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JACOBI SUMS AND A THEOREM OF BREWER
PHILIP A. LEONARD AND KENNETH S. WILLIAMS *

1. Introduction. Throughout p will denote an odd prime, and
(/p) the familiar Legendre symbol. It is well known that p = ¢2 + 2d?
if and only if p = 8k + 1 or p = 8k + 3, and that in these cases ¢ is
unique if we require ¢= (—1)**(mod4). In 1961, Brewer [1]
related this representation of p to the character sum

(L1) B= '2;("6—”%2—_2—))

More precisely, he proved

THEOREM.

B = 0, ifp}é02+2d2,
{20, ifp=c?+ 2d?and ¢ = (—1)k*! (mod 4).

We present a variant of Whiteman’s proof [6] of this result, using
simple properties of Jacobi sums, with the view that this is more
natural than the use of Jacobsthal sums [6], modular curves [5]
(see Theorem 1) or the theory of cyclotomy [3] in other existing
proofs.

For multiplicative characters ¢ and A of GF(p"), the Jacobi sum
J(¥, ) is defined by

(1.2) J.N =3 v(nB)
at+B=1

If ¢, A and YA are non-trivial, these sums satisfy [4]

(13) ) = 5

where G(¢) is the Gaussian sum G(¢) = Y, () exp(2mi tr(a)/p), with
tr(@) = a+ a”+ - - + a7, and therefore as |G(y)| = p"2,

(14) [J(g, M) |2 = p.
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The Gaussian sums also satisfy
(1.5) G)G(¥) = $(—1)p,

where § is the character conjugate to . The particular Jacobi sums
of interest will be studied in § 4.

It is convenient to introduce 6, an element of GF(p2) of multiplica-
tive order p + 1, and the notation @ = 67, so that 60 = 1. (Similarly,
the integers x, X among 1,2, - - - p — 1 are related by 2% = 1 (mod p)).
We note the relation

(1.6) (" + 1)yr-t=¢vforl=n=p+ Ln# (p+ 1)2
which follows from ( 6" + 1)» = g7 + g*®+1) = gmr( 6" + 1).

2. Transformation formulae. The following result contains two
simple formulae which are useful in the argument.

Lemma 2.1. Let F be a complex-valued function of period p. Then

@1 g(%i)z?(xn ’g (x;2>F(x)

" = :1 (? >F(x + %),

2.2) p:)( ";2 ) F@) - :z (2 2 )F @)
p+1

= > (=1)"F (6" + o").

Proor. For (21), see [7]. The observation of Brewer [1] and
Whiteman [6] that the number of solutions of x =60"+ ", 1=n=1p
+ 1,is 1 — ((x2 — 4)/p), gives

e T cw- S (= )ow =S ae+o,
x=0 x=0 p n=1

for any complex-valued function G of period p. Setting G(x) =
((x + 2)Ip)F (x), we obtain (2.2) as ((6" + 6" + 2)lp) = (—1)*, 1 =n
=p+ 1, n# (p+ 1)2. This assertion follows from (1.6) and Euler’s
criterion, since

(6" + 0+ 2)P-12 = (( " + 1)2 o) =12

=grgre-V2 = gro+D2 = (—])
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for the indicated values of n.

3. Applications; the trivial cases. We apply Lemma 2.1 to F (x) =
((x% = 2)Ip). For p =1 (mod 4), (2.1) gives

we S () ()5 ()

3.1) x=1 |
-5

If p = 5 (mod 8), the biquadratic and octic residues modulo p coincide,
so that B = 0 in this case.
For p = 3 (mod 4), (2.2) gives

9B = El (—1)" 02n + '621-
(32) » ( P +>1 .
4n 4n 14 2n 2n
-5(7)-5(%57)

As 7+12= —] and (—1/p) = —1, the transformation n— (p + 1)/4
+ n shows that the second term in (3.2) is its own negatlve and so
2B =SVl 6* + 6*)fp) in this case. If p=7(mod8), the
transformation n— (p + 1)/8 + n applied to (3.3) shows that 2B =
—2B, so that B = 0 in this case as well.

4. The Jacobi sums. For p =1 (mod 8) and p = 3 (mod 8), some
special Jacobi sums are needed. First, let D denote the ring of integers
of the number field Q(V2,i) = Q(w), where » = exp(27il8). D is a
unique factorization domain. If 7 denotes a prime factor of p in D,
then k = D/(w) is a field of N(x) elements, where

p ifp=1(mod8),
(1) Nm) = { 2 if p= 3 (mod8).
We define a character X = X, of k by specifying
(4.2) X(§) = o if EN@-DB= g (mod),

for elements £ of D not divisible by 7. The function X defined by (4.2)
is related to the Legendre symbol by

a\_ fX¥a) ifp=1(mod83),
(43) < >_ X(a) if p= 3 (mod8),forallainZ.

When p = 3 (mod 8) we have
0(7’2‘1)13 = ( 0(ﬂ+1)/4)(7"'1)/2 = (ti)(ﬂ”l)m = il, SO thatx( 0) = =+1.
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Replacing 6 by — @ if necessary we can assume without loss of gener-
ality thatX( 6) = 1.

Since our Gauss and Jacobi sums involve only characters which are
powers of X, we set J(m, n) = J(X™,X") and G(m) = G(X™) to simplify
notation. Also, @ and a’ denote the conjugates of a in D with respect
to i and V2, respectively. Thus @' = w3, for example.

For p =8k + 1, the central role is played by the Jacobi sum
J(1,4).

LemMa 4.1. Forp =8k + 1,J(1,4) = a7 .

Proor. As 3724 4" = 0 (mod p) wherever p —1 § n, we have
y=0Y p p

—1
44)  JLA=S yo-Us1 — y)»-12= 0 (mod ) in D.

y=0

Since y®?~ V8= o (modw) implies y3P~18 = o (mod7 '), we have

—1
45)  J(L4)= S y¥-18(1— y)o-12= 0 (mod ") in D.

y=0
As 7 and 7' are non-associated primes of D, (4.4) and (4.5) imply

(4.6) J(1,4) = yaw', for some+y in D.

Now by (L3) and (L5), J(1,4)=J(3,4)= G(3)G(4)IG(7) =
G(1)G(4)/G(5) = J(1,4) showing that J(1,4) is in Z[V—2]. Since
7' is in Z[V—=2], y is in Z[V—2] as well. Computing norms in
(4.6) gives, by (1.4), thaty is a unit of Z[ V—2], soy = =1 as required.

LemMa 4.2. For p=8k+1, J(1,4)=c+ dV—2, where c=
(=1)k*1(mod 4) and p = ¢ + 2d>

Proor. By lemma 4.1 and its proof, J(1, 4) is a prime factor of p in
Z[{V=2]. Thus, since we do not distinguish d from —d, J(1,4)
= (¢ + dV—2), with d even and ¢ = (—1)k*1 (mod 4). The correct
sign is obtained by using an idea of Davenport and Hasse [2]. For
I1=y=p-2,(y+ 1)p)+ 1=0(mod2),and

,if(L)=1,
X(y) = 1 1(,,) 1 (mod V'=2),

w, if(% >= -1

so that
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After some simplification of (4.7) we obtain

J0,4)= 2(p— 5+ 2p — 1) + X(~1) (mod 2v=D),

or
(4.8) J1,4)= (—1)k— 2= (—1)k*1= ¢(mod 2V —2).
As dis even, we have J(1,4) = ¢ + dV —2, completing the proof.

For p = 8k + 3, the central role is played by a factor of the Jacobi
sum J(1, 3). Following Whiteman, we consider the Eisenstein sum

(4.9) K="Sx1+bi),

b=0

which satisfies (see [6], lemma 2)

(4.10) KK=p,
and also (as can be shown by a straightforward calculation)
(4.11) J(1,3) = = K3,

showing that K is indeed a factor of the Jacobi sum J(1, 3).

Lemma 4.3. For p=8k+3, let L=5"1X(6"+1). Then L
isinZ[V—2],and —L = K.
Proor.

=% e +110="S e+ 1)

=1

]
—

3
[}
—
3

p+1
= X(7+1)= Y x(6n+1)=1L,
=1

3
l
—
3
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so that L is in Z[ V—2]. For 0= b = p — 1, the numbers (1 — bi)/
(1 + bi) are distinct, and different from —1. As ((1 — bi)/(1 + bi))?
= (1 + bi)l(1 — bi), each of them satisfies y?*1 =1, and so these p
elements of GF(p?) are simply 6", 1=n=p+ 1, n# (p+ 1)2
Therefore

+1
{0"+1 |l§n§p+ 1,n # £2—_}

_ {szi lo=b=p+1 }

so that

K—E X(1 + bi) = 2x( 2

N~~—

2 X(on+ 1)= —L,

n

as required, where the dash (') indicates that the summation is over
those nsatisfyingl = n=p+ 1, n# (p + 1)/2.

Lemma 44. For p = 8k + 3 = ¢% + 2d?, with ¢ = (—1)k*!(mod 4),
we have L = x(c + dV —2). (The ambiguity of sign is resolved in

§5).

Proor. From (4.10) and lemma 4.3 we have p= LL =7, so
that L= *7 or +7, showing that L can be written in the form

+(c + dV—2) with ¢ = (—1)**1 (mod 4) and ¢2 + 2d2 = p.
5. Completion of the proof. For p = 8k + 1, we have

2 8 +1
(5.1) = < )
- 2 (x+1 ML+ X) +23) + - + X)),
and
(5.2) ! <x4 +1 )

I

1]

!
P

=
<+ =
(o)
N—"

{1 + X3(x) + X4(x) + X5(x)},
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which, with (3.1) gives

(5.3) 2B = J1,4) + J(L,4)' + J(1,4)" + J(1, 4).

From lemma 4.2, 2B = 4c, so that B = 2c as required.
For p = 8k + 3, we rewrite (3.3) by introducing X, and obtain

p+1 p+1
(5.4) 2B= Y X(6%"+1)= Y x(6* + 1),
n=1 n=1

as p+ 1=4(2k + 1) implies that the fourth powers and eighth
powers in the cyclic group (8) coincide. Setting

p+1
= ¥ X(@n+ + 1), forj=0,1,2,3,

n=1
we have the equalities
2B = S,
4L =Sy + S, + Sy + S3 = +4(c + dV—=2).
Now (see [6], p.551) S; = iS3and S, = 0, giving
(5.6) +4(c + dV=2) = 2B + (1 + i)S,.

From (1.6) we obtain, for p = 8k + 3, as X(0) =i, X} ™+ 1) =
X(om™ + 1)}~ = X(6m") = {X(6™)}°> = w®m, so that

(5.5)

(5.7) X(6™ + 1) = + @
Hence X(6**+3 + 1) = % o, so that S3 = ew, where e € Z, giving
(5.8) (14 49)S;=eV=2.
From (5.5), (5.6) and (5.8) we have B/2 = Sy/4 = +¢. But
ptl 2k+1
Sold = % 2 X(0 + 1) =,§1x( ot + 1)

2k
= Y X6 +1)—1,
n=1

and

2k
Y x(6+1)= 2 X(9~4m + 1) 2xw4m+ 1).

n=k+1 m=1 m=1
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Since (from (5.7)) X( 4™ + 1) = x1, we have

k

§= 2 3 X(6m + 1) — 1= 2k — 1= (—1)k+1 = ¢(mod 4).
m=1

Since c¢ is odd and B/2 = *¢, we must have B/2 = c¢. This -completes

the proof.
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