4.1) L = 2 fi ® Pi. 
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Indeed, for h ' £ H one has Lh ' G V so that 

(4.2) Lh ' = 2 ((Lh ', t^H = £ (/TV^K 

which is the same as (4.1). We note also that 6 = ^ v{ ® û; as an 
antilinear map V ' —> V since then 

(K ew '))= ((w, 2 vM, ö5'») = 

(4.3) 2 <»<> «'>((«>> »<)) = <«>', 2 ((«>> u<))u<> 
= (wf, w). 

This illustrates the fact that L and 0 are really the same thing but 
referred to different spaces. This expression ^ v{ <8> V{ is of course 
also the classical form of a reproducing kernel in V (cf. [2; 55] ); 
this is usually expressed by ((v, ^ v{ ® ü*)) = ^ ((v, VÌ))VÌ = v (we 
could also act on the second terms since Vi is also an orthonormal 
basis but it is convenient here to retain the classical action). Thus 
the second terms involve the y variable of § 3 which was there in the 
first position. We have shown that L or 0 corresponds to hY of § 3 
when thought of as a kernel and one must scrupulously distinguish L 
as a kernel or as an operator. 

Similarly 6 = ^hi® hi when {hi} is an orthonormal basis in H. 
Now we take S0 = S = Sl for convenience where V = D(§) = Hx 

with graph Hilbert structure. To find the kernel associated with 
S - 1 in H consider 

(Su,2(S*)-^®M = 
Y(Sv>ß*)-1hi)hi =

 ,Z(v,hi)hi = v. 

Thus S _ 1 has kernel K= (S*)~l$ with action on the first variable 
where we regard 6 here as a reproducing kernel in H (this is in fact 
a special case of a formula in [2; 55] ). Now one shows easily (cf. 
[18; 19]) that for V = D(S) = Hl as ^ indicated, T = (1 + 3*3). 
We have an operator equation L = T~l 0, so T~l acts on the first 
variable since 6 as an operator acts as in (4.3) on the second variable. 
Therefore considered as a kernel in H,T~l0 is the kernel associ­
ated with T~l. Hence thinking of L as a kernel we have 

(4.5) K= [ ( S * ) - 1 * S]L. 

This yields a somewhat expanded version of the formula (3.9) since 
the kernels g2 and hY will only be present for certain spaces H and Hy. 

THEOREM 4.1. IfL is thought of as a kernel and K is the kernel for 
S_1, then (4.5) expresses their relation. 
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We remark that this improves the presentation of [18] where some 
confusion arises in the role of L as operator or kernel. 
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