SOME REMARKS ON THE SLICE ALGEBRA FOR H⁰⁰ WAYNE CUTRER

1. Introduction. For $N \ge 1$ let U^N denote the open unit polydisc in *N* complex variables and $H^{\infty}(U^N)$ the usual Hardy class of bounded holomorphic functions on U^N . If $M(U^N)$ denotes the maximal ideal space of $H^{\infty}(U^N)$, then by the *N*-dimensional slice algebra $S(M(U)^N)$ of $H^{\infty}(U)$ we mean the function algebra of all continuous functions f on $M(U)^N$ for which $f(\varphi, \cdot, \psi)$ belongs to $\hat{H}^*(U)$ for each φ in $M(U)^{k-1}$, ψ in $M(U)^{N-k}$, and $k = 1, \dots, N$. $\hat{H}^{\infty}(U^N)$ denotes the isomorphic Gelfand representation of *H°°(U^N)* as a function algebra on *M(U^N).* The purpose of this note is to give several characterizations of $S(M(U)^N)$ as a closed subalgebra of $H^{\infty}(U^N)$ and to relate the results to questions raised by [1].

In § 2 we obtain a description of all the functions in U^N which extend continuously to $M(U)^N$. This leads in § 3 to new characterizations for *S(M(U)^N)* as well as to straightforward proofs of two representations obtained by F. T. Birtel [1] and L. Eifler [6]. Birtel represents $S(M(U)^N)$ as those functions in $H^{\infty}(U^N)$ whose boundary function on the N-torus belongs to $\mathcal{B}_{k=1}^N L^{\infty}(T)$. Furthermore, both obtain $S(M(U)^N)$ as functions in $H^{\infty}(U^N)$ having continuous extensions to *M(U)^N .*

Also in $\S 3$ we use a recent result of R. G. Douglas and W. Rudin [4] to show that f in $H^{\infty}(U^N)$ belongs to $S(M(\tilde{U})^N)$ if and only if there exists a sequence of functions B_n in $H^{\infty}(U^N)$, each B_n a tensor product of *N* Blaschke products, such that the distance from B_Nf to the N-fold tensor product of $H^*(U)$ tends to zero. It follows from this that each f in $S(\tilde{M}(U)^N)$ is constant on the fibers in $M(U^N)$ above the Silov boundary of $S(M(U)^N)$. This answers in part the general question raised by Birtel in [1] of whether $S(M(\tilde{U})^N)$ is precisely those functions in $\dot{H}^{\infty}(U^N)$ for which \hat{f} is constant on all fibers above $M(U)^N$. We do show that this general question is equivalent to answering the corona conjecture for $S(M(U)^N)$ or, equivalently, to showing that the maximal ideal space of $S(M(U)^N)$ is $M(U)^N$.

§ 4 deals with the localization of some of the results in § 3 to a neighborhood in U^N of a point α of T^N and to the fiber in $M(U)^N$ above *a.*

Received by the editors April 2, 1973 and in revised form May 21, 1973.

In $\S 5$ we show that the cluster set for f in $S(M(U)^N)$ at α is the range of f on the fiber above α in the maximal ideal space of *S(M(U)^N)*. Similarly the range of f in $H^{\infty}(U^N)$ on the fiber above α in $M(U^N)$ is the cluster set of f at α . As a corollary we show that these fibers are connected.

2. Preliminaries. Let *CB(U^N)* denote all continuous complexvalued bounded functions on U^N . If \mathcal{F}_k is a subset of $CB(U)$, then by $\otimes_{k=1}^{N}$ \mathcal{F}_{k} we mean the smallest closed subalgebra of $CB(U^N)$ which contains all functions of the form $F(\xi_1, \dots, \xi_N) = f(\xi_k)$ for some *k* and some choice of f in \mathcal{F}_k . Similarly we define $\mathcal{D}_{k=1}^N L^{\infty}(T)$ as a closed subalgebra of $L^{\infty}(T^N)$. By $h^{\infty}(U)$ we denote the subset of *CB(U)* of all bounded real-valued harmonic functions on *U.*

It is well known [3] that $M(U)^N$ is the maximal ideal space of $\otimes_{k=1}^{N}$ *H*^{*}(*U*) and that *X*^{*N*} is its Silov boundary where *X* is the Silov boundary of $H^*(U)$. We also need the fact that U^N is dense in $M(U)^N$ ^{*N*}, which follows from Carleson's corona theorem [5].

The following lemma is the key to several characterizations for $S(M(U)^N)$

LEMMA 1. *The following complex algebras are isometrically isomorphic to C(M(U)^N):*

- (i) functions in U^N which extend continuously to $M(U)^N$.
- (ii) $\otimes_{k=1}^{N} H^{\infty}(U) \cup \overline{H^{\infty}}(U)$.
- (iii) $\otimes_{k=1}^N h^{\infty}(U)$.

PROOF. Since U^N is dense in $M(U)^N$, supremum norms on U^N and $M(U)^N$ agree. Hence, (i) is clearly $C(M(\bar{U})^N)$ restricted to U^N . The Stone-Weierstrass theorem shows that (ii) is $C(M(U)^N)$. Clearly (ii) is contained in (iii). If *u* belongs to $h^{\infty}(U)$ with harmonic conjugate *v*, then $F = \exp(u + iv)$ belongs to $H^*(U)$ and log $|\hat{F}|$ is a continuous extension of *U* to *M(U).* It follows that each element of (iii) extends continuously to $M(U)^N$ and (i) then shows that (iii) is contained $in (ii)$.

3. Several Characterizations and Corollaries. If f belongs to $H^{\infty}(U^N)$, it is well known (see [9]) that the radial limits $\tilde{f}^*(w)$ $=$ $\lim_{r\to 1} f(rw)$ exist for almost all w in T^N , where $rw = (rw_1, \dots, rw_N)$. This gives an isometry of $H^{\infty}(U^N)$ onto a closed subspace of $L^{\infty}(\mathbb{T}^N)$ with f the *n*-dimensional Poisson integral of f^* . We will denote this closed subalgebra of $L^{\infty}(T^N)$ by $H^{\infty}(T^N)$.

If φ belongs to $M(U^N)$ then $\pi(\varphi)$ will denote the restriction of φ to a complex homomorphism on $\otimes_{k=1}^{N} H^{*}(U)$.

THEOREM 1. *The following complex algebras are isometrically isonorphic to S(M(U)^N):*

- $\widetilde{f}(i)$ functions in $H^{\infty}(U^N)$ which admit continuous extensions to $M(U)^N$. *. _*
- (ii) $\otimes_{k=1}^{N} [H^{\infty}(U) \cup \overline{H^{\infty}}(U)] \cap H^{\infty}(U^{N}).$
- (iii) $\otimes_{k=1}^{N}$ $\hat{h}^{\infty}(U) \cap H^{\infty}(U^N)$.
- (iv) $\otimes_{k=1}^N L^{\infty}(T) \cap H^{\infty}(T^N).$
- (v) functions f in $H^{\infty}(U^N)$ such that given $\epsilon > 0$ there exists $B = g_1 \otimes g_2 \otimes \cdots \otimes g_N$, each g_k a Blaschke product, such *that* dist($Bf \otimes_{k=1}^N H^{\infty}(U)$) < ϵ .
- (vi) functions f in $H^{\infty}(U^N)$ for which f is constant on $\pi^{-1}(m)$ for all m in X^N .

PROOF. In view of Lemma 1, to show that (i), (ii), and (iii) are $S(M(U)^N)$ it suffices to show that (i) and $S(M(U)^N)$ are identical. By Hartog's theorem each f in $S(M(U)^N)$ restricted to U^N belongs to $H^{\infty}(U^{\overline{N}})$ and sup norms on U^N and $M(U)^N$ agree. Hence, $S(M(U)^N)$ is sometrically isomorphic to a closed subalgebra of (i) . If f in $H^*(U^N)$ extends continuously to $M(U)^N$, then $f(\alpha_\lambda, \cdot, \beta_\lambda)$ converges uniformly on compact subsets of U to $f(\varphi, \cdot, \psi)$ as $(\alpha_{\lambda}, \beta_{\lambda})$ converges to (φ, ψ) . It follows that $f(\varphi, \cdot, \psi)$ belongs to $\hat{H}^*(U)$ ind the isometry is onto.

The equivalence of (iii) and (iv) follows directly from the isometry between $H^{\infty}(U^N)$ and $H^{\infty}(T^N)$. Each f in $\otimes_{k=1}^N h^{\infty}(U)$ has boundary iunction f^* in $\otimes_{k=1}^N L^{\infty}(T)$ and the Poisson integral of each func-:ion in (iv) clearly belongs to (iii).

Assume f in $H^{\infty}(U^N)$ satisfies the conditions stated in (v). To show that f belongs to $S(M(U)^N)$ it suffices by [1] to show that *f* extends continuously to X^N . Let $\{\alpha_k\}$ and $\{\beta_k\}$ be two nets in *UN* converging to *m* in X^N with $\lim_{\lambda} f(\alpha) = \alpha$ and $\lim_{\lambda} f(\beta) = \beta$. For $\epsilon > 0$ choose *B* of the stated form such that $\|Bf - g\|_{\infty} < \epsilon/2$ for some g in $\mathfrak{D}^N_{k=1}$ $H^{\infty}(U)$. It follows that $|m(B)\alpha - m(g)| < \epsilon/2$ ind $|m(B)\beta - m(g)| < \epsilon/2$. Since *m* belongs to X^N we have $|m(B)| = 1$ (see [8, p. 179]). Then $|\alpha - \beta| \le |m(B)\alpha - m(g)| +$ $|m(g) - m(B) \beta| < \epsilon$. Thus $\alpha = \beta$ and f extends continuously to X^N .

For f in $S(M(U)^N)$ and $\epsilon > 0$, we can choose by (iv) a sum $\sum_{i=1}^n F_i$ in $\otimes_{k=1}^N L^{\infty}(T)$, each F_i of the form $f_1^i \otimes f_2^i \otimes \cdots \otimes f_N^i$, such that $||f^* - \sum_{i=1}^n F_i||_{\infty} < \epsilon/2$. By Theorem 7 of [4] there exist singular inner functions p_i^i and finite linear combinations χ_i^i of inner functions such that $||F_i - \mathcal{B}_{j=1}^N \chi_j^i / p_j^i||_{\infty} < \epsilon/2n$ for each $i = 1$, \cdots , *n*. It follows that

258 **W.OUTRER**

$$
\left\| \prod_{i=1}^n (\otimes_{j=1}^N p_j^i) f^* - \sum_{i=1}^n \otimes_{j=1}^N \chi_j^i \otimes_{j \neq i} p_j^i \right\|_{\infty} < \epsilon.
$$

Now extend to U^N and use the result that every inner function is a uniform limit of Blaschke products (see [8, p. 175]). This gives (i) equivalent to *(v).*

If f belongs to $H^{\infty}(U^N)$ with f constant on $\pi^{-1}(m)$ for every m in X^N , then f extends continuously to X^N ; otherwise, there would exist two nets converging to φ and ψ respectively with $\pi(\varphi) = \pi(\psi)$ $= m$ but $\varphi(f) \neq \psi(f)$. For the converse, suppose f belongs to $S(M(U)^N)$, φ and ψ belong to $\pi^{-1}(m)$, *m* belongs to X^N , and $\epsilon > 0$. Again by (v) we can choose *B* and g in $\otimes_{k=1}^{N} H^{\infty}(U)$ such that

$$
|f(\varphi) - f(\psi)| = |\varphi(B)f(\varphi) - \varphi(B)f(\psi)|
$$

\n
$$
\leq |\varphi(B)f(\varphi) - \varphi(g)| + |\psi(g) - \psi(B)f(\psi)| < \epsilon,
$$

since φ and ψ agree on $\otimes_{k=1}^{N} H^{*}(U)$. This shows (i) and (vi) equivalent and the theorem is proved.

REMARKS. F. T. Birtel [1] has also obtained a representation of $S(M(U)^N)$ as the compact linear operators from L^1/H_0^1 to H^* . It still remains an open question whether $S(M(U)^N)$ is precisely $\mathcal{D}_{k=1}^N H^{\infty}(U)$. The equivalence of $S(M(U)^N)$ with (vi) provides a converse of Theorem 4 in [1]. Furthermore, the argument can easily be extended to give the following corollary.

COROLLARY 1. *The natural projection map* r *of the maximal ideal* space $\Sigma(S^N)$ of $S(M(U)^N)$ onto $M(U)^N$ is a homeomorphism over X^N .

COROLLARY 2. *The following are equivalent:*

- (i) τ *is a homeomorphism.*
- (ii) U^N *is dense in* $\Sigma(S^N)$.
- (iii) $S(M(U)^N)$ is the subalgebra of $H^{\infty}(U^N)$ for which \hat{f} is constant *on* $\pi^{-1}(m)$ for all m in $M(U)^N$.

PROOF. It is clear that (i) implies (ii) since U^N is dense in $M(U)^N$. If we assume that U^N is dense in $\Sigma(S^N)$, then each f in $S(M(U)^N)$ has a unique continuous extension to $\Sigma(S^N)$. Let $\epsilon > 0$ with φ and ψ belonging to $\tau^{-1}(m)$. Each function in $\mathcal{B}_{k=1}^N$ *h*°(U) must extend continuously to $\Sigma(S^N)$ since U^N is dense in $\Sigma(S^N)$. Then point evaluation at φ and ψ are continuous linear functionals $\hat{\varphi}$ and $\hat{\psi}$ on $\otimes_{k=1}^{N} h^{\infty}(U)$ which must agree with φ and ψ on $S(M(U)^N)$. If g is chosen in $\otimes_{k=1}^N h^*(U)$ such that $||f-g||_{\infty} < (\epsilon/2) \max\{||\hat{\varphi}||, ||\hat{\psi}||\}$, then

 $\|\hat{f}(\varphi)-\hat{f}(\psi)\|\leq \|\hat{\varphi}\| \|f-g\|_{\infty}+\|\hat{\psi}\| \|g-f\|_{\infty}<\epsilon$. Thus $\varphi=\psi$ and τ is one-to-one.

Let η be the natural projection map of $M(U^N)$ onto $\Sigma(S^N)$. If $\varphi(f)$ $\neq \psi(f)$ for f in S(M(U)^{*N*}) and $\pi(\varphi) = \pi(\psi) = m$, then $\eta(\varphi)$ $\neq \eta(\psi)$ but $\tau(\eta(\varphi)) = \tau(\eta(\psi)) = m$. It follows that τ is not a homeomorphism and (i) implies (iii). Conversely, if $\tau(\varphi) = \tau(\psi)$ but $\varphi \neq \psi$, then there exists f in $S(M(U)^N)$ such that $f(\varphi) \neq f(\psi)$. But if $\eta(\varphi^*) = \varphi$ and $\eta(\psi^*) = \psi$, then $\pi(\varphi^*) = \pi(\psi^*)$ but $\hat{f}(\varphi^*) = \hat{f}(\varphi)$ $\neq f(\psi) = f(\psi^*)$ and (iii) implies (i).

4. Localization. In this section we show how to localize some of the preceding sections. For $\alpha = (\alpha_1, \dots, \alpha_N)$ in T^N the fiber in *M*(*U*)^{*N*} above α is the subset *M*(α) containing all φ such that $\varphi(z_k)$ = c_k where z_k is the kth coordinate function on \mathbb{S}^N for $k = 1, \dots, N$. Similarly, $\Gamma(\pmb{\alpha})$ denotes the fiber in $M(U^N)$ above $\pmb{\alpha}$.

LEMMA 2. Let g belong to $\otimes_{k=1}^{N} h^*(N_k(\alpha_k) \cap U)$ with $N(\alpha) =$ $N_1(\alpha_1) \times \cdots \times N_N(\alpha_N)$ a neighborhood in \mathbb{C}^N of $\alpha = (\alpha_1, \dots, \alpha_N)$ in T^N . Then there exists h in $\otimes_{k=1}^N h^{\infty}(U)$ such that $g-h$ extends *continuously to a with value* 0.

PROOF. It suffices to assume that each $N_k(\alpha_k)$ is a circular neighborhood of α_k and that g belongs to $h^{\infty}(N_k(\alpha_k) \cap U)$ for some k. Let v be a harmonic conjugate of g on $N_k(\alpha_k) \cap U$. Then $F = e^{g + iv}$ belongs to $H^{\infty}(N_k(\alpha_k) \cap U)$. Now using Vitushkin's localization operator [7] we construct *H* in $H^{\infty}(U)$ such that $H - F$ extends analytically across α_k with value 0 at α_k . Since *H* extends continuously to $m(\alpha_k)$ and $log|F| = g$, we have that g extends continuously to $M(\alpha_k)$.

Let h be the restriction of the continuous extension of g to $M(\alpha_k)$. Then h extends continuously to $M(U)$ and by Lemma 1 must belong to the smallest closed subalgebra of $CB(U)$ containing $h^{\infty}(U)$. Then g and *h* satisfy the lemma.

THEOREM 2. For α in T^N the following complex algebras are iden*tical:*

- $\rm(i)$ functions in $H^{\infty}(U^N)$ which extend continuously to $M(\boldsymbol{\alpha})$.
- (ii) functions in $H^{\infty}(U^N)$ such that given $\epsilon > 0$, there exists a neigh*borhood* $N(\alpha)$ of α and g in \mathcal{B}_{k-1}^N $h^{\infty}(N_k(\alpha_k) \cap U)$ such that $||f-g||_{\infty} < \epsilon$ on $U^N \cap N(\alpha)$.
- (iii) same as (ii) except with g in $\otimes_{k=1}^N h^{\infty}(U)$, or in $\otimes_{k=1}^N [H^{\infty}(N_k(\alpha_k))]$ $\hat{P}(U) \cup \overline{H^{\infty}}(N_{k}(\alpha_{k}) \cap U)$, or in $\otimes_{k=1}^{N} H^{\infty}(U) \cup \overline{H^{\infty}}(U)$.

PROOF. Assume f belongs to $H^*(U^N)$ and extends to a continuous function g on $M(\alpha)$. Then g extends continuously to $M(U)^N$ and by Lemma 1 must belong to $\mathcal{B}_{k=1}^N$ $h^{\infty}(U)$. Then f and g satisfy (ii)

since otherwise $||f-g|| \geq \epsilon$ on $M(\alpha)$. For the converse choose g in $\otimes_{k=1}^{N} h^{\infty}(N_{k}(\alpha_{k}) \cap U)$ such that $||f-g||_{\infty} < \epsilon$ on $U^{N} \cap N(\alpha)$. By Lemma 2 there exists G in $\mathcal{D}_{k=1}^{\mathcal{V}} h^*(U)$ such that $g - G$ extends continuously to α with value 0. Then for some neighborhood $K(\alpha)$ of α we have $||f - G||_{\infty} < \epsilon$ on $K(\alpha) \cap U^N$. It follows that the cluster set of f at any φ in $M(\alpha)$ has diameter less than ϵ . The other equivalences follow in a similar fashion using Lemma 1.

5. Cluster Values. Although we cannot answer the corona conjecture for $H^{\infty}(U^N)$ or $S(M(U)^N)$, we can prove a cluster value theorem which gives the range of f in $H^{\infty}(U^N)$ on $\Gamma(\alpha)$ and the range of f in $S(M(\mathbf{U})^N)$ on the fiber $S(\alpha)$ in $\Sigma(S^N)$ above α .

We begin with a lemma on extending bounded holomorphic functions.

LEMMA 3. Let $\alpha = (\alpha_1, \dots, \alpha_N)$ belong to T^N and $\Omega = \Omega_1 \times \Omega_2$ $\times \cdots \times \Omega_N$ be a neighborhood in U^N of α . Then given f in $H^{\infty}(\Omega)$ *there exists F in H* $^{\infty}$ (*U*^{*N*}) such that F – f extends continuously to *a with value* 0.

PROOF. We employ a vector-valued version of Vitushkin's localization operator. Define $T_1: \Omega_1 \to H^{\infty}(\Omega_2 \times \cdots \times \Omega_N)$ by $T_1(z) =$ $f(z, \cdot)$. Then *T* belongs to $H^{\infty}(\Omega_1, H^{\infty}(\Omega_2 \times \cdots \times \Omega_N))$ which is isometrically isomorphic to $H^{\infty}(\Omega)$ (see [2]). Let φ be a continuously differentiable function on \hat{C} with compact support in $\Delta(\alpha_1; \delta)$ = $\{z : |z - \alpha_1| < \delta\}$ which is contained in Ω_1 and such that $|\partial \varphi/\partial \overline{z}| \leq$ 4/8. Define

$$
\hat{T}_1(\xi) = \left(\frac{1}{\pi}\right)\int_{\mathcal{K}} \frac{T(z) - T(\xi)}{z - \xi} \frac{\partial \varphi}{\partial \overline{z}} dx dy.
$$

Then \hat{T}_1 beongs to $H^{\infty}(U, H^{\infty}(\Omega_2 \times \cdots \times \Omega_N))$. We can adjust T_1 by a constant such that $T_1 - T_1$ has value 0 at α_1 . Let $f_1(z, w)$ $=\hat{T}_1(z)(w)$. Then f_1 belongs to $H^*(U \times \Omega_2 \times \cdots \times \Omega_N)$ and $f - f_1$ extends continuously to α with value 0. Now proceed by induction on *n.*

THEOREM 3. Let $\alpha = (\alpha_1, \dots, \alpha_N)$ belong to T^N. Then the range *of f in H*^{α}(*U*^{*N*}) on $\Gamma(\alpha)$ and the range of f in S(*M*(*U*)^{*N*}) on S(α) *consists of all complex numbers* λ *for which there is a sequence* $\{\lambda_n\}$ \int *in U^N* with $\lim_{n \to \infty} \lambda_n = \alpha$ and $\lim_{n \to \infty} f(\lambda_n) = \lambda$.

PROOF. Assume φ belongs to $\Gamma(\alpha)$, $\varphi(f) = 0$ and let $\Omega = \Omega_1 \times \cdots$ \times Ω_N be a neighborhood of α in \overline{U}^N such that on $\Omega \cap U^N$, f is bounded away from 0. It follows that $g = 1/f$ belongs to $H^{\infty}(\Omega \cap U^N)$,

and by Lemma 3 there exists F in $H^{\infty}(U^N)$ such that $g - F$ tends to 0 at α . Thus fF belongs to $H^{\infty}(U^N)$ and extends continuously to α with value 1. It follows by [8, p. 161] (with $h(z_1, \dots, z_N) =$ $\prod_{n=1}^{N} (1/2)^n (1 + \bar{\alpha}_n z_n)$ that $\varphi(fF) = \varphi(f)\varphi(F) = 1$, so $\varphi(f) \neq 0$. $\widehat{\mathsf{df}}$ $\pmb{\varphi}$ belongs to $S(\pmb{\alpha})$ and f belongs to $S(M(U)^N)$, choose $\pmb{\psi}$ in $\Gamma(\pmb{\alpha})$ such that $\eta(\psi) = \varphi$. Then $\psi(f\vec{F}) = \varphi(f)\psi(F) = 1$ implies $\varphi(f) \neq 0$.

COROLLARY 3. The fibers $\Gamma(\alpha)$ and $S(\alpha)$ are connected.

PROOF. This follows as in [8, p. 188] from Theorem 3.

REFERENCES

1. F. T. Birtel, *Slice algebras of bounded analytic functions,* **Math. Scand. 21 (1967), 54-60.**

2. W. Cutrer, Vitushkin's localization operator and holomorphic function in *polydiscs,* **Duke Math. J. 39 (1972), 737-744.**

3. J. Gil DeLamadrid, *Uniform cross norms and tensor products of Banach ïlgebras,* **Bull. Amer. Math. Soc. 69 (1963), 797-803.**

4. R. G. Douglas and W. Rudin, *Approximation of inner functions,* **Pac. Jour. Df Math. 31 (1969), 313-320.**

5. Peter L. Duren, *Theory of H^p spaces*, Pure and Applied Math., Vol. 38, **Academic Press, 1970.**

6. L. Eifler, *The slice product of function algebras,* **Proc. of Amer. Math. Soc. 23 (1969), 559-564.**

7. T. W. Gamelin, *Uniform algebras,* **Prentice-Hall, Englewood Cliffs, N. J., 1969.**

8. K. Hoffman, *Banach spaces of analytic functions,* **Prentice-Hall, Englewood Cliffs, N. J., 1962.**

9. W. Rudin, *Function theory in polydiscs,* **W. A. Benjamin, New York, 1969.**

UNIVERSITY OF GEORGIA, ATHENS, GA. 30601