SOME REMARKS ON THE SLICE ALGEBRA FOR H[∞] wayne cutrer

1. Introduction. For $N \ge 1$ let U^N denote the open unit polydisc in N complex variables and $H^{\infty}(U^N)$ the usual Hardy class of bounded holomorphic functions on U^N . If $M(U^N)$ denotes the maximal ideal space of $H^{\infty}(U^N)$, then by the N-dimensional slice algebra $S(M(U)^N)$ of $H^{\infty}(U)$ we mean the function algebra of all continuous functions fon $M(U)^N$ for which $f(\varphi, \cdot, \psi)$ belongs to $\hat{H}^{\infty}(U)$ for each φ in $M(U)^{k-1}$, ψ in $M(U)^{N-k}$, and $k = 1, \dots, N$. $\hat{H}^{\infty}(U^N)$ denotes the isomorphic Gelfand representation of $H^{\infty}(U^N)$ as a function algebra on $M(U^N)$. The purpose of this note is to give several characterizations of $S(M(U)^N)$ as a closed subalgebra of $H^{\infty}(U^N)$ and to relate the results to questions raised by [1].

In §2 we obtain a description of all the functions in U^N which extend continuously to $M(U)^N$. This leads in §3 to new characterizations for $S(M(U)^N)$ as well as to straightforward proofs of two representations obtained by F. T. Birtel [1] and L. Eifler [6]. Birtel represents $S(M(U)^N)$ as those functions in $H^{\infty}(U^N)$ whose boundary function on the N-torus belongs to $\bigotimes_{k=1}^N L^{\infty}(T)$. Furthermore, both obtain $S(M(U)^N)$ as functions in $H^{\infty}(U^N)$ having continuous extensions to $M(U)^N$.

Also in §3 we use a recent result of R. G. Douglas and W. Rudin [4] to show that f in $H^{\infty}(U^N)$ belongs to $S(M(U)^N)$ if and only if there exists a sequence of functions B_n in $H^{\infty}(U^N)$, each B_n a tensor product of N Blaschke products, such that the distance from $B_N f$ to the N-fold tensor product of $H^{\infty}(U)$ tends to zero. It follows from this that each f in $S(M(U)^N)$ is constant on the fibers in $M(U^N)$ above the Silov boundary of $S(M(U)^N)$. This answers in part the general question raised by Birtel in [1] of whether $S(M(U)^N)$ is precisely those functions in $H^{\infty}(U^N)$ for which \hat{f} is constant on all fibers above $M(U)^N$. We do show that this general question is equivalent to answering the corona conjecture for $S(M(U)^N)$ or, equivalently, to showing that the maximal ideal space of $S(M(U)^N)$ is $M(U)^N$.

§4 deals with the localization of some of the results in §3 to a neighborhood in U^N of a point α of T^N and to the fiber in $M(U)^N$ above α .

Received by the editors April 2, 1973 and in revised form May 21, 1973.

In §5 we show that the cluster set for f in $S(M(U)^N)$ at α is the range of f on the fiber above α in the maximal ideal space of $S(M(U)^N)$. Similarly the range of f in $H^{\infty}(U^N)$ on the fiber above α in $M(U^N)$ is the cluster set of f at α . As a corollary we show that these fibers are connected.

2. Preliminaries. Let $CB(U^N)$ denote all continuous complexvalued bounded functions on U^N . If \mathfrak{P}_k is a subset of CB(U), then by $\bigotimes_{k=1}^N \mathfrak{P}_k$ we mean the smallest closed subalgebra of $CB(U^N)$ which contains all functions of the form $F(\xi_1, \dots, \xi_N) = f(\xi_k)$ for some k and some choice of f in \mathfrak{P}_k . Similarly we define $\bigotimes_{k=1}^N L^{\infty}(T)$ as a closed subalgebra of $L^{\infty}(T^N)$. By $h^{\infty}(U)$ we denote the subset of CB(U) of all bounded real-valued harmonic functions on U.

It is well known [3] that $M(U)^N$ is the maximal ideal space of $\bigotimes_{k=1}^N H^{\infty}(U)$ and that X^N is its Silov boundary where X is the Silov boundary of $H^{\infty}(U)$. We also need the fact that U^N is dense in $M(U)^{N_1}$ which follows from Carleson's corona theorem [5].

The following lemma is the key to several characterizations for $S(M(U)^N)$.

LEMMA 1. The following complex algebras are isometrically isomorphic to $C(M(U)^N)$:

- (i) functions in U^N which extend continuously to $M(U)^N$.
- (ii) $\bigotimes_{k=1}^{N} H^{\infty}(U) \cup \overline{H^{\infty}}(U).$
- (iii) $\bigotimes_{k=1}^{N} h^{\infty}(U).$

PROOF. Since U^N is dense in $M(U)^N$, supremum norms on U^N and $M(U)^N$ agree. Hence, (i) is clearly $C(M(U)^N)$ restricted to U^N . The Stone-Weierstrass theorem shows that (ii) is $C(M(U)^N)$. Clearly (ii) is contained in (iii). If u belongs to $h^{\infty}(U)$ with harmonic conjugate v, then $F = \exp(u + iv)$ belongs to $H^{\infty}(U)$ and $\log |\hat{F}|$ is a continuous extension of U to M(U). It follows that each element of (iii) extends continuously to $M(U)^N$ and (i) then shows that (iii) is contained in (ii).

3. Several Characterizations and Corollaries. If f belongs to $H^{\infty}(U^N)$, it is well known (see [9]) that the radial limits $f^*(w) = \lim_{r \to 1} f(rw)$ exist for almost all w in T^N , where $rw = (rw_1, \dots, rw_N)$. This gives an isometry of $H^{\infty}(U^N)$ onto a closed subspace of $L^{\infty}(T^N)$ with f the *n*-dimensional Poisson integral of f^* . We will denote this closed subalgebra of $L^{\infty}(T^N)$ by $H^{\infty}(T^N)$.

If φ belongs to $M(U^N)$ then $\pi(\varphi)$ will denote the restriction of φ to a complex homomorphism on $\bigotimes_{k=1}^{N} H^{\infty}(U)$.

THEOREM 1. The following complex algebras are isometrically isonorphic to $S(M(U)^N)$:

- (i) functions in $H^{\infty}(U^N)$ which admit continuous extensions to $M(U)^N$.
- (ii) $\bigotimes_{k=1}^{N} [H^{\infty}(U) \cup \overline{H^{\infty}}(U)] \cap H^{\infty}(U^N).$
- (iii) $\bigotimes_{k=1}^{N} h^{\infty}(U) \cap H^{\infty}(U^N).$ (iv) $\bigotimes_{k=1}^{N} L^{\infty}(T) \cap H^{\infty}(T^N).$
- (v) functions f in $H^{\infty}(U^N)$ such that given $\epsilon > 0$ there exists $B = g_1 \otimes g_2 \otimes \cdots \otimes g_N$, each g_k a Blaschke product, such that dist $(Bf, \bigotimes_{k=1}^N H^{\infty}(U)) < \epsilon$.
- (vi) functions f in $H^{\infty}(U^N)$ for which f is constant on $\pi^{-1}(m)$ for all m in X^{N} .

PROOF. In view of Lemma 1, to show that (i), (ii), and (iii) are $S(M(U)^N)$ it suffices to show that (i) and $S(M(U)^N)$ are identical. By Hartog's theorem each f in $S(M(U)^N)$ restricted to U^N belongs to $H^{\infty}(U^{N})$ and sup norms on U^{N} and $M(U)^{N}$ agree. Hence, $S(M(U^{N}))$ is sometrically isomorphic to a closed subalgebra of (i). If f in $H^{\infty}(U^N)$ extends continuously to $M(U)^N$, then $f(\alpha_{\lambda}, \cdot, \beta_{\lambda})$ converges uniformly on compact subsets of U to $f(\varphi, \cdot, \psi)$ as $(\alpha_{\lambda}, \beta_{\lambda})$ converges to (φ, ψ) . It follows that $f(\varphi, \cdot, \psi)$ belongs to $\hat{H}^{\infty}(U)$ and the isometry is onto.

The equivalence of (iii) and (iv) follows directly from the isometry between $H^{\infty}(U^N)$ and $H^{\infty}(T^N)$. Each f in $\bigotimes_{k=1}^N h^{\infty}(U)$ has boundary unction f^* in $\bigotimes_{k=1}^N L^{\infty}(T)$ and the Poisson integral of each funcion in (iv) clearly belongs to (iii).

Assume f in $H^{\infty}(U^N)$ satisfies the conditions stated in (v). To show that f belongs to $S(M(U)^N)$ it suffices by [1] to show that f extends continuously to X^N . Let $\{\alpha_{\lambda}\}$ and $\{\beta_{\lambda}\}$ be two nets in U^N converging to m in X^N with $\lim_{\lambda} f(\alpha_{\lambda}) = \alpha$ and $\lim_{\lambda} f(\beta_{\lambda}) = \beta$. For $\epsilon > 0$ choose B of the stated form such that $||Bf - g||_{\infty} < \epsilon/2$ for some g in $\bigotimes_{k=1}^{N} H^{\infty}(U)$. It follows that $|m(B)\alpha - m(g)| < \epsilon/2$ and $|m(B)\beta - m(g)| < \epsilon/2$. Since m belongs to X^N we have |m(B)| = 1 (see [8, p. 179]). Then $|\alpha - \beta| \le |m(B)\alpha - m(g)| +$ $|m(g) - m(B)\beta| < \epsilon$. Thus $\alpha = \beta$ and f extends continuously to X^N .

For f in $S(M(U)^N)$ and $\epsilon > 0$, we can choose by (iv) a sum $\sum_{i=1}^n F_i$ In $\bigotimes_{k=1}^{N} L^{\infty}(T)$, each F_i of the form $f_1^i \otimes f_2^i \otimes \cdots \otimes f_N^i$, such that $||f^* - \sum_{i=1}^n F_i||_{\infty} < \epsilon/2$. By Theorem 7 of [4] there exist singular inner functions p_i^i and finite linear combinations χ_i^i of inner functions such that $||F_i - \bigotimes_{i=1}^N \chi_i^i / p_i^i||_{\infty} < \epsilon/2n$ for each i = 1, \cdots , *n*. It follows that

W. CUTRER

$$\left\| \prod_{i=1}^n (\otimes_{j=1}^N p_j^i) f^* - \sum_{i=1}^n \otimes_{j=1}^N \chi_j^i \otimes_{\mathbf{J}\neq i} p_j^i \right\|_{\infty} < \epsilon.$$

Now extend to U^N and use the result that every inner function is a uniform limit of Blaschke products (see [8, p. 175]). This gives (i) equivalent to (v).

If f belongs to $H^{\infty}(U^N)$ with \hat{f} constant on $\pi^{-1}(m)$ for every m in X^N , then f extends continuously to X^N ; otherwise, there would exist two nets converging to φ and ψ respectively with $\pi(\varphi) = \pi(\psi)$ = m but $\varphi(f) \neq \psi(f)$. For the converse, suppose f belongs to $S(M(U)^N)$, φ and ψ belong to $\pi^{-1}(m)$, m belongs to X^N , and $\epsilon > 0$. Again by (v) we can choose B and g in $\bigotimes_{k=1}^{N} H^{\infty}(U)$ such that

$$\begin{split} |\hat{f}(\varphi) - \hat{f}(\psi)| &= |\varphi(B)\hat{f}(\varphi) - \varphi(B)\hat{f}(\psi)| \\ &\leq |\varphi(B)\hat{f}(\varphi) - \varphi(g)| + |\psi(g) - \psi(B)\hat{f}(\psi)| < \epsilon, \end{split}$$

since φ and ψ agree on $\bigotimes_{k=1}^{N} H^{\infty}(U)$. This shows (i) and (vi) equivalent and the theorem is proved.

REMARKS. F. T. Birtel [1] has also obtained a representation of $S(M(U)^N)$ as the compact linear operators from L^1/H_0^{-1} to H^{∞} . It still remains an open question whether $S(M(U)^N)$ is precisely $\bigotimes_{k=1}^N H^{\infty}(U)$. The equivalence of $S(M(U)^N)$ with (vi) provides a converse of Theorem 4 in [1]. Furthermore, the argument can easily be extended to give the following corollary.

COROLLARY 1. The natural projection map τ of the maximal ideal space $\Sigma(S^N)$ of $S(M(U)^N)$ onto $M(U)^N$ is a homeomorphism over X^N .

COROLLARY 2. The following are equivalent:

- (i) τ is a homeomorphism.
- (ii) U^N is dense in $\Sigma(S^N)$.
- (iii) $S(M(U)^N)$ is the subalgebra of $H^{\infty}(U^N)$ for which \hat{f} is constant on $\pi^{-1}(m)$ for all m in $M(U)^N$.

PROOF. It is clear that (i) implies (ii) since U^N is dense in $M(U)^N$. If we assume that U^N is dense in $\Sigma(S^N)$, then each f in $S(M(U)^N)$ has a unique continuous extension to $\Sigma(S^N)$. Let $\epsilon > 0$ with φ and ψ belonging to $\tau^{-1}(m)$. Each function in $\bigotimes_{k=1}^N h^{\infty}(U)$ must extend continuously to $\Sigma(S^N)$ since U^N is dense in $\Sigma(S^N)$. Then point evaluation at φ and ψ are continuous linear functionals $\hat{\varphi}$ and $\hat{\psi}$ on $\bigotimes_{k=1}^N h^{\infty}(U)$ which must agree with φ and ψ on $S(M(U)^N)$. If g is chosen in $\bigotimes_{k=1}^N h^{\infty}(U)$ such that $||f - g||_{\infty} < (\epsilon/2) \max\{||\hat{\varphi}||, ||\hat{\psi}||\}$, then $|\hat{f}(\varphi) - \hat{f}(\psi)| \leq \|\hat{\varphi}\| \quad \|f - g\|_{\infty} + \|\hat{\psi}\| \quad \|g - f\|_{\infty} < \epsilon. \text{ Thus } \varphi = \psi$ and τ is one-to-one.

Let η be the natural projection map of $M(U^N)$ onto $\Sigma(S^N)$. If $\varphi(f) \neq \psi(f)$ for f in $S(M(U)^N)$ and $\pi(\varphi) = \pi(\psi) = m$, then $\eta(\varphi) \neq \eta(\psi)$ but $\tau(\eta(\varphi)) = \tau(\eta(\psi)) = m$. It follows that τ is not a homeomorphism and (i) implies (iii). Conversely, if $\tau(\varphi) = \tau(\psi)$ but $\varphi \neq \psi$, then there exists f in $S(M(U)^N)$ such that $\hat{f}(\varphi) \neq \hat{f}(\psi)$. But if $\eta(\varphi^*) = \varphi$ and $\eta(\psi^*) = \psi$, then $\pi(\varphi^*) = \pi(\psi^*)$ but $\hat{f}(\varphi^*) = \hat{f}(\varphi) \neq \hat{f}(\psi) = \hat{f}(\psi^*)$ and (iii) implies (i).

4. Localization. In this section we show how to localize some of the preceding sections. For $\alpha = (\alpha_1, \dots, \alpha_N)$ in T^N the fiber in $M(U)^N$ above α is the subset $M(\alpha)$ containing all φ such that $\varphi(z_k) = \alpha_k$ where z_k is the kth coordinate function on \mathbb{C}^N for $k = 1, \dots, N$. Similarly, $\Gamma(\alpha)$ denotes the fiber in $M(U^N)$ above α .

LEMMA 2. Let g belong to $\bigotimes_{k=1}^{N} h^{\infty}(N_k(\alpha_k) \cap U)$ with $N(\alpha) = N_1(\alpha_1) \times \cdots \times N_N(\alpha_N)$ a neighborhood in \mathbb{C}^N of $\alpha = (\alpha_1, \cdots, \alpha_N)$ in T^N . Then there exists h in $\bigotimes_{k=1}^{N} h^{\infty}(U)$ such that g - h extends continuously to α with value 0.

PROOF. It suffices to assume that each $N_k(\alpha_k)$ is a circular neighborhood of α_k and that g belongs to $h^{\infty}(N_k(\alpha_k) \cap U)$ for some k. Let v be a harmonic conjugate of g on $N_k(\alpha_k) \cap U$. Then $F = e^{g+iv}$ belongs to $H^{\infty}(N_k(\alpha_k) \cap U)$. Now using Vitushkin's localization operator [7] we construct H in $H^{\infty}(U)$ such that H - F extends analytically across α_k with value 0 at α_k . Since H extends continuously to $m(\alpha_k)$ and $\log|F| = g$, we have that g extends continuously to $M(\alpha_k)$.

Let *h* be the restriction of the continuous extension of *g* to $M(\alpha_k)$. Then *h* extends continuously to M(U) and by Lemma 1 must belong to the smallest closed subalgebra of CB(U) containing $h^{\infty}(U)$. Then *g* and *h* satisfy the lemma.

THEOREM 2. For α in $T^{\mathbb{N}}$ the following complex algebras are identical:

- (i) functions in $H^{\infty}(U^N)$ which extend continuously to $M(\alpha)$.
- (ii) functions in $H^{\infty}(U^N)$ such that given $\epsilon > 0$, there exists a neighborhood $N(\alpha)$ of α and g in $\bigotimes_{k=1}^{N} h^{\infty}(N_k(\alpha_k) \cap U)$ such that $\|f g\|_{\infty} < \epsilon$ on $U^N \cap N(\alpha)$.
- (iii) same as (ii) except with g in $\bigotimes_{k=1}^{N} h^{\infty}(U)$, or in $\bigotimes_{k=1}^{N} [H^{\infty}(N_{k}(\alpha_{k}) \cap U)] \cup H^{\overline{\infty}}(N_{k}(\alpha_{k}) \cap U)]$, or in $\bigotimes_{k=1}^{N} H^{\infty}(U) \cup H^{\overline{\infty}}(U)$.

PROOF. Assume f belongs to $H^{\infty}(U^N)$ and extends to a continuous function g on $M(\alpha)$. Then g extends continuously to $M(U)^N$ and by Lemma 1 must belong to $\bigotimes_{k=1}^N h^{\infty}(U)$. Then f and g satisfy (ii)

since otherwise $||f - g|| \ge \epsilon$ on $M(\alpha)$. For the converse choose gin $\bigotimes_{k=1}^{N} h^{\infty}(N_k(\alpha_k) \cap U)$ such that $||f - g||_{\infty} < \epsilon$ on $U^N \cap N(\alpha)$. By Lemma 2 there exists G in $\bigotimes_{k=1}^{N} h^{\infty}(U)$ such that g - G extends continuously to α with value 0. Then for some neighborhood $K(\alpha)$ of α we have $||f - G||_{\infty} < \epsilon$ on $K(\alpha) \cap U^N$. It follows that the cluster set of f at any φ in $M(\alpha)$ has diameter less than ϵ . The other equivalences follow in a similar fashion using Lemma 1.

5. Cluster Values. Although we cannot answer the corona conjecture for $H^{\infty}(U^N)$ or $S(M(U)^N)$, we can prove a cluster value theorem which gives the range of f in $H^{\infty}(U^N)$ on $\Gamma(\alpha)$ and the range of f in $S(M(U)^N)$ on the fiber $S(\alpha)$ in $\Sigma(S^N)$ above α .

We begin with a lemma on extending bounded holomorphic functions.

LEMMA 3. Let $\alpha = (\alpha_1, \dots, \alpha_N)$ belong to T^N and $\Omega = \Omega_1 \times \Omega_2 \times \dots \times \Omega_N$ be a neighborhood in U^N of α . Then given f in $H^{\infty}(\Omega)$ there exists F in $H^{\infty}(U^N)$ such that F - f extends continuously to α with value 0.

PROOF. We employ a vector-valued version of Vitushkin's localization operator. Define $T_1: \Omega_1 \to H^{\infty}(\Omega_2 \times \cdots \times \Omega_N)$ by $T_1(z) = f(z, \cdot)$. Then T belongs to $H^{\infty}(\Omega_1, H^{\infty}(\Omega_2 \times \cdots \times \Omega_N))$ which is isometrically isomorphic to $H^{\infty}(\Omega)$ (see [2]). Let φ be a continuously differentiable function on $\check{\mathbb{C}}$ with compact support in $\Delta(\alpha_1; \delta) = \{z: |z - \alpha_1| < \delta\}$ which is contained in Ω_1 and such that $|\partial \varphi / \partial \bar{z}| \leq 4/\delta$. Define

$$\hat{T}_1(\xi) = \left(\frac{1}{\pi}\right) \int_{\xi} \frac{T(z) - T(\xi)}{z - \xi} \frac{\partial \varphi}{\partial \overline{z}} \, dx dy.$$

Then \hat{T}_1 beings to $H^{\infty}(U, H^{\infty}(\Omega_2 \times \cdots \times \Omega_N))$. We can adjust \hat{T}_1 by a constant such that $T_1 - \hat{T}_1$ has value 0 at α_1 . Let $f_1(z, w) = \hat{T}_1(z)(w)$. Then f_1 belongs to $H^{\infty}(U \times \Omega_2 \times \cdots \times \Omega_N)$ and $f - f_1$ extends continuously to α with value 0. Now proceed by induction on n.

THEOREM 3. Let $\alpha = (\alpha_1, \dots, \alpha_N)$ belong to T^N . Then the range of f in $H^{\infty}(U^N)$ on $\Gamma(\alpha)$ and the range of f in $S(M(U)^N)$ on $S(\alpha)$ consists of all complex numbers λ for which there is a sequence $\{\lambda_n\}$ in U^N with $\lim \lambda_n = \alpha$ and $\lim f(\lambda_n) = \lambda$.

PROOF. Assume φ belongs to $\Gamma(\alpha)$, $\varphi(f) = 0$ and let $\Omega = \Omega_1 \times \cdots \times \Omega_N$ be a neighborhood of α in \overline{U}^N such that on $\Omega \cap U^N$, f is bounded away from 0. It follows that g = 1/f belongs to $H^{\infty}(\Omega \cap U^N)$,

and by Lemma 3 there exists F in $H^{\infty}(U^N)$ such that g - F tends to 0 at α . Thus fF belongs to $H^{\infty}(U^N)$ and extends continuously to α with value 1. It follows by [8, p. 161] (with $h(z_1, \dots, z_N) = \prod_{n=1}^{N} (1/2)^n (1 + \overline{\alpha}_n z_n)$) that $\varphi(fF) = \varphi(f)\varphi(F) = 1$, so $\varphi(f) \neq 0$. If φ belongs to $S(\alpha)$ and f belongs to $S(M(U)^N)$, choose ψ in $\Gamma(\alpha)$ such that $\eta(\psi) = \varphi$. Then $\psi(fF) = \varphi(f)\psi(F) = 1$ implies $\varphi(f) \neq 0$.

COROLLARY 3. The fibers $\Gamma(\alpha)$ and $S(\alpha)$ are connected.

PROOF. This follows as in [8, p. 188] from Theorem 3.

References

1. F. T. Birtel, Slice algebras of bounded analytic functions, Math. Scand. 21 (1967), 54-60.

2. W. Cutrer, Vitushkin's localization operator and holomorphic function in polydiscs, Duke Math. J. 39 (1972), 737-744.

3. J. Gil DeLamadrid, Uniform cross norms and tensor products of Banach algebras, Bull. Amer. Math. Soc. 69 (1963), 797-803.

4. R. G. Douglas and W. Rudin, Approximation of inner functions, Pac. Jour. of Math. 31 (1969), 313-320.

5. Peter L. Duren, *Theory of* H^p spaces, Pure and Applied Math., Vol. 38, Academic Press, 1970.

6. L. Eifler, The slice product of function algebras, Proc. of Amer. Math. Soc. 23 (1969), 559-564.

7. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.

8. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.

9. W. Rudin, Function theory in polydiscs, W. A. Benjamin, New York, 1969.

UNIVERSITY OF GEORGIA, ATHENS, GA. 30601